Before this commit, on Wayland, the buffer rect would have the size of
the attached Wayland buffer, no matter the scale. The scale would then
be applied ad-hoc by callers when a sane rectangle was needed. This
commit changes buffer_rect to rather represent the surface rect (i.e.
what is drawn on the stage, including client side shadow). The users of
buffer_rect will no longer need to scale the buffer_rect themself to
get a usable rectangle.
https://bugzilla.gnome.org/show_bug.cgi?id=763431
The new tiling code, instead of based around "tiling states", is instead
based around constrained edges. This allows us to have windows that have
three constrained edges, but keep one free-floating, e.g. a window tiled
to the left has the left, top, and bottom edges constrained, but the
right edge can be left resizable.
This system also is easily extended to support corner tiling. We also,
using the new "size state" system, also keep normal, tiled, and
maximized sizes independently, allowing the maximize button to bounce
between maximized and tiled states without reverting to normal in
between. Dragging from the top will always restore the normal state,
though.
https://bugzilla.gnome.org/show_bug.cgi?id=751857
This was introduced in commit c6793d477a
to prevent window self-maximisation. It turns out that that bug seems
to have been fixed meanwhile in a different way since the reproducer
in https://bugzilla.gnome.org/show_bug.cgi?id=461927#c37 now works
fine with this special handling removed.
In fact, failing to set window->fullscreen immediately when loading
the initial set of X properties causes us to create a UI frame for a
window that sets _NET_WM_STATE_FULLSCREEN.
This, in turn, might cause the fullscreen constrain code to fail if
the window also sets min_width/min_height size hints to be the monitor
size since the UI frame size added to those makes the rectangle too
big to fit the monitor. If the window doesn't set these hints, we
fullscreen it but the window will get sized such that the UI frame is
taken into account while it really shouldn't (see the reproducer
above).
https://bugzilla.gnome.org/show_bug.cgi?id=753020
Since we scale surface actors given what main output their toplevel
window is on, also scale the window geometry coordinates and sizes
(window->rect size and window->custom_frame_extents.top/left) in order
to make the window geometry represent what is being rendered on the
stage.
https://bugzilla.gnome.org/show_bug.cgi?id=744934
A much less hacky version of maximize / unmaximize is reimplemented
in terms of this, but it could also eventually be used for fullscreen /
unfullscreen, and tile / untile.
window->is_alive isn't initialized explicitly so it defaults to FALSE
meaning that if the first ping fails we'd short circuit and not show
the delete dialog as we should.
We could initialize the variable to TRUE but in fact we don't even
need the variable at all since our dialog management is enough to
manage all the state we need, i.e. we're only interested in knowing
whether we're already displaying a delete dialog.
This does change our behavior here since previously we wouldn't
display the dialog again if the next ping failed after the dialog is
dismissed but this was arguably a bug too since in that case there
wouldn't be a way to kill the window after waiting for a while and the
window kept being unresponsive.
https://bugzilla.gnome.org/show_bug.cgi?id=749711
In order to switch to the correct surface actor scale given the monitor
the surface is on, without relying on the client committing a new state
given some other side effect, sync the surface actor state when the main
monitor associated with the corresponding window changed.
https://bugzilla.gnome.org/show_bug.cgi?id=744933
Putting X windows and pointers to MetaWindows into a union had a number of
problems:
- It caused awkward initialization and conditionalization
- There was no way to refer to Wayland windows (represented by
MetaWindow *) in the past, which is necessary for the MetaStackTracker
algorithms
- We never even cleaned up old MetaStackWindow so there could be
records in MetaStackWindow pointing to freed MetaWindow.
Replace MetaStackWindow with a 64-bit "stack ID" which is:
- The XID for X Windows
- a "window stamp" for Wayland windows - window stamps are assigned
for all MetaWindow and are unique across the life of the process.
https://bugzilla.gnome.org/show_bug.cgi?id=736559
The existing workspace management code is quite hairy, with plenty of
logic inline in all of window.c, workspace.c, and screen.c, making it
hard to understand or make changes to, since you might forget to change
several of the other places the code was around.
Rewrite the internal workspace management logic so that it's
centralized and all in window.c. Document the invariants we need to
maintain, and ensure that these invariants are properly kept, with
asserts in various places.
Extensive testing on gnome-shell did not bring up any issues, and this
is a considerable cleanup.
Instead of returning a value based on whether or not we handled it, we
have this logic: either we have taken a grab on the window, in which
case we have a grab op and have handled it ourselves, or we did not take
a grab and *need* to replay the event to the window.
