Commit Graph

9 Commits

Author SHA1 Message Date
Robert Bragg
f80cb197a9 cogl: rename CoglMaterial -> CoglPipeline
This applies an API naming change that's been deliberated over for a
while now which is to rename CoglMaterial to CoglPipeline.

For now the new pipeline API is marked as experimental and public
headers continue to talk about materials not pipelines. The CoglMaterial
API is now maintained in terms of the cogl_pipeline API internally.
Currently this API is targeting Cogl 2.0 so we will have time to
integrate it properly with other upcoming Cogl 2.0 work.

The basic reasons for the rename are:
- That the term "material" implies to many people that they are
  constrained to fragment processing; perhaps as some kind of high-level
  texture abstraction.
    - In Clutter they get exposed by ClutterTexture actors which may be
      re-inforcing this misconception.
- When comparing how other frameworks use the term material, a material
  sometimes describes a multi-pass fragment processing technique which
  isn't the case in Cogl.
- In code, "CoglPipeline" will hopefully be a much more self documenting
  summary of what these objects represent; a full GPU pipeline
  configuration including, for example, vertex processing, fragment
  processing and blending.
- When considering the API documentation story, at some point we need a
  document introducing developers to how the "GPU pipeline" works so it
  should become intuitive that CoglPipeline maps back to that
  description of the GPU pipeline.
- This is consistent in terminology and concept to OpenGL 4's new
  pipeline object which is a container for program objects.

Note: The cogl-material.[ch] files have been renamed to
cogl-material-compat.[ch] because otherwise git doesn't seem to treat
the change as a moving the old cogl-material.c->cogl-pipeline.c and so
we loose all our git-blame history.
2010-11-03 18:09:23 +00:00
Robert Bragg
9d4ad1584d profile: Update to uprof-0.3 dep for --enable-profile
When building with --enable-profile we now depend on the uprof-0.3
developer release which brings a few improvements:

» It lets us "fix" how we initialize uprof so that instead of using a shared
object constructor/destructor (which was a hack used when first adding
uprof support to Clutter) we can now initialize as part of clutter's
normal initialization code. As a side note though, I found that the way
Clutter initializes has some quite serious problems whenever it
involves GOptionGroups. It is not able to guarantee the initialization
of dependencies like uprof and Cogl. For this reason we still use the
contructor/destructor approach to initialize uprof in Cogl.

» uprof-0.3 provides a better API for adding custom columns when reporting
timer and counter statistics which lets us remove quite a lot of manual
report generation code in clutter-profile.c.

» uprof-0.3 provides a shared context for tracking mainloop timer
statistics. This means any mainloop based library following the same
"Mainloop" timer naming convention can use the shared context and no
matter who ends up owning the final mainloop the statistics will always
be in the same place. This allows profiling of Clutter with an
external mainloop such as with the Mutter compositor.

» uprof-0.3 can export statistics over dbus and comes with an ncurses
based ui to vizualize timer and counter stats live.

The latest version of uprof can be cloned from:
git://github.com/rib/UProf.git
2010-09-14 12:43:16 +01:00
Neil Roberts
ccc3068ffd cogl-bitmap: Encapsulate the CoglBitmap even internally
The CoglBitmap struct is now only defined within cogl-bitmap.c so that
all of its members can now only be accessed with accessor
functions. To get to the data pointer for the bitmap image you must
first call _cogl_bitmap_map and later call _cogl_bitmap_unmap. The map
function takes the same arguments as cogl_pixel_array_map so that
eventually we can make a bitmap optionally internally divert to a
pixel array.

There is a _cogl_bitmap_new_from_data function which constructs a new
bitmap object and takes ownership of the data pointer. The function
gets passed a destroy callback which gets called when the bitmap is
freed. This is similar to how gdk_pixbuf_new_from_data
works. Alternatively NULL can be passed for the destroy function which
means that the caller will manage the life of the pointer (but must
guarantee that it stays alive at least until the bitmap is
freed). This mechanism is used instead of the old approach of creating
a CoglBitmap struct on the stack and manually filling in the
members. It could also later be used to create a CoglBitmap that owns
a GdkPixbuf ref so that we don't necessarily have to copy the
GdkPixbuf data when converting to a bitmap.

