When the stage views the stage is shown on are changed, ClutterStage
currently provides a clutter_stage_update_resource_scales() method
that allows invalidating the resource scales of all actors. With the new
stage-views API that's going to be added to ClutterActor, we also need a
method to invalidate the stage-views lists of actors in case the stage
views are rebuilt and fortunately we can re-use the infrastructure for
invalidating resource scales for that.
So since resource scales depend on the stage views an actor is on,
rename clutter_stage_update_resource_scales() and related methods to
clutter_stage_clear_stage_views(), which also covers resource scales.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1196
Using XDG_CONFIG_HOME allows users to place their keyboard configuration into
their home directory and have them loaded automatically.
libxkbcommon now defaults to XDG_CONFIG_HOME/xkb/ first, see
https://github.com/xkbcommon/libxkbcommon/pull/117
However - libxkbcommon uses secure_getenv() to obtain XDG_CONFIG_HOME and thus
fails to load this for the mutter context which has cap_sys_nice.
We need to manually add that search path as lookup path.
As we can only append paths to libxkbcommon's context, we need to start with
an empty search path set, add our custom path, then append the default search
paths.
The net effect is nil where a user doesn't have XDG_CONFIG_HOME/xkb/.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/936
Move Wayland support (i.e. the MetaWaylandCompositor object) made to be
part of the backend. This is due to the fact that it is needed by the
backend initialization, e.g. the Wayland EGLDisplay server support.
The backend is changed to be more involved in Wayland and clutter
initialization, so that the parts needed for clutter initialization
happens before clutter itself initialization happens, and the rest
happens after. This simplifies the setup a bit, as clutter and Wayland
init now happens as part of the backend initialization.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1218
Will be used for logging to identify what view a log entry concerns. For
the native and nested backend this is the name of the output the CRTC is
assigned to drive; for X11 it's just "X11 screen", and for the legacy
"X11 screen" emulation mode of the nested backend it's called "legacy
nested".
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1237
In the native backend, the MetaRenderer manages the view by creating one
per CRTC, but until now the MetaStageX11 managed the view for the X11
backend. This caused some issues as it meant meta_renderer_get_views()
not returning anything, and that the view of the X11 screen not being a
MetaRendererView, while in the other backends, all views are.
Fix this by moving the view management responsibility to
MetaRendererX11Cm, and have MetaStageX11 only operate on it via
meta_renderer_x11_cm_*() API. The MetaRendererX11Cm takes care of making
sure the view is always added to the list in the renderer, and turning
X11 screen sizes into "layouts" etc.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1251
"Legacy" is a misleading name, it's just how the native backend and the
X11 backend behaves differently. Instead rename it to 'add_view()' and
add the sanity check to the caller.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1251
It was removed in 3.34 as part of 6ed5d2e2. And we thought that was the
only thread that might exist and use X11. But the top gnome-shell crasher
in 3.36 seems to suggest otherwise.
We don't know what or where the offending thread is, but since:
1. We used XInitThreads for years already prior to 3.34; and
2. Extensions or any change to mutter/gnome-shell could conceivably use
threads to make X calls, directly or indirectly,
it's probably a good idea to reintroduce XInitThreads. The failing assertion
in libx11 is also accompanied by a strong hint:
```
fprintf(stderr, "[xcb] Most likely this is a multi-threaded client " \
"and XInitThreads has not been called\n");
```
https://bugs.launchpad.net/bugs/1877075
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1252https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1256
At some point we crossed the streams... In a short timespan we had
1f00aba92c32 merged, pushing WacomDevice to a common parent object,
and dcaa45fc0c199 implementing device grouping for X11.
The latter did not rely on the former, and just happened to
merge/compile without issues, but would promptly trigger a crash
whenever the API would be used.
Drop all traces of the WacomDevice internal to MetaInputDeviceX11.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1183
A user may have configured an output to be panning, e.g. using xrandr
--output <output> --mode <mode> --panning <size>. Respect this by making
the logical monitor use the panning size, instead of the mode. This
makes e.g. makes the background cover the whole panning size, and panels
etc will cover the whole top of the panned area, instead of just the top
left part covering the monitor if having panned to (0, 0).
