We were ignoring the possibility that the current modelview matrix may flip
the incoming rectangle in which case we didn't calculate a valid scissor
rectangle for clipping.
This fixes: http://bugzilla.o-hand.com/show_bug.cgi?id=1809
(Clipping doesn't work within an FBO)
Cogl's support for offscreen rendering was originally written just to support
the clutter_texture_new_from_actor API and due to lack of documentation and
several confusing - non orthogonal - side effects of using the API it wasn't
really possible to use directly.
This commit does a number of things:
- It removes {gl,gles}/cogl-fbo.{c,h} and adds shared cogl-draw-buffer.{c,h}
files instead which should be easier to maintain.
- internally CoglFbo objects are now called CoglDrawBuffers. A
CoglDrawBuffer is an abstract base class that is inherited from to
implement CoglOnscreen and CoglOffscreen draw buffers. CoglOffscreen draw
buffers will initially be used to support the
cogl_offscreen_new_to_texture API, and CoglOnscreen draw buffers will
start to be used internally to represent windows as we aim to migrate some
of Clutter's backend code to Cogl.
- It makes draw buffer objects the owners of the following state:
- viewport
- projection matrix stack
- modelview matrix stack
- clip state
(This means when you switch between draw buffers you will automatically be
switching to their associated viewport, matrix and clip state)
Aside from hopefully making cogl_offscreen_new_to_texture be more useful
short term by having simpler and well defined semantics for
cogl_set_draw_buffer, as mentioned above this is the first step for a couple
of other things:
- Its a step toward moving ownership for windows down from Clutter backends
into Cogl, by (internally at least) introducing the CoglOnscreen draw
buffer. Note: the plan is that cogl_set_draw_buffer will accept on or
offscreen draw buffer handles, and the "target" argument will become
redundant since we will instead query the type of the given draw buffer
handle.
- Because we have a common type for on and offscreen framebuffers we can
provide a unified API for framebuffer management. Things like:
- blitting between buffers
- managing ancillary buffers (e.g. attaching depth and stencil buffers)
- size requisition
- clearing
Over time the two cogl-fbo.c files have needlessly diverged as bug fixes or
cleanups went into one version but not the other. This tries to bring them
back in line with each other. It should actually be simple enough to move
cogl-fbo.c to be a common file, and simply not build it for GLES 1.1, so
maybe I'll follow up with such a patch soon.
The comment just said: "Some implementation require a clear before drawing
to an fbo. Luckily it is affected by scissor test." and did a scissored
clear, which is clearly a driver bug workaround, but for what driver? The
fact that it was copied into the gles backend (or vica versa is also
suspicious since it seems unlikely that the workaround is necessary for both
backends.)
We can easily restore the workaround with a better comment if this problem
really still exists on current drivers, but for now I'd rather minimize
hand-wavey workaround code that can't be tested.
Otherwise you can't use the alpha channel of the vertex colors unless
the material has a texture with alpha or the material's color has
alpha less than 255.
Some changes to make COGL pass distcheck with Automake 1.11 and
anal-retentiveness turned up to 11.
The "major" change is the flattening of the winsys/ part of COGL,
which is built directly inside libclutter-cogl.la instead of an
intermediate libclutter-cogl-winsys.la object.
Ideally, the whole COGL should be flattened out using a
quasi-non-recursive Automake layout; unfortunately, the driver/
sub-section ships with identical targets and Automake cannot
distinguish GL and GLES objects.
Since we no longer depend on the GL matrix API in Cogl we can remove a lot
of wrapper code from the GLES 2 backend. This is particularly nice given
that there was no code shared between the cogl-matrix-stack API and gles2
wrappers so we had a lot of duplicated logic.
The indirection through this API isn't necessary since we no longer
arbitrate between the OpenGL matrix API and Cogl's client side API. Also it
doesn't help to maintain an OpenGL style matrix mode API for internal use
since it's awkward to keep restoring the MODELVIEW mode and easy enough to
directly work with the matrix stacks of interest.
This replaces use of the _cogl_current_matrix API with direct use of the
_cogl_matrix_stack API. All the unused cogl_current_matrix API is removed
and the matrix utility code left in cogl-current-matrix.c was moved to
cogl.c.
This cache of the gl matrix mode lets us avoid repeat calls to glMatrixMode
in _cogl_matrix_stack_flush_to_gl when we have lots of sequential modelview
matrix modifications.
This goes a bit further than the previous patch, and as a special case
we now simply represent identity matrices using a boolean, and only
lazily initialize them when they need to be modified.
The journal always uses an identity matrix since it uses software
transformation. Currently it manually uses glLoadMatrix since previous
experimentation showed that the cogl-matrix-stack gave bad performance, but
it would be nice to fix performance so we only have to care about one path
for loading matrices.
