If the vendor_name was previously successfully determined, we would end
up in the else case, overwriting it with "Unknown vendor" and leaking
the previous vendor_name.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2603>
This allows using two separate ICC profiles for one "color profile",
which is necessary to properly support color transform
calibration profiles from an EFI variable.
These types of profiles are intended to be applied using the color
transformation matrix (CTM) property on the output, which makes the
presented output match sRGB. In order to avoid color profile aware
clients making the wrong assumption, we must set the profile exposed
externally to be what is the expected perceived result, i.e. sRGB, while
still applying CTM from the real ICC profile.
The separation is done by introducing a MetaColorCalibration struct,
that is filled with relevant data. For profiles coming from EFI, a
created profile is practically an sRGB one, but the calibration data
comes from EFI, while for other profiles, the calibration data and the
ICC profile itself come from the same source.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2568>
We may want to use scanout even if the default framebuffer
of the stage view is an offscreen, for example when a Wayland
client provides pre-rotated buffers. The caller is responsible
to ensure this is correct - we already asserted on that before.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2468>
If a stage view uses an offscreen framebuffer exclusively for
rotation and a Wayland client provides pre-rotated buffers,
we should try to use scanout.
This saves us one copy more than scanout in the onscreen case,
i.e. two fullscreen copies in total.
Offscreen rotation is notably used for all 90/270 degree rotations
at the moment, as using display hardware for them is apparently
more complex than for x-/y-flips and can even have detrimental
effects on power consumption.
This can be tested with `weston-simple-egl`.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2468>
This mocks gsd-colord to enable night ligth at a given temperature. The
test then verifies that the result exactly matches that of the gamma
ramps gsd-color generated for the same temperature and ICC profile.
There are two types of profiles tested; ones with VCGT, i.e. calibrated
profiles, and ones without. These are tested as the VCGT affects how the
gamma curve looks, while the non-VCGT profiles all only rely on
the blackbody temperature to generate a gamma ramp.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2165>
More or less copied from gnome-settings-daemon. The look up tables are
either calculated based on the VCGT (Video Card Gamma Table) and the
blackbody color for a given temperature, or the blackbody color for a
given temperature alone, if no VCGT is available.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2165>
This means that e.g. custom profiles or calibrated profiles will be
added and registered with colord. This does not use CdIccStore for two
reasons: don't want to generate duplicate entries for auto-generated
EDID or EFI profiles, and we want to store profiles as MetaColorProfile.
It also happens to be the case that CdIcc does synchronous I/O, which
should be avoided everywhere except on startup.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2165>
It will be used to generate gamma look up tables depending on
temperature.
The temperature comes from org.gnome.SettingsDaemon.Color and
depends on the current night light state.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2165>
It uses the org.gnome.SettingsDaemon.Power.Screen D-Bus API. Currently
brightness set if the proxy is not ready are ignored; whether the
brightness value should be cached and set once it appears or whether
color profiles should be reapplied is yet to be decided.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2165>
Instead of passing 4 arguments (red, green and blue arrays as well as a
size), always pass them together in a new struct MetaGammaLut. Makes
things slightly less tedious.
The KMS layer still has its own variant, but lets leave it as that for
now, to keep the KMS layer "below" the cross backend CRTC layer.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2165>
In practice, for KMS backend CRTC's, we cache the gamma in the monitor
manager instance, so that anyone asking gets the pending or up to date
value, instead of the potentially not up to date value if one queries
after gamma was scheduled to be updated, and before it was actually
updated.
While this is true, lets still move the API to the MetaCrtc type; the
backend specific implementation can still look up cached values from the
MetaMonitorManager, but for users, it becomes less cumbersome to not
have to go via the monitor manager.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2165>
We created device profiles, that we manage the lifetime of in colord,
but color devices can be assigned profiles other than the ones it was
created for. For example, this can include the standard sRGB profile
provided by colord.
To achieve this, keep track of the default profile of the CdDevice as
the "assigned" color profile of the device. Given this profile
(CdProfile), construct a MetaColorProfile that can then be interacted
with as if it was generated by ourself.
The assigned profile (default profile in colord terms) does nothing
special so far, but will later be used to determine how to apply CRTC
gamma ramps etc.
The sRGB.icc file used in the tests was copied from colord. It was
stated in the repository that it has no known copyright restrictions.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2164>
This works similiarly to how MetaColorDevice works, by creating them
asynchronously then signalling the 'ready' signal when done. Also
similarly to MetaColorDevice, the on-demand sync cleanup on finalize is
added, to avoid race conditions when hotplugs happens very rapidly,
e.g. in tests.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2164>
Just as gsd-color does, generate color profiles. This can either be done
from EFI, if available and the color device is associated with a built
in panel, or from the EDID. If no source for a profile is found, none is
created.
The ICC profiles are also stored on disk so that they can be read by
e.g. colord. The on disk stored profiles will only be used for storing,
not reading the profiles, as the autogenerated ones will no matter what
always be loaded to verify the on disk profiles are up to date. If a on
disk profile is not, it will be replaced. This is so that fixes or
improvements to the profile generation will be made available despite
having run an older version earlier.
After generating, add some metadata about the generated file itself
needed by colord, i.e. file MD5 checksum and the file path.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2164>
Tests that test case EDID is setup correctly, and that color devices for
monitors are created.
tests/color: Add hotplugging tests
Checks that changing the number of connected monitors reflects the
number of current color devices, and that we end up with the correct end
state.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2164>
Ready means it has established the connection to colord and can operate.
Will be used by tests to make sure tests don't fail due to race
conditions when connecting to colord.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2164>
gsd-color provides this API, which exposes details about the night light
state. Currently, gsd-color also turns this state into CRTC gamma
changes, but this will eventually change, and this is a preparation for
this.
The proxy isn't yet used for anything.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2164>
Previously, gsd-color handled adding color devices. It got information
about those via the GnomeRR API, which is part of libgnome-desktop.
libgnome-desktop itself got this information from the
org.gnome.Mutter.DisplayConfig.GetResources() D-Bus method, implemented
by mutter.
Now, mutter itself will add all the monitor color devices itself,
without having to go via gsd-color.
We sometimes need to delete colord devices synchronously, in certain
race conditions when we add and remove devices very quickly (e.g. in
tests). However, we cannot use libcolord's 'sync' API variants, as it
has a nested takes-all main loop as a way to invoke the sync call. This
effectively means we end up sometimes not return from this function in a
timely manner, causing wierd issues.
Instead, create our own sync helper, that uses a separate context that
we temporarly push as the thread-default one.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2141>
This will be needed for adding colord integration without breaking
testing.
The test context is altered to make sure any left over color devices are
cleaned up before starting. This means it becomes possible to run a test
case multiple times without having to restart meta-dbus-runner.py.
Note: Don't use os.getlogin() to get the current username; as that
requires a controlling terminal.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2141>
It's not really about monitors, even though it is used for monitors.
Lets shrink MetaMonitorManager a bit moving it to the backend.
While at it, stop leaking it too.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2141>
What determines whether one MetaMonitor is the same as the other should
be whether the actual monitor is the same. The way to check this is
comparing the EDID vendor/product/serial fields. Whene these are
incomplete, fall back on the 'winsys ID'.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2141>