`modelview` is uninitialized and the `apply` function just multiplies it.
What we really want is to initialize `modelview` so replace `apply` with
`get`.
Who knows what bugs this may have caused...
Treat the main seat as other seats, so we don't have to handle it differently
in specific places. This was already the case before when a real device
was plugged before the startup, but not applied when hotplugging a device.
When no input devices are available on startup the device manager might be fast
enough to be constructed so that no default stage is set yet, and thus when
main seat virtual devices are created they won't have a proper stage set.
If then we plug a real device, the events that an input manager could generate
won't be associated to any stage and thus won't be processed.
We need then ensure that when we update the stage for the device manager we
(un)associate it also to the main seat devices.
Commit 47131b1d ("frames: Handle touch events") introduced an assert to
make sure that all mouse button actions are handled in mutter.
However, mice can have a more than 5 buttons, so simply ignore the
"other" actions instead of aborting.
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/160
After 20176d03, the Wayland backend only synchronizes with the
compositor after a geometry was set, and it was different from
the current geometry.
That commit was mistakenly comparing the geometry before chaining
up, which would yield a false negative on the case where the
client didn't call set_geometry() before commit().
Fix that by caching the old geometry locally, chain up (and thus
apply the new geometry rectangle), then comparing the old and
current geometry rectangles.
Fixes https://gitlab.gnome.org/GNOME/mutter/issues/150
This avoids overwhelming the GPU with trying to update mipmaps at a high
rate. Because doing so could easily cause a reduction in the compositor
frame rate and thus actually reduce visual quality.
In the case of a window that is constantly animating in the overview,
this reduces mutter's render time by around 20%-30%.
In devices such as ARM boards there could be no input devices connected on
startup, leading to a crash when we try to process artificial events that
could be queued (as gnome-shell does when syncing pointer).
Those events still should refer to a device and, in case we don't have one
provided by libinput we should still return the core devices defined in the
main seat.
This is just done on wayland as it'll break horribly on X11, we let
this happen through pointer emulated events in XISelectEvents evmask
instead.
Some things had to be made slightly more generic to accomodate touch
events. The MetaFrames shall lock onto a single touch at a time, we
don't allow crazy stuff like multi-window drag nor multi-edge resizes.
https://bugzilla.gnome.org/show_bug.cgi?id=770185
While MetaStage, MetaWindowGroup and MetaDBusDisplayConfigSkeleton don't
appear explicitly in the public API, their gtypes are still exposed via
meta_get_stage_for_screen(), meta_get_*window_group_for_screen() and
MetaMonitorManager's parent type. Newer versions of gjs will warn about
undefined properties if it encounters a gtype without introspection
information, so expose those types to shut up the warnings.
https://bugzilla.gnome.org/show_bug.cgi?id=781471
Various code assumed PipeWire function calls would never fail. Some can
actually fail for real reasons, and some currently can only fail due to
OOM situations, but we should still not assume that will always be the
case.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/102
The destroyed signal that was emitted if an imported surface was not
available when created, for example if the handle was invalid or
already unexported, was emitted on the wrong resource.
We require logind for the native backend, but the backend itself is
optional. However since commit 06c357d78, we will always throw an
error if neither logind nor elogind are available, even when the
backend is disabled.
As we still support "auto" - that is, whether the native backend is
enabled depends on whether its dependencies are available - the
easiest option is to make sure we always include either elogind or
libsystemd in the dependency check rather than erring out explicitly
if neither is found.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/96
To check if a subsurface is effectively synchronized, we walk the
subsurface hierarchy to look for a non-subsurface parent or a subsurface
being synchronized.
However, when client is closing, the parent surface might already be
gone, in which case we end up with a surface being NULL which causes a
NULL pointer dereference and a crash.
Check if the parent surface is NULL to avoid the crash, and consider
it's already synchronized if it is NULL to avoid further updates.
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/124
The current implementation of the XdgSurface v6 protocol does not check
if the window changed before calling meta_window_wayland_move_resize().
The problem with this approach is that calling this function is a costly
operation since we enter the compositor side. In GNOME Shell case, it is
in JavaScript, which triggers a GJS trampoline. Calling this function on
every mouse movement is naturally as terrible as it could be - and is
exactly what happens now.
This commit adds the necessary checks to only call move_resize() when
the window actually changed, or when it needs to be updated.
https://bugzilla.gnome.org/show_bug.cgi?id=780292
Issue: #78
This will be used by the next commit to determine when a window
geometry change should be ignored or not. Normally, it would be
enough to just check if the position and sizes changed.
The position, in this case, is relative to the client buffer, not
the global position. But because it is not global, there is one,
admitedly unlikely, situation where the window state is updated
while the client size and relative positions don't change.
One can trigger this by e.g. tiling the window to the half-left of
the monitor, then immediately tile it to half-right. In this case,
the window didn't change, just it's state, but nonetheless we need
to notify the compositor and run the full move/resize routines.