For the common case where we do:
cogl_matrix_stack_push()
cogl_matrix_stack_load_identity()
we were effectively initializing the matrix 3 times. Once due to use of
g_slice_new0, then we had a cogl_matrix_init_identity in
_cogl_matrix_state_new for good measure, and then finally in
cogl_matrix_stack_load_identity we did another cogl_matrix_init_identity.
We don't use g_slice_new0 anymore, _cogl_matrix_state_new is documented as
not initializing the matrix (instead _cogl_matrix_stack_top_mutable now
takes a boolean to choose if new stack entries should be initialised) and so
we now only initialize once in cogl_matrix_stack_load_identity.
This relates back to an earlier commitment to stop using the OpenGL matrix
API which is considered deprecated. (ref 54159f5a1d)
The new texture matrix stacks are hung from a list of (internal only)
CoglTextureUnit structures which the CoglMaterial code internally references
via _cogl_get_texure_unit ().
So we would be left with only the cogl-matrix-stack code being responsible
for glMatrixMode, glLoadMatrix and glLoadIdentity this commit updates the
journal code so it now uses the matrix-stack API instead of GL directly.
The Journal can be considered a standalone component, so even though
it's currently only used to log quads, it seems better to split it
out into its own file.
When we implement atlas textures we will probably want to use the spans API
to handle texture repeating so it doesn't make sense to leave the code in
cogl-texture-2d-sliced.c. Since it's a standalone set of data structures
and algorithms it also seems reasonable to split out from cogl-texture.
cogl-texture-2d-sliced provides an implementation of CoglTexture and this
seperation lays the foundation for potentially supporting atlas textures,
pixmap textures (as in GLX_EXT_texture_from_pixmap) and fast-path
GL_TEXTURE_{1D,2D,3D,RECTANGLE} textures in a maintainable fashion.
cogl-primitives.c was previously digging right into CoglTextures so it could
manually iterate the texture slices for texturing quads and polygons and
because we were missing some state getters we were lazily just poking into
the structures directly.
This adds some extra state getter functions, and adds a higher level
_cogl_texture_foreach_slice () API that hopefully simplifies the way in
which sliced textures may be used to render primitives. This lets you
specify a rectangle in "virtual" texture coords and it will call a given
callback for each slice that intersects that rectangle giving the virtual
coords of the current slice and corresponding "real" texture coordinates for
the underlying gl texture.
At the same time a noteable bug in how we previously iterated sliced
textures was fixed, whereby we weren't correctly handling inverted texture
coordinates. E.g. with the previous code if you supplied texture coords of
tx1=100,ty1=0,tx2=0,ty2=100 (inverted along y axis) that would result in a
back-facing quad, which could be discarded if using back-face culling.
The descriptions for gl_handle and gl_target were inverted.
Thanks to Young-Ho Cha for spotting that.
Signed-off-by: Robert Bragg <robert@linux.intel.com>
As part of an incremental process to have Cogl be a standalone project we
want to re-consider how we organise the Cogl source code.
Currently this is the structure I'm aiming for:
cogl/
cogl/
<put common source here>
winsys/
cogl-glx.c
cogl-wgl.c
driver/
gl/
gles/
os/ ?
utils/
cogl-fixed
cogl-matrix-stack?
cogl-journal?
cogl-primitives?
pango/
The new winsys component is a starting point for migrating window system
code (i.e. x11,glx,wgl,osx,egl etc) from Clutter to Cogl.
The utils/ and pango/ directories aren't added by this commit, but they are
noted because I plan to add them soon.
Overview of the planned structure:
* The winsys/ API is the API that binds OpenGL to a specific window system,
be that X11 or win32 etc. Example are glx, wgl and egl. Much of the logic
under clutter/{glx,osx,win32 etc} should migrate here.
* Note there is also the idea of a winsys-base that may represent a window
system for which there are multiple winsys APIs. An example of this is
x11, since glx and egl may both be used with x11. (currently only Clutter
has the idea of a winsys-base)
* The driver/ represents a specific varient of OpenGL. Currently we have "gl"
representing OpenGL 1.4-2.1 (mostly fixed function) and "gles" representing
GLES 1.1 (fixed funciton) and 2.0 (fully shader based)
* Everything under cogl/ should fundamentally be supporting access to the
GPU. Essentially Cogl's most basic requirement is to provide a nice GPU
Graphics API and drawing a line between this and the utility functionality
we add to support Clutter should help keep this lean and maintainable.
* Code under utils/ as suggested builds on cogl/ adding more convenient
APIs or mechanism to optimize special cases. Broadly speaking you can
compare cogl/ to OpenGL and utils/ to GLU.
