This is not a leak per se, but it seems too easy to make valgrind
SIGSEGV due to MetaBackground disconnecting signals from an already
destroyed MetaScreen when trying to SIGTERM gnome-shell. Keeping a
reference fixes this.
https://bugzilla.gnome.org/show_bug.cgi?id=789984
The layout group determines what actual keyboard layout in the keymap
to use when translating modifier state and key codes to key syms.
When changing a keymap to another, the layout groups has no relation to
the layout groups in the old keymap, thus there is no reason to
transfer it to the new state.
This fixes an issue where the xkb state in meta-wayland-keyboard.c got
desynchronized with the xkb state in clutter-device-manager-evdev.c.
https://bugzilla.gnome.org/show_bug.cgi?id=789300
There seems to be a kernel race when one disconnects an external
monitor connected to a DisplayPort via a USB-C adapter. The race
results in a connector being reported as connected, but without any
modes supported.
This had the side effect that we tried to set a preferred mode to
the first listed mode, but as no modes were available, we instead tried
to dereference the first element of a NULL array, causing a
segmentation fault.
Mitigate this by skipping adding output if no supported modes are
advertised and the output doesn't support scaling, while moving the
fallback path for calculating a preferred output mode to after possibly
adding the common modes, to avoid the unvolentary NULL dereference.
https://bugzilla.gnome.org/show_bug.cgi?id=789501
Logical monitors keep pointers around to monitor objects, which themself
keep pointers aronud to outputs, which keeps pointer to modes and CRTCs.
To avoid causing crashes when using the logical monitor API (which
might use monitor APIs etc) between a hot plug and the time the logical
monitors are regenerated (which is done synchronously in the native
backend but asynchronously in the X11 backend), postpone the freeing of
the state that logical monitor references, until the logical monitor
state is regenerated.
On the native backend, this should have no significant effect, as the
logical state is always regenerated immediately after the hardware
state is updated, but on X11, this should fix race conditions when
events being processed between the hot plug and the hot plug result
tries to access the yet to be up to date state.
https://bugzilla.gnome.org/show_bug.cgi?id=786929
The handlers depend on a role being assigned. Destroying the window
causes it to become unmapped, which would sometimes trigger one of the
handlers, resulting in an is-assigned assert hitting in one of the
handlers. Avoid this by disconnecting the handlers earlier, so that
there is no risk that any them being triggered before the role is
assigned.
https://bugzilla.gnome.org/show_bug.cgi?id=789552
In the unlikely case that a surface is moved by the compositor while
holding a pointer confinement, we also need to update the pointer
position when the surface actor gets moved.
https://bugzilla.gnome.org/show_bug.cgi?id=782344
Both notify::position on the surface actor and position-changed on
MetaWindow are listened to, in order to trigger wl_output updates for
wl_surfaces whenever the surfaces move across them.
Both signals are necessary in order to cater for toplevel and subsurface
relocations (Because it's the parent window actor what changes position
in this last case).
Also, shuffle signal disconnection, so each signal goes away with
the object reference held by MetaWaylandSurface.
https://bugzilla.gnome.org/show_bug.cgi?id=782344
The org.gnome.desktop.peripherals.trackball.scroll-wheel-emulation-button
setting contains buttons X11-style. Work out the BTN evcode that applies
to it when applying the setting on the libinput device.
https://bugzilla.gnome.org/show_bug.cgi?id=787804
It looks that there are some extensions that run a Mainloop on startup,
causing to dispatch a clutter paint before the compositor is even available.
In such scenario a MetaWindow could try to start a simple effect
using a compositor plugin which is not there yet.
Then in order to catch these bugs we can now assert that the expected
conditions are valid, so that gnome-shell will provide a dumpstack to
debug the real offending JS code.
https://bugzilla.gnome.org/show_bug.cgi?id=789223
Check that if there are multiple modes with the same ID (resolution,
refresh rate and handled flags) we correctly add the preferred mode to
the list of monitor modes.
https://bugzilla.gnome.org/show_bug.cgi?id=789153
When generating MetaMonitorMode's, prefer CRTC modes that has the same
set of flags as the preferred mode. This not only is probably a better
set of configurable modes, but it'll guarantee that the preferred mode
is added.
This fixes a crash when the preferred mode was not the first mode with
the same resolution, refresh rate and set of handled modes.
https://bugzilla.gnome.org/show_bug.cgi?id=789153
Under X11 we can only ever have the same scale configured on all
monitors. In order to use e.g. scale 2 when there is a HiDPI monitor
connected, we must not disallow it because there is a monitor that does
not support scale 2. Thus we must show the same scale for every monitor
and monitor mode, even though it might result in a bad experience.
Do this by iterating through all the monitors adding all supported
scales by the preferred mode, combining all the supported scales. This
supported scales list is then used for all monitor and modes no matter
what.
https://bugzilla.gnome.org/show_bug.cgi?id=788901
When determining whether we should unredirect a window or not, ignore
offscreen windows, and just check the top most visible window.
Previously this was not an issue, but since 'stack-tracker: Keep
override redirect windows on top' we started sorting the UI frames
window, which is an offscreen override redirect window, on top, causing
the unredirect checking code to always check whether to unredirect the
UI frames window. This effectively disabled the compositor bypass
functionality.
https://bugzilla.gnome.org/show_bug.cgi?id=788493
Adding an internal signal and use it to update the internal state before
emitting "monitors-changed" which will be repeated by the screen to the world.
https://bugzilla.gnome.org/show_bug.cgi?id=788860
Don't use MAX(logical monitor scales) to determine the UI scaling
factor, just use the primary logical monitor. That's where the shell UI
will most likely be.
https://bugzilla.gnome.org/show_bug.cgi?id=788820
When we received two hot plug events that both resulted in headless
configuration, we tried to find a new window monitor given the old.