There is also _cogl_bitmap_new_shared. This creates a bitmap using a
reference to another CoglBitmap for the data. This is a bit of a hack
but it is needed by the atlas texture backend which wants to divert
the set_region virtual to another texture but it needs to override the
format of the bitmap to ignore the premult flag.
2010-07-15 17:24:01 +01:00
Neil Roberts
00e3d77be3 cogl-texture-3d: Use glTexSubImage3D through an indirect pointer
glTexSubImage3D was being called directly in cogl-texture-3d.c but the
function is only available since GL version 1.2 so on Windows it won't
be possible to directly link to it. Also under GLES it is only
available conditionally in an extension.
2010-07-14 17:45:15 +01:00
Neil Roberts
a104b37068 cogl-texture-3d: Fix the cogl-material-private header include
In ddb9016be4 the texture backends were changed to include
cogl-material-opengl-private.h instead of cogl-material-private.h.
However the 3D texture backend was missed from this so it was giving a
compiler warning about using an undeclared function.
2010-07-14 16:35:33 +01:00
Neil Roberts
8b8f5efbe5 cogl-texture-3d: Don't include cogl-texture-2d-private.h
I think this was included by a cut-and-paste error as it isn't needed
anywhere in the source.
2010-07-14 16:34:42 +01:00
Neil Roberts
ae88bff329 Add a GL_GENERATE_MIPMAP fallback to the texture 2d and 3d backends
The CoglTexture2DSliced backend has a fallback for when the
framebuffer extension is missing so it's not possible to use
glGenerateMipmap. This involves keeping a copy of the upper-left pixel
of the tex image so that we can temporarily enable GL_GENERATE_MIPMAP
on the texture object and do a sub texture update by reuploading the
contents of the first pixel. This patch copies that mechanism to the
2D and 3D backends. The CoglTexturePixel structure which was
previously internal to the sliced backend has been moved to
cogl-texture-private.h so that it can be shared.
2010-07-13 18:41:01 +01:00
Neil Roberts
ec718d4ca4 Rename the third texure coordinate from 'r' to 'p'
Using 'r' to name the third component is problematic because that is
commonly used to represent the red component of a vector representing
a color. Under GLSL this is awkward because the texture swizzling for
a vector uses a single letter for each component and the names for
colors, textures and positions are synonymous. GLSL works around this
by naming the components of the texture s, t, p and q. Cogl already
effectively already exposes this naming because it exposes GLSL so it
makes sense to use that naming consistently. Another alternative could
be u, v and w. This is what Blender and Direct3D use. However the w
component conflicts with the w component of a position vertex.
2010-07-13 14:29:07 +01:00
Neil Roberts
5288f6d88d Add a Cogl texture 3D backend
This adds a publicly exposed experimental API for a 3D texture
backend. There is a feature flag which can be checked for whether 3D
textures are supported. Although we require OpenGL 1.2 which has 3D
textures in core, GLES only provides them through an extension so the
feature can be used to detect that.

The textures can be created with one of two new API functions :-

cogl_texture_3d_new_with_size

 and

cogl_texture_3d_new_from_data

There is also internally a new_from_bitmap function. new_from_data is
implemented in terms of this function.

The two constructors are effectively the only way to upload data to a
3D texture. It does not work to call glTexImage2D with the
GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does
nothing. It would be possible to make cogl_texture_get_data do
something sensible like returning all of the images as a single long
image but this is not currently implemented and instead the virtual
just always fails. We may want to add API specific to the 3D texture
backend to get and set a sub region of the texture.

All of those three functions can throw a GError. This will happen if
the GPU does not support 3D textures or it does not support NPOTs and
an NPOT size is requested. It will also fail if the FBO extension is
not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not
given. This could be avoided by copying the code for the
GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of
keeping the code simple this is not yet done.

This adds a couple of functions to cogl-texture-driver for uploading
3D data and querying the 3D proxy
texture. prep_gl_for_pixels_upload_full now also takes sets the
GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding
between the images. Whenever 3D texture is uploading, both the height
of the images and the height of all of the data is specified (either
explicitly or implicilty from the CoglBitmap) so that the image height
can be deduced by dividing by the depth.
2010-07-13 14:28:52 +01:00