Handle this in events.c by checking the grab operation in the same way
that we check the other grab ops.
This code was supposed to refresh our default icons when the theme
changed, but it actually was a no-op, since the default icons are cached
in a static variable in MetaUI.
I'm not sure the fact that the fallback icons don't update when the
theme changes is an important enough use case to keep working, but I'm
keeping the skeleton function there in case somebody wants to actually
fix it properly.
The output_id is more of an opaque identifier for the monitor, based on
its underlying ID from the windowing system. Since we also use the term
"output_id" for the output's index, rename our use of the opaque cookie
"output_id" to "winsys_id".
When workspaces-only-on-primary is set and a window is moved back to the
primary, we also move it to the active workspace to avoid the confusion
of a visible window suddenly disappearing when crossing the monitor border.
However when the window is not actually moved by the user, preserving the
workspace makes more sense - we already do this in some cases (e.g. when
moving between primary monitors), but miss others (unplugging the previous
monitor); just add an explicit user_op parameter as used elsewhere to cover
all exceptions.
https://bugzilla.gnome.org/show_bug.cgi?id=731760
Remember the last monitor a window was moved to by user action and
try to move it back on monitor changes; this should match user
expectations much better when a monitor is unplugged temporarily.
https://bugzilla.gnome.org/show_bug.cgi?id=731760
Rather than calculate it speculatively with the current properties
which may be too new or too out of date, make sure it always fits
with the proper definition. We update it when we update the toplevel
window for X11, and when a Wayland surface is committed with a newly
attached buffer.
When opening the window menu without an associated control - e.g.
by right-clicking the titlebar or by keyboard - using coordinates
for the menu position is appropriate. However when the menu is
associated with a window button, the expected behavior in the
shell can be implemented much easier with the full button geometry:
the menu will point to the center of the button's bottom edge
rather than align to the left/right side of the titlebar as it
does now, and the clickable area where a release event does not
dismiss the menu will match the actual clickable area in mutter.
So add an additional show_window_menu_for_rect() function and
use it when opening the menu from a button.
https://bugzilla.gnome.org/show_bug.cgi?id=731058
For Wayland, we want to have everything possible in terms of the frame
rect, or "window geometry" as the Wayland protocol calls it, in order
to properly eliminate some flashing when changing states to fullscreen
or similar.
For this, we need to heavily refactor how the code is structured, and
make it so that meta_window_move_resize_internal is specified in terms
of the frame rect coordinate space, and transforming all entry points
to meta_window_move_resize_internal.
This is a big commit that's hard to tear apart. I tried to split it
as best I can, but there's still just a large amount of changes that
need to happen at once.
Expect some regressions from this. Sorry for any temporary regression
that this might cause.
The last commit added support for the "appmenu" button in decorations,
but didn't actually implement it. Add a new MetaWindowMenuType parameter
to the show_window_menu () functions and use it to ask the compositor
to display the app menu when the new button is activated.
https://bugzilla.gnome.org/show_bug.cgi?id=730752
The requested_rect is a strange name for it, because it's not actually
the rect that the user or client requested all the time: in the case of
a simple move or a simple resize, we calculate some of the fields
ourselves.
To the MetaWindow subclass implementations, it just means "the rect
before we constrained it", so just use the name unconstrained_rect.
This also makes it match the name of the MetaWindow field.
It looks weird to have Alt+Space pop up under the cursor instead
of the top-left corner of the window, and the Wayland request will
pass through the coordinates as well.
Add it to the compositor interface, and extend the
_GTK_SHOW_WINDOW_MENU ClientMessage to support it as well.
Realistically, the user rect contains the unconstrained window
rectangle coordinates that we want to be displaying, in case
something in the constraints change.
Rename it to the "unconstrained_rect", and change the code to always
save it, regardless of current state.
When metacity was originally being built, the purpose of the user
rect was a lot less clear. The code only saved it on user actions,
with various other calls to save_user_window_placement() and a force
mechanism sprinkled in to avoid windows being snapped back to odd
places when constraints changed.
This could lead to odd bugs. For instance, if the user uses some
extension which automatically tiles windows and didn't pass
user_action=TRUE, and then the struts changed, the window would be
placed back at the last place a user moved it to, rather than where
the window was tiled to.