No support is added to configuring panning, i.e. a panned monitor
configuration cannot be stored in monitors.xml.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1085
This class sits between ClutterInputDevice and the backend implementations,
it will be the despositary of features we need across both backends, but
don't need to offer through Clutter's API.
As a first thing to have there, add a getter for a WacomDevice. This is
something scattered across and somewhat inconsistent (eg. different places
of the code create wacom devices for different device types). Just make it
here for all devices, so users can pick.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1109
Some tablets like the Cintiq 24HDT have several mode switch buttons
per group. Those are meant to jump straight to a given mode, however
we just handle cycling across modes (as most other tablets have a
single mode switch button per group).
So spice up the mode switch handling so we handle multiple mode
switch buttons, assigning each of them a mode. If the device only
has one mode switch button, we do the old-fashioned cycling.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/970
When applying a configuration to XRANDR, we first disable CRTCs that
happen to extend outside of the to-be X11 screen size. While doing so,
we fail to actually check whether the CRTC is active or not, meaning
we'll try to query the content of the CRTC configuration even though it
has none, leading to a NULL pointer dereference.
Fix this by simply ignoring non-configured CRTCs.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1093
Prior to this commit the stage was drawn separately for each logical
monitor. This allowed to draw different parts of the stage with
different transformations, e.g. with a different viewport to implement
HiDPI support.
Go even further and have one view per CRTC. This causes the stage to
e.g. draw two mirrored monitors twice, instead of using the same
framebuffer on both. This enables us to do two things: one is to support
tiled monitors and monitor mirroring using the EGLStreams backend; the
other is that it'll enable us to tie rendering directly to the CRTC it
will render for. It is also a requirement for rendering being affected
by CRTC state, such as gamma.
It'll be possible to still inhibit re-drawing of the same content
twice, but it should be implemented differently, so that it will still
be possible to implement features requiring the CRTC split.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1042
To make it more reliable to distinguish between values that are read
from the backend implementation (which is likely to be irrelevant for
anything but the backend implementation), split out those values (e.g.
layout).
This changes the meaning of what was MetaCrtc::rect, to a
MetaCrtcConfig::layout which is the layout the CRTC has in the global
coordinate space.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1042
On x11 we emulate pointer events from touch events as long as there's
only one touchpoint on screen, this obviously leads to x11 sending us
crossing events triggered by the emulated pointer. Now if we get a leave
event and set the stage of the ClutterInputDevice to NULL, new touch
events will be discarded by clutters backend because the core pointer
doesn't have a stage associated. This means Mutter completely loses
state of a touchpoint as soon as it crosses a shell actor.
An easy reproducer for this issue is to start the four-finger-workspace
gesture above a window and to move the pointer emulating touch outside
of the window, this will freeze the gesture as the gesture no longer
receives touch events.
To fix this, stop tracking stage changes on crossing events and simply
leave the ClutterInputDevice stage as-is. In our case there is only one
stage anyway and that won't change in the future.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/423
The devices_by_id hash table is responsible for managing the reference
to the devices. In remove_device however, for non-core devices there are
additional calls to dispose/unref, after the last reference has
already been dropped by the hash table.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1032
This is unlikely to happen, and unlikely to be right (eg. we don't translate
input event coordinates, since those are not in display coordinate space, we
don't offer any feedback for those either).
This can simply be dropped, we listen to XIAllMasterDevices, which suffices
for what we want to do.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/852
They have been deprecated for a long time, and all their uses in clutter
and mutter has been removed. This also removes some no longer needed
legacy state tracking, as they were only ever excercised in certain
circumstances when there was sources (pipelines or materials) on the now
removed source stack.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/935
Checking the leds is not really accurate, since some devices have mode
switch buttons without leds. Check in the button flags whether they are
mode switch buttons for any of ring/ring2/strip/strip2, and return the
appropriate group.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/952
There might be some inconsistent event for which we don't have a known
source device.
In the current state we don't handle them and we could crash when getting
the current device tool.
So, add an utility function that retrieves the source device for an event
that warns if no device is found, and use this for Motion, Key and Button
events.
In case we don't have a valid source in such case, just return early instead
of trying to generate invalid clutter events.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/823