As soon as any event of a sequence is handles/stopped during emission,
all actors and actions that would have gotten to see it afterwards have
a big problem: If that event was a TOUCH_END event, the actor/action is
forever going to think that this touch is still active.
For ClutterActions, we're going to handle this by introducing a way to
send them a notification when stuff like this happens.
As a baby step towards all that, make event emission exclusive to actors
as soon as any actor stopped an event.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2342>
We'll soon introduce a new gesture tracking framework which heavily
depends on ClutterActions seeing all events of a sequence. For this to
work, a larger change to event delivery is needed: Implicit grabbing of
all events for button and touch press->motion->release sequences to
ensure ClutterActions continue receiving events for the whole sequence.
This commit takes care of that: At the start of an event sequence we
collect all the event-handling actors and actions to a GArray that lives
in the PointerDeviceEntry, and then deliver all events belonging to
that sequence to the same actors/actions until the sequence ends.
To avoid events getting pulled from under our feet when mutters event
filter returns CLUTTER_EVENT_STOP, this also introduces private API
(maybe_lost_implicit_grab()) on ClutterStage so that we can't end up
with stale sequences.
Note that this also slightly changes behavior when it comes to event
delivery to actions: Because we now store actions separated from their
actors, any action returning CLUTTER_EVENT_STOP now stops event
propagation immediately. That was different before, where we'd emit
events to all actions of the actor and only then stop propagation.
Note that this isn't handling ClutterGrabs correctly right now,
this will be a little tricky, so we'll take care of that in a future
commit.
To handle actors getting destroyed or unmapped during a grab, listen to
notify::grab on the deepmost actor in the implicit grab tree. This gives
us a notification when any actor inside the tree goes unmapped.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2342>
A fairly small refactor, move the emission of events to actions from
clutter_actor_event() to stage level.
We do this because in the future we'll need to know on stage level
whether events were handled by an actor or by an action.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2342>
_clutter_actor_handle_event() currently allocates a new GPtrArray on the
heap for every single event emission, let's avoid this by keeping an
array around in ClutterStage and reusing that.
This is moving the last few bits of event emission into ClutterStage,
which will be useful when we introduce implicit grabbing in subsequent
commits.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2342>
There's no real reason to keep those events exclusive to the stage, some
actors or actions might want to get notified about proximity events too,
so propagate them like any other event.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2342>
Right now and due to loads of refactorings lately, the event emission
paths are a bit cluttered (ha ha ha) around in Clutter. For example the
event target actor gets set in clutter-main.c, but event emission is
actually managed by ClutterStage these days.
Since we'll introduce implicit grabbing of touch/button-press sequences
soon, let's shuffle things around a bit to make that easier:
Move event emission to the stage, it now gets a ClutterEvent without any
extra context like the target actor from clutter-main. The stage then
looks up the target actor itself and emits the event to the appropriate
actors in the scenegraph. A special path is introduced for emitting
crossing events, because here the event-receiving actors don't follow
the "capture+bubble from pointer actor to grab actor" rule.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2342>
Crossing events should never be stopped during event emission. We
already have a check that enforces this in clutter_actor_event(), but
ClutterActions still sometimes try to stop crossing events from
propagating.
Improve that situation and return CLUTTER_EVENT_PROPAGATE when handling
crossings in ClutterActions, too.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2342>
The previous logic tried to keep the position of the top left corner of
the window relative to the top left corner of the monitor. This allowed
the window to move out of the target monitor. This change keeps the
proportions of the distance between the window and the monitor borders
instead if possible. Otherwise it keeps the relative position of the
center of the window clamped to [0,1] to make sure the window lands on
the right output.
This also slightly changes what monitor is considered to be on: the
monitor which contains the center of the window and, if the center is on
no monitor, the monitor wich overlaps the most with the window.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2591>
This partly reverts f9857cb8 but leaves an exception for cursor
surfaces in place, as some apps/toolkits will likely not get updated
anytime soon to ensure cursor themes comply with the Wayland spec.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2815>
So we can remove the additional `next_fb` and `current_fb` pointers from
`MetaOnscreenNativeSecondaryGpuState`.
Some non-scanout buffers also need to be held in the case of GL blitting
which completes in the background. Those are referenced from the scanout
buffers themselves to ensure the source buffers live just as long.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2087>
There's still a possibility that some events remain within the
`ClutterMainContext` when it's being unref-ed for the last time (as seen
on asan logs). Make sure they get freed by using
`g_async_queue_new_full()` and specifying the appropriate destroy
function.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2817>
Calculating a timestamp from the past distorts the dispatch lateness
calculation, leading to an inflated max_render_time, which again
increases the likelyhood of next_update_time being in the past.
Fixes 99850f46459
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2819>
As with GAMMA_LUT, track whether privacy screen state has been pushed to
KMS in the onscreen. This leaves MetaOutput and MetaCrtc to be about
configuration, and not application.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2814>
As with CRTC GAMMA_LUT, we're moving towards making the entity managing
KMS updates aware if there are any changes to be made, and whether KMS
updates are actually needed or not, and for privacy screen changes, this
means we need to communicate whether the privacy screen state is valid
or not. This allows the caller to create any needed MetaKmsUpdate.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2814>
We're moving towards making the entity managing KMS updates aware if
there are any changes to be made, and whether KMS updates are actually
needed or not, and for GAMMA_LUT changes, this means we need to
communicate whether the GAMMA_LUT state is valid or not. This allows the
caller to create any needed MetaKmsUpdate.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2814>
We may fall through these paths on --nested too, resulting in us poking the
wrong internals from the wrong MetaRenderer subclass. Fixes launching of
clients using wl_drm in --nested.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2818>
Running each stacking test as a separate installed-test is analogous to
what was done for build-time tests in c6d1cf4a (!442) and should make it
easier to track regressions, by being able to see whether a regression
is specific to one .metatest script or applies to more than one.
Signed-off-by: Simon McVittie <smcv@debian.org>
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2773>
While completely untested, at least this makes it work "in theory"
again. Before it'd listen to signals on the stage, but have an incorrect
type signature to handle the test paint procedures, meaning it'd
probably crash or cause memory corruptions.
What was needed was a signal which in the callback the test could call
some cogl functions to paint on the framebuffer. While there is no such
signal on the stage, and the ClutterActor::paint signal (which they
probably used in the past) is long gone, lets add a "test actor" that is
just a wrapper that adds that paint signal with a paint context.
The tests that need it are changed to add this actor to the stage, and
to listen to the paint signal on the actor instead of incorrectly
listening on stage signals.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2807>
At least indirectly, this is set as object qdata while the
window drag is ongoing, and reset/reconstructed if needed.
Consequently, this edge data does not need to be stored in
the MetaDisplay struct anymore.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2683>
Even though the data is still stored in the display, add a "high
level" meta_window_drag_update_edges() call, so that the cached
edges may be updated while a window drag operation is ongoing.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2683>