That resulted in a null pointer dereference; avoid that by only trying
to find the same monitor if there was an old one.
https://bugzilla.gnome.org/show_bug.cgi?id=788607
Pipewire doesn't export its version defines, so the API checks added
in commit f0c6c4eb1f effectively disable screencasting, whoops.
Breaking changes like this should disappear once the library stabilizes,
so simply define the version ourselves instead of writing a "proper"
test with AC_COMPILE_IFELSE() ...
https://bugzilla.gnome.org/show_bug.cgi?id=788572
The modifier event was only added in v3 of the client; sending it to
older clients (e.g. GStreamer waylandsink) causes them to disconnect
immediately.
Send the older 'format' event to all clients, and only send the newer
'modifier' event to resource versions 3 or above.
https://bugzilla.gnome.org/show_bug.cgi?id=788558
If a configuration key matched a current system state, but no monitor
mode was found (for example because of an incorrect refresh rate),
discard it while logging a warning.
https://bugzilla.gnome.org/show_bug.cgi?id=787668
People that relied on xsetwacom to configure their tablets used to get
away with this by disabling the wacom g-s-d plugin prior to running
their scripts. This is not possible anymore with mutter managing device
configuration.
Given that X11 shall not go away soon and there's a core of stubbornly
accustomed users, provide a MUTTER_DISABLE_WACOM_CONFIGURATION envvar
to provide *some* way to do this.
To keep feature parity with the Wayland backend, and
to improve the overall tiling experience with GTK apps,
add the _GTK_EDGE_CONSTRAINTS X11 atom and update it
when necessary.
https://bugzilla.gnome.org/show_bug.cgi?id=751857
Following up the previous patch, this patch makes the
Wayland backend send the edge constraints through a
custom protocol extension internal to GTK.
As it mature, we can think of upstreaming the protocol
to Wayland itself.
https://bugzilla.gnome.org/show_bug.cgi?id=751857
GTK has the ability to handle client-decorated windows
in such a way that the behavior of these windows must
match the behavior of the current window manager.
In Mutter, windows can be tiled horizontally (and, in
the future, vertically as well), which comes with a few
requirements that the toolkit must supply. Tiled windows
have their borders' behavior changed depending on the
tiled position, and the toolkit must be aware of this
information in order to properly match the window manager
behavior.
In order to provide toolkits with more precise and general
data regarding resizable and constrained edges, this patch
makes MetaWindow track its own edge constraints.
This will later be used by the backends to send information
to the toolkit.
https://bugzilla.gnome.org/show_bug.cgi?id=751857
When computing a potential match for a tiled window, there is a
chance we face the case where 2 windows really complement each
other's tile mode (i.e. left and right) but they have different
sizes, and their borders don't really touch each other.
In that case, the current code would mistakenly assume they're
tile matches, and would resize them with either a hole or an
overlapping area between windows. This is clearly a misbehavior
that is a consequence of the previous assumptions pre-resizable
tiles.
This patch adapts the tile match algorithm to also consider the
touching edges when computing the matching tile, unless:
* the window is not currently tiled (for example when computing
the tile preview)
* the window is currently resized in tandem with an existing
tile match
https://bugzilla.gnome.org/show_bug.cgi?id=645153
bar
When a pair of tiled windows are grouped together, they
are treated as parts of a whole and interacting with one
affects the other.
Following the idea that sibling tiled windows are treated
as part of the same group, they should also be raised and
lowered together.
It is still possible to break tiled windows grouping by
simply untiling the window with the keyboard or by grabbing
and resizing or moving the window with the cursor.
This patch makes sibling tiled windows be lowered and raised
in tandem. For future reference, this behavior is documented
in [1].
[1] https://wiki.gnome.org/GeorgesNeto/MinutesOfFeaneron/Tilinghttps://bugzilla.gnome.org/show_bug.cgi?id=645153
There is a variable in meta_window_edge_resistance_for_resize
that isn't really helpful: it just assumes TRUE, and is passed
to apply_edge_resistance_to_each_side.
This patch removes that useless variable and simply pass TRUE
instead.
https://bugzilla.gnome.org/show_bug.cgi?id=645153
When windows are tiled, it improves the interaction with
them when they have a set of snapping edges relative to
the monitor. For example, when there's a document editor
and a PDF file opened, I might want to rescale the former
to 2/3 of the screen and the latter to 1/3.
These snapping sections are not really tied to any other
window, and only depend on the current work area of the
window. Thus, it is not necessary to adapt the current
snapping edge detection algorithm.
This patch adds the necessary code in edge-resistance.c
to special-case tiled windows and allow them to cover
1/4, 1/3 and 1/2 (horizontally) of the screen. These
values are hardcoded.
https://bugzilla.gnome.org/show_bug.cgi?id=645153
After the introduction of the possibility to resize tiled windows,
it is a sensible decision to make windows aware of their tiling
match. A tiling match is another window that is tiled in such a
way that is the complement of the current window.
The newly introduced behavior attepts to make tiling as smooth as
possible, with the following rules:
* Windows now compute their tile match when tiling and, if there's
a match, they automatically complement the sibling's width.
* Resizing a window with a sibling automatically resizes the sibling
too to be the complement of the window's width.
* It is not possible to resize below windows' minimum widths.
https://bugzilla.gnome.org/show_bug.cgi?id=645153
Now that tiled windows are resizable, the user may grow a tiled
windows until it covers the entire work area. As this makes the
window state mostly indistinguishable from maximization, avoid
subtle differences by properly maximizing the window in that case.
https://bugzilla.gnome.org/show_bug.cgi?id=645153