DPMS is configured from a bit all over the place: via D-Bus, via X11 and
when reading the current KMS state. Each of these places did it slightly
differently, directly poking at the field in MetaMonitorManager.
To make things a bit more managable, move the field into a new
MetaMonitorManagerPrivate, and add helpers to get and set the current
value. Prior to this, there were for example situations where the DPMS
setting was changed, but without signal listeners being notified about
it.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/506
Commit 25f416c13d added additional compilation warnings, including
-Werror=return-type. There are several places where this results
in build failures if `g_assert_not_reached()` is disabled at compile
time and the compiler misses a return value.
https://gitlab.gnome.org/GNOME/mutter/issues/447
MonitorManager was inheriting from MetaDBusDisplayConfigSkeleton, this was
causing introspection to see this like a GDBus skeleton object exposing to
clients methods that were not required.
Also, this required us to export meta_dbus_* symbols to the library, while
these should be actually private.
So, make MetaMonitorManager to be just a simple GObject holding a skeleton
instance, and connect to its signals reusing most of the code with just few
minor changes.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/395
Switch-configs are only to be used in certain circumstances (see
meta_monitor_manager_can_switch_config()) so when ensuring
configuration and attempting to create a linear configuration, use the
linear configuration constructor function directly without going via the
switch config method, otherwise we might incorrectly fall back to the
fallback configuration (only enable primary monitor).
This is a regression introduced by 6267732bec.
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/342
It wasn't implemented by any subclass, it's not provided by DRM either.
And even if a subclass were to have only a file available, it could read
it into a GBytes as well and just use `read_edid()`.
Found this while working on !269.
The order and way include macros were structured was chaotic, with no
real common thread between files. Try to tidy up the mess with some
common scheme, to make things look less messy.
When constructing MetaMonitorsConfig objects, store which type
of switch_config they are for (or UNKNOWN if it is not such
type of config).
Stop unconditionally setting current_switch_config to UNKNOWN when
handling monitors changed events. Instead, set it to the switch_config
type stored in the MonitorsConfig in the codepath that updates logical
state. In addition to being called in the hotplug case along the same
code flow that generates monitors changed events, this is also called
in the coldplug case where a secondary monitor was connected before
mutter was started.
When creating the default linear display config, create it as a
switch_config so that internal state gets updated to represent
linear mode when this config is used.
The previous behaviour of unconditionally resetting current_switch_config
to UNKNOWN was breaking the internal state machine for display config
switching, causing misbehaviour in gnome-shell's switchMonitor UI when
using display switch hotkeys. The lack of internal tracking when the
displays are already in the default "Join Displays" linear mode was
then causing the first display switch hotkey press to do nothing
(it would attempt to select "Join Displays" mode, but that was already
active).
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/281https://gitlab.gnome.org/GNOME/mutter/merge_requests/213
Avoid exporting through org.gnome.Mutter.DisplayConfig.GetCurrentState
excessively-low screen resolutions setting both a minimum width and a minimum
height. GetCurrentState is e.g. used by Gnome Control Center to build a list of
selectable resolutions.
Fixes: https://bugzilla.gnome.org/show_bug.cgi?id=793223
Rather than handle UpClient in both MetaBackend (to reset the idletime
when the lid is opened), and in MetaMonitorManager and
MetaMonitorConfigManager (to turn the screen under the lid on/off
depending on its status), move the ability to get the lid status from
UPower or mock it in one place, in MetaBackend.
Restarting UPower will make every property of UpClient emit a "notify"
signal (as a GDBusProxy would). Avoid mutter reconfiguring the displays
when upower restarts by caching the last known value of "lid-is-closed"
and only reconfiguring the displays if it actually changed.
This fixes a black out of the screen when UPower restarts.
For some reason "backends: Remove X11 idle-monitor backend" removed
unrelated warning messages for when generated monitor configurations
that should work didn't, which also made the unit tests fail.
This commit adds them back, which also makes the tests pass again.
When deriving the global scale directly from the current hardware state
(as done when using the X11 backend) we are inspecting the logical
state they had prior to the most recent hot plug. That means that a
primary monitor might have been disabled, and a new primary monitor may
not have been assigned yet.
Stop assuming a primary monitor has an active mode before having
reconstructed the logical state by finding some active monitor if the
old primary monitor was disabled. This avoids a crash when trying to
derive the global scale from a disabled monitor.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/130
And use the old "native" backend for both X11 and Wayland. This will
allow us to share fixes between implementations without having to delve
into the XSync X11 extension code.
https://bugzilla.gnome.org/show_bug.cgi?id=705942
Output ID is set equal to 'i' later in the loop. But 'i' was never
incremented, so all outputs were getting the same ID (equal to
the number of CRTCs, because 'i' was reused from the previous loop).
(cherry picked from commit 23c3f8bb18)
If a LCD panel has a non normal orientation (mounted upside-down or 90
degrees rotated) then the kernel will report touchscreen coordinates with
the origin matching the native (e.g. upside down) coordinates of the panel.