The META_IS_USER_ACTION flag is still used in the constraints code
to determine whether we should allow shoving windows offscreen, so
we can't remove it completely, but we should think about splitting
out the constrainment policies it commands for a bit more
fine-grained control.
https://bugzilla.gnome.org/show_bug.cgi?id=726714
It's been long enough. We can mandate support for these, at least
at build-time. The code doesn't actually compile without either
of these, so just consider that unsupported.
dx/dy should be against the regular window's rect, and need to
be ignored when we're resizing. Instead, we use gravity to anchor
the window's new rectangle when resizing.
Except while reading _NET_WM_WINDOW_OPACITY, opacity is between 0 and 255. With
guint8, we'll get compiler warnings if arbitrary int values are passed.
https://bugzilla.gnome.org/show_bug.cgi?id=727874
Really, visible_to_compositor means that the window is shown, e.g.
not minimized. We need to be using a boolean tracking whether we've
called meta_compositor_add_window / meta_compositor_remove_window.
This fixes a jump during window placement when a window appears.
This is fairly simple and basic for now, with just skip_taskbar /
skip_pager, but eventually a lot of "WM policy" like this, including
move-resize, will be in subclasses for each individual surface.
We try to exempt CSD windows from being forced fullscreen if they are
undecorated and the size of the screen; however, we also catch almost
all windows that *do* need to be forced fullscreen in this check, since
they also have decorations turned off.
Identify actual CSD windows by checking whether _GTK_FRAME_EXTENTS is set -
GTK+ will always set this on CSD windows even if they have no invisible
borders or shadows at the current time.
We explicitly turn off the legacy-fullscreen check for native wayland windows
so we don't start legacy-fullscreening them if the new
meta_window_is_client_decorated() is later made more accurate.
https://bugzilla.gnome.org/show_bug.cgi?id=723029
I implemented pinging, but never actually enabled the feature
properly on Wayland surfaces by setting the net_wm_ping hint to
TRUE, causing the fallback path to always be hit.
Rename net_wm_ping to can_ping so it doesn't take on an
implementation-specific meaning, and set it for all Wayland windows.
This was a bad idea, as ping/pong has moved to a client-specific
request/event pair, rather than a surface-specific one. Revert
the changes we made here and correct the code to make up for it.
This reverts commit aa3643cdde.
The goal here is to make MetaWindow represent a toplevel, managed window,
regardless of if it's X11 or Wayland, and build an abstraction layer up.
Right now, most of the X11 code is in core/ and the wayland code in wayland/,
but in the future, I want to move a lot of the X11 code to a new toplevel, x11/.
The compositor code used to handle X windows that didn't have a
corresponding MetaWindow (see commit d538690b), which is why the
attribute query is separated.
As that doesn't happen any more, we can clean up. No functional changes.
Suggested by Owen Taylor.
https://bugzilla.gnome.org/show_bug.cgi?id=721345
Do this by duplicating the current code and porting it to use
X again. A better approach would involve our own event structures,
and I really don't want to do that right now. We can clean this up
later.
We require a MetaWindow to properly implement some of the requests
for xdg_surface, so add a way to have an unmapped MetaWindow that
we can store properties on, that we later map when the client
attaches a buffer...
Cache the computed border size so we can fetch the border size at
any time without worrying that we'll be spending too much time in
the theme code (in some cases we might allocate a PangoFontDescription
or do other significant work.)
The main effort here is clearing the cache when various bits of window
state change that could potentially affect the computed borders.
https://bugzilla.gnome.org/show_bug.cgi?id=707194
There is now a meta_display_handle_event alongside the
meta_display_handle_xevent function which handles events in terms of
Clutter events instead of X events. A Clutter event filter is
registered so that all Clutter events will pass through this function.
The pointer event handling code from the X event version has been moved
into this new function and has been modified to use the details from
the Clutter event instead of the X event. This is a step towards
moving all of the event handling code over to use Clutter events.
Based-heavily-on-a-patch-by: Neil Roberts <neil@linux.intel.com>
To properly resize clients, we need to send them configure events
with the size we computed from the constraint system, and
then check if the new size they ask is compatible with
our expectation.
Note that this does not handle interactive resizing yet, it
merely makes the API calls work for wayland clients.
https://bugzilla.gnome.org/show_bug.cgi?id=707401
Add a new interface, gtk_shell, than can be used by gtk to
retrieve a surface extension called gtk_surface, which will be
used to communicate with mutter all the GTK extensions to EWMH
https://bugzilla.gnome.org/show_bug.cgi?id=707128
Add support for GTK application menus
To do so, we need to be able to set surface state before creating
the MetaWindow, so we introduce MetaWaylandSurfaceInitialState as
a staging area.
The gtk-shell-surface implementation would either write to the
initial state, or directly to the window.