* clutter/pango will be moved to clutter/cogl/pango
How some of the internal configure.ac/pkg-config terminology has changed:
backendextra -> CLUTTER_WINSYS_BASE # e.g. "x11"
backendextralib -> CLUTTER_WINSYS_BASE_LIB # e.g. "x11/libclutter-x11.la"
clutterbackend -> {CLUTTER,COGL}_WINSYS # e.g. "glx"
CLUTTER_FLAVOUR -> {CLUTTER,COGL}_WINSYS
clutterbackendlib -> CLUTTER_WINSYS_LIB
CLUTTER_COGL -> COGL_DRIVER # e.g. "gl"
Note: The CLUTTER_FLAVOUR and CLUTTER_COGL defines are kept for apps
As the first thing to take advantage of the new winsys component in Cogl;
cogl_get_proc_address() has been moved from cogl/{gl,gles}/cogl.c into
cogl/common/cogl.c and this common implementation first trys
_cogl_winsys_get_proc_address() but if that fails then it falls back to
gmodule.
This moves most of cogl-context.{c.h} to cogl/common with some driver
specific members now living in a CoglContextDriver struct. Driver specific
context initialization and typedefs now live in
cogl/{gl,gles}/cogl-context-driver.{c,h}
Driver specific members can be found under ctx->drv.stuff
This splits the limited components that differed between
cogl/{gl,gles}/cogl-texture.c into new {gl,gles}/cogl-texture-driver.c files
and the rest that can now be shared into cogl/common/cogl-texture.c
When not building a debug build the compiler was warning about empty
else clauses with no braces due to code like:
if (blah)
do_foo();
else
COGL_NOTE (DRAW, "a-wibble");
This simply ensures that even for non debug builds COGL_NOTE will expand to
a single statement.
glVertexPointer expects positions with 2, 3 or 4 components, glColorPointer
expects colors with 3 or 4 components and glNormalPointer expects normals
with three components so when adding vertex buffer atributes with the names
"gl_Vertex", "gl_Color" or "gl_Normal" we assert these constraints and print
an explanation to the developer if not met.
This also fixes the previosly incorrect constraint that gl_Normal attributes
must have n_components == 1; thanks to Cat Sidhe for reporting this:
Bug: http://bugzilla.openedhand.com/show_bug.cgi?id=1819
By default, float * is considered as an out argument by gobject
introspection which is wrong for quite a few Cogl symbols. Start adding
annotations to fix that for the ones in the "Primitives" gtk-doc
section.
The lifetime of the journal VBO is entirely within the scope of the
cogl_journal_flush function so there is no need to store it globally
in the Cogl context. Instead, upload_vertices_to_vbo just returns the
new VBO. cogl_journal_flush stores this in a local variable and
destroys it before returning.
This also fixes an assertion when using the GLES backend which was
caused by nothing initialising the journal_vbo variable.
The framebuffer_object spec isn't clear in defining whether attaching a
texture as a renderbuffer with mipmap filtering enabled while the mipmaps
have not been uploaded should result in an incomplete framebuffer object.
(different drivers make different decisions)
To avoid an error with drivers that do consider this a problem we explicitly
set non mipmapped filters before calling glCheckFramebufferStatusEXT. The
filters will later be reset when the texture is actually used for rendering
according to the filters set on the corresponding CoglMaterial.
The blend string compiler checks that the syntax of a function name is
[A-Za-z_]*, preventing the use of DOT3_RGB[A].
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
This reverts commit 3c47a3beb5.
Of course I remembered just after pushing the patch why we hadn't done
this before :-) If you look in the glsl spec:
http://www.khronos.org/registry/gles/specs/2.0/es_full_spec_2.0.24.pdf
Section 3.7.10 Texture Completeness and Non-Power-Of-Two Textures
you can see GLES 2.0 doesn't support mipmaps for npot textures.
There is possibly some way we could support this in Cogl but at least
it's not as simple as or-ing in the feature flag, sadly.
The core GLES2 API supports NPOT textures, i.e. there is no extension as for
OpenGL, so we now add COGL_FEATURE_TEXTURE_NPOT to the feature flags in
_cogl_features_init.
Thanks to Gordon Williams for spotting this.
Don't let stringify.sh write to the $srcdir + use the BUILT_SOURCES var in
Makefile.am so as to ensure all .c. and .h files get generated from their
corresponding .glsl files before building other targets.
The wrong part of an expression was bracketed in the test to determine
when a new texture matrix needed to be loaded which resulted in the
first pass through _cogl_material_layer_flush_gl_sampler_state
not uploading any user matrix.
Following bug #1762, the syntax of g-ir-scanner was changed in
gobject-introspection, so Clutter does not build anymore with 0.6.4.
See the bugzilla bug:
http://bugzilla.gnome.org/show_bug.cgi?id=591669
GObject-Introspection now uses a different mechanism to extract the
SONAME when building the gir file and it needs the libtool archive as
option.
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>