Since we transparently rotate the image on the panel to correct for the
non normal panel-orientation, we must apply the same transform to input
coordinates to keep the aligned.
https://bugzilla.gnome.org/show_bug.cgi?id=782294
We only counted configured monitors and whether the config was
applicable (could be assigned), howeverwe didn't include disabled
monitors when comparing. This could caused incorrect configurations to
be applied when trying to use the previous configuration.
One scenario where this happened was one a system with one laptop
screen and one external monitor that was hot plugged some point after
start up. When the laptop lid was closed, the 'previous configuration'
being the configuration where only the laptop panel was enabled, passed
'is-complete' check as the number of configured monitors were correct,
and the configuration was applicable.
Avoid this issue by simply comparing the configuration key of the
previous configuration and the configuration key of the current state.
This correctly identifies a laptop panel with the lid closed as
inaccessible, thus doesn't incorrectly revert to the previous
configuration.
https://bugzilla.gnome.org/show_bug.cgi?id=788915
Adding an internal signal and use it to update the internal state before
emitting "monitors-changed" which will be repeated by the screen to the world.
https://bugzilla.gnome.org/show_bug.cgi?id=788860
In order to eventually support multilpe GPUs with their own connectors,
split out related meta data management (i.e. outputs, CRTCs and CRTC
modes) into a new MetaGpu GObject.
The Xrandr backend always assumes there is always only a single "GPU" as
the GPU is abstracted by the X server; only the native backend (aside
from the test backend) will eventually see more than one GPU.
The Xrandr backend still moves some management to MetaGpuXrandr, in
order to behave more similarly to the KMS counterparts.
https://bugzilla.gnome.org/show_bug.cgi?id=785381
The monitor manager instance was created and setup in one step; at
construction. This is problematic if, in the future, the monitor manager
creation can fail, as the monitor manager is created quite late.
To make it possible to in the future fail creating a monitor manager,
create the instance very early when initiating the backend, then on
post init backend setup, "setup" the monitor manager state, i.e. read
the current state and setup the stage.
https://bugzilla.gnome.org/show_bug.cgi?id=785381
Convert MetaCrtcMode from a plain struct to a GObject. This changes the
storage format, and also the API, as the API was dependent on the
storage format.
https://bugzilla.gnome.org/show_bug.cgi?id=785381
Turn MetaCrtc into a GObject and move it to a separate file. This
changes the storage format, resulting in changing the API for accessing
MetaCrtcs from using an array, to using a GList.
https://bugzilla.gnome.org/show_bug.cgi?id=785381
Turn MetaOutput into a GObject and move it to a separate file. This
changes the storage format, resulting in changing the API for accessing
MetaOutputs from using an array, to using a GList.
https://bugzilla.gnome.org/show_bug.cgi?id=785381
When saving and restoring monitor configurations, we must take disabled
monitors into account, as otherwise one cannot store/restore a
configuration where one or more monitors are explicitly disabled. Make
this possible by adding a <disabled> element to the <configure> element
which lists the monitors that are explicitly disabled. These ones are
included when generating the configuration key, meaning they'll be
picked up correctly.
https://bugzilla.gnome.org/show_bug.cgi?id=787629
When we update state, we might not have set the current config yet (for
example if the Xrandr assignment didn't change), so pass the monitors
config we should derive from instead of fetching it from the monitor
config manager.
https://bugzilla.gnome.org/show_bug.cgi?id=787477
When another D-Bus call that just tries to verify a configuration is
made, don't cancel any active monitor configuration dialog, as doing so
would effectively confirm queried configuration.
https://bugzilla.gnome.org/show_bug.cgi?id=786023
When opening a laptop lid, one will likely want to restore the
configuration one had prior to closing it, so when ensuring monitor
configuration, first try to see if the previously set configuration is
both complete (all connected monitors are configured) and applicable
(it is a valid configuration) and only try to generate a new from
scratch if that failed.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
In order to go back in monitor configurations, save them to a history.
The history is implemented as a max 3 element long queue, where newly
set configurations are pushed to the head, and old are popped from the
tail.
The difference between using a single previous config reference and a
queue is that we can now remember the configuration used prior to a
D-Bus triggered configuration when the user discarded the configuration.
This will later be used to restore a previous configuration when a
laptop lid is opened.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
This commit changes the new configuration system to use monitors.xml
instead of monitors-experimental.xml. When starting up and the
monitors.xml file is loaded, if a legacy monitors.xml file is
discovered (it has the version number 1), an attempt is made to migrate
the stored configuration onto the new system.
This is done in two steps:
1) Parsing and translation of the old configuration. This works by
parsing file using the mostly the old parser, but then translating the
resulting configuration structs into the new configuration system. As
the legacy configuration system doesn't carry over some state (such as
tiling and scale used), some things are not available. For tiling, the
migration paths makes an attempt to discover tiled monitors by
comparing EDID data, and guessing what the main tile is. Determination
of the scale of a migrated configuration is postponed until the
configuration is actually applied. This works by flagging the
configuration as 'migrated'.
2) Finishing the migration when applying. When a configuration with the
'migrated' flag is retrieved from the configuration store, the final
step of the migration is taken place. This involves calculating the
preferred scale given the mode configured, while making sure this
doesn't result in any overlapping logical monitor regions etc.
https://bugzilla.gnome.org/show_bug.cgi?id=777732