At the same, implement set_title and set_class too, because it's
easy enough.
https://bugzilla.gnome.org/show_bug.cgi?id=707128
Consolidate all places that deal with output configuration in
MetaScreen, which gets it either from XRandR or from a dummy static configuration.
We still need to read the Xinerama config, even when running xwayland,
because we need the indices for _NET_WM_FULLSCREEN_MONITORS, but
now we do it only when needed.
https://bugzilla.gnome.org/show_bug.cgi?id=705670
This breaks down the assumptions in stack-tracker.c and stack.c that
Mutter is only stacking X windows.
The stack tracker now tracks windows using a MetaStackWindow structure
which is a union with a type member so that X windows can be
distinguished from Wayland windows.
Some notable changes are:
Queued stack tracker operations that affect Wayland windows will not be
associated with an X serial number.
If an operation only affects a Wayland window and there are no queued
stack tracker operations ("unvalidated predictions") then the operation
is applied immediately since there is no server involved with changing
the stacking for Wayland windows.
The stack tracker can no longer respond to X events by turning them into
stack operations and discarding the predicted operations made prior to
that event because operations based on X events don't know anything
about the stacking of Wayland windows.
Instead of discarding old predictions the new approach is to trust the
predictions but whenever we receive an event from the server that
affects stacking we cross-reference with the predicted stack and check
for consistency. So e.g. if we have an event that says ADD window A then
we apply the predictions (up to the serial for that event) and verify
the predicted state includes a window A. Similarly if an event says
RAISE_ABOVE(B, C) we can apply the predictions (up to the serial for
that event) and verify that window B is above C.
If we ever receive spurious stacking events (with a serial older than we
would expect) or find an inconsistency (some things aren't possible to
predict from the compositor) then we hit a re-synchronization code-path
that will query the X server for the full stacking order and then use
that stack to walk through our combined stack and force the X windows to
match the just queried stack but avoiding disrupting the relative
stacking of Wayland windows. This will be relatively expensive but
shouldn't be hit for compositor initiated restacking operations where
our predictions should be accurate.
The code in core/stack.c that deals with synchronizing the window stack
with the X server had to be updated quite heavily. In general the patch
avoids changing the fundamental approach being used but most of the code
did need some amount of re-factoring to consider what re-stacking
operations actually involve X or not and when we need to restack X
windows we sometimes need to search for a suitable X sibling to restack
relative too since the closest siblings may be Wayland windows.
This adds support for running mutter as a hybrid X and Wayland
compositor. It runs a headless XWayland server for X applications
that presents wayland surfaces back to mutter which mutter can then
composite.
This aims to not break Mutter's existing support for the traditional X
compositing model which means a single build of Mutter can be
distributed supporting the traditional model and the new Wayland based
compositing model.
TODO: although building with --disable-wayland has at least been tested,
I still haven't actually verified that running as a traditional
compositor isn't broken currently.
Note: At this point no input is supported
Note: multiple authors have contributed to this patch:
Authored-by: Robert Bragg <robert@linux.intel.com>
Authored-by: Neil Roberts <neil@linux.intel.com>
Authored-by: Rico Tzschichholz.
Authored-by: Giovanni Campagna <gcampagna@src.gnome.org>
We now track whether a window has an input shape specified via the X
Shape extension. Intersecting that with the bounding shape (as required
by the X Shape extension) we use the resulting rectangles to paint
window silhouettes when picking. As well as improving the correctness of
picking this should also be much more efficient because typically when
only picking solid rectangles then the need to actually render and issue
a read_pixels request can be optimized away and instead the picking is
done on the cpu.
Mutter previously defined display->focus_window as the window that the
server says is focused, but kept display->expected_focus_window to
indicate the window that we have requested to be focused. But it turns
out that "expected_focus_window" was almost always what we wanted.
Make MetaDisplay do a better job of tracking focus-related requests
and events, and change display->focus_window to be our best guess of
the "currently" focused window (ie, the window that will be focused at
the time when the server processes the next request we send it).
https://bugzilla.gnome.org/show_bug.cgi?id=647706
Previously, we were handling failure to respond to _NET_WM_SYNC_REQUEST
in the code path for throttling motion events. But this meant that
if a window didn't respond to _NET_WM_SYNC_REQUEST and there were no
motion events - for a keyboard resize, or after the end of the grab
operation - it would end up in a stuck state.