When that case happens, though, the MetaWindowWayland is tracking
the pending state change or a move. And this is what we need to
expose.
https://bugzilla.gnome.org/show_bug.cgi?id=780292
Issue: #78
In the old, synchronous X.org world, we could assume that
a state change always meant a synchronizing the window
geometry right after. After firing an operation that
would change the window state, such as maximizing or
tiling the window,
With Wayland, however, this is not valid anymore, since
Wayland is asynchronous. In this scenario, we call
meta_window_move_resize_internal() twice: when the user
executes an state-changing operation, and when the server
ACKs this operation. This breaks the previous assumptions,
and as a consequence, it breaks the GNOME Shell animations
in Wayland.
The solution is giving the MetaWindow control over the time
when the window geometry is synchronized with the compositor.
That is done by introducing a new result flag. Wayland asks
for a compositor sync after receiving an ACK from the server,
while X11 asks for it right away.
Fixes#78
Before we just set it to "none", but this was not enough since various
calls will depend on not just the context being active, but the main
rendering surface.
Fixes https://gitlab.gnome.org/GNOME/mutter/issues/21
When deriving the global scale directly from the current hardware state
(as done when using the X11 backend) we are inspecting the logical
state they had prior to the most recent hot plug. That means that a
primary monitor might have been disabled, and a new primary monitor may
not have been assigned yet.
Stop assuming a primary monitor has an active mode before having
reconstructed the logical state by finding some active monitor if the
old primary monitor was disabled. This avoids a crash when trying to
derive the global scale from a disabled monitor.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/130
These paths implicitly relied on the forwarded IM key events having
a source_device backed by a real HW device. This assumption is no
longer held true since commit b5328c977.
Explicitly check the INPUT_METHOD flag so they are handled as they
should despite not being "real HW" events.
As a follow up to the patch from a95cbd0a, we need to make sure
that the pointer is out of the way as well when monitors changed,
since that's the event that will prevail in some cases. Besides,
this is also consistent with what the code before a95cbd0a was,
which initialized the pointer position in the same way both in
this case and in the real_post_init() function.
Closes: https://gitlab.gnome.org/GNOME/gnome-shell/issues/157
We used to maintain an actor for cursors, even though we would possibly
use hw overlays or even some other overlay actor for those. This happens
no more, so check whether we are dealing with an actor-backed surface role
before fiddling with it.
All surface roles that do need a backing actor inherit from this
class, it makes sense to move actor management there. This also
means the MetaWaylandActorSurface is in charge of emitting
::geometry-changed on the MetaWaylandSurface.
Instead of scheduling a meta_later, keep track of the unassociated
windows, and look for matches as soon as the MetaWaylandSurface is
created on our side.
This will ensure the surface is given the Xwayland role before receiving
the first wl_surface.commit.
In the synchronized subsurface case, the destination list may
contain other elements from previous wl_surface.commit calls.
Resetting the list will leave those dangling frame callbacks
that will lead to invalid writes when those get to be destroyed
(eg. on client shutdown).
The fix is twofold. On one hand, it makes sense not to relate IM (nor
any other) generated events to a HW device. On the other hand, if we
are unfortunate that an IM event is in flight when we are switching
to another TTY, it may arrive at a time when the source device is no
longer existent.
Gtk now is caching the themed cairo surfaces, then as per
commit gtk@e36b629c the surface device scale is used to figure
out the current paint scaling.
Without this when using background-image's for window buttons
the -gtk-scaled icons isn't properly resized.
Fixes#99
Centering the pointer at startup causes undesired behaviour if
it ends up hovering over reactive elements, that might react
to that positioning, causing confusion. This is the case of
the login dialog when a list of different users is shown, as
centering the pointer at startup in that case will get the
user in the center of the screen pre-selected, which is not
the expected behaviour (i.e. pre-selecting the first one).
Fix this by simply moving the pointer out of the way, close
to the bottom-right corner, during initialization.
Closes: https://gitlab.gnome.org/GNOME/gnome-shell/issues/157
Mark CAPS lock as a modifier (as it should) so that when using XKB
options to change the default behaviour of CAPS lock, the new assigned
key can by used as a sticky key as well.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/112
Input method can inject key events, which leads to multiple reported key
press/release events for a single user action.
Ignore those events as this confuses keyboard accessibility.
Right now if Xwayland crashes, we crash, too.
On some level that makes sense, since we're supposed to control the
lifecycle of Xwayland, and by it crashing we've lost that control.
But practically speaking, the knock-on crash adds noise to the logs,
bug trackers, and retrace servers that only makes debugging harder.
And the crash isn't something mutter can "fix", since it's
ultimately from a bug in Xwayland anyway.
This commit makes mutter exit instead of crash if Xwayland goes away
unexpectedly.