Use a separate per-window timeout to reliably catch the failure to respond
to _NET_WM_SYNC_REQUEST.
https://bugzilla.gnome.org/show_bug.cgi?id=694046
During resizing we froze window updates when configuring the
window, and unfroze the window updates when processing the
next resize. This wasn't absolutely reliable, because we might
not have a next resize. Instead tie window freezing more
directly to the current sync request value - a window is
frozen until it catches up with the last value we sent it
in _NET_WM_SYNC_REQUEST.
Testing with unresponsive clients showed that there was a bug
where window->disable_sync once set, would not actually disable
sync, but it *would* disable noticing that the client was
unresponsive for the next resize. Fix that by checking for
->disable_sync before sending _NET_WM_SYNC_REQUEST.
https://bugzilla.gnome.org/show_bug.cgi?id=694046
meta_window_is_remote compares a cached copy of the system hostname
with the hostname of the client window
(as presented by the WM_CLIENT_MACHINE property).
Of course, the system hostname can change at any time, so caching
it is wrong. Also, the WM_CLIENT_MACHINE property won't necessarily
change when the system hostname changes, so comparing it with the
new system hostname is wrong, too.
This commit makes the code call gethostname() at the time
WM_CLIENT_MACHINE is set, check whether it's remote then, and cache
that value, rather than comparing potentially out of sync hostnames
later.
https://bugzilla.gnome.org/show_bug.cgi?id=688716
The WM spec requires _NET_WM_FRAME_DRAWN to *always* be sent when
there is an appropriate update to the sync counter value. We were
potentially missing _NET_WM_FRAME_DRAWN when an application did a
spontaneous update during an interactive resize and during effects.
Refactor the code to always send _NET_WM_FRAME_DRAWN, even when
a window is frozen.
https://bugzilla.gnome.org/show_bug.cgi?id=693833
When a client is drawing as hard as possible (without sleeping
between frames) we need to draw as soon possible, since sleeping
will decrease the effective frame rate shown to the user, and
can also result in the system never kicking out of power-saving
mode because it doesn't look fully utilized.
Use the amount the client increments the counter value by when
ending the frame to distinguish these cases:
- Increment by 1: a no-delay frame
- Increment by more than 1: a non-urgent frame, handle normally
https://bugzilla.gnome.org/show_bug.cgi?id=685463
When the application provides the extended second counter for
_NET_WM_SYNC_REQUEST, send a client message with completion
information after the next redraw after each counter update
by the application.
https://bugzilla.gnome.org/show_bug.cgi?id=685463
If an application provides two values in _NET_WM_SYNC_REQUEST_COUNTER,
use that as a signal that the applications wants an extended behavior
where it can update the counter as well as the window manager. If the
application updates the counter to an odd value, updates of the
window are frozen until the counter is updated again to an even value.
https://bugzilla.gnome.org/show_bug.cgi?id=685463
Instead of creating a new alarm each time we resize a window
interactively, create an alarm the first time we resize a window
and keep it around permanently until we unmanage the window.
Doing it this way will be useful when we allow the application to
spontaneously generate sync request updates to indicate
frames it is drawing.
https://bugzilla.gnome.org/show_bug.cgi?id=685463
Replace the unused meta_compositor_set_updates() with
a reversed-meaning meta_compositor_set_updates_frozen(), and use
it to implement freezing application window updates during
interactive resizing. This avoids drawing new areas of the window
with blank content before the application has a chance to repaint.
https://bugzilla.gnome.org/show_bug.cgi?id=685463
This new hint allows compositors to know what portions of a window
will be obscured, as a region above them is opaque. For an RGB window,
possible to glean this information from the bounding shape region of
a client window, but not for an ARGB32 window. This new hint allows
clients that use ARGB32 windows to say which part of the window is
opaque, allowing this sort of optimization.
https://bugzilla.gnome.org/show_bug.cgi?id=679901
We have some code in gnome-shell that does the equivalent of:
window.get_workspace() == workspace || window.is_on_all_workspaces();
which is a bit unwieldy. We already have a method in mutter,
so use that and document it.
https://bugzilla.gnome.org/show_bug.cgi?id=691744
Mechanically transform the event processing of mutter to care
about XI2 events instead of Core Events. Core Events will be left
in the dust soon, and removed entirely.
https://bugzilla.gnome.org/show_bug.cgi?id=688779
This removes some duplicate event type checks, and will make
the code cleaner in the future when we want to make the grab_op_event
handler take an XIDeviceEvent directly.
Based on a patch by Owen Taylor <otaylor@fishsoup.net>
https://bugzilla.gnome.org/show_bug.cgi?id=688779