If the coordinates was for a stream not at the stage position (0, 0),
they'd be incorrect. Fix this by correctly translating the coordinates
according to the stream position.
Make the Wayland objects push the state relevant to their role to the
MetaSurfaceActor instead of MetaSurfaceActorWayland pulling the state
from the associated surface.
This makes the relationship between the actor and the objects that
constructs it more clear; the actor is a drawable that the protocol
objects control, not the other way around.
This will make it easier to "detach" a surface actor from a surface,
which is necessary when unmapping a window while the underlying surface
is yet to be destroyed and potentially reused.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/5https://bugzilla.gnome.org/show_bug.cgi?id=791938
This commit moves out non-core wl_surface related code into separate
code units, while renaming types to fit a common scheme. The changes
done are:
* ClutterActor based surface roles built upon
MetaWalyandSurfaceRoleActorSurface. This object has been renamed to
MetaWaylandActorSurface and related functionality has moved into
meta-wayland-actor-surface.c.
* The code related to roles backed by a MetaWindow (i.e. built upon
MetaWaylandShellSurface) was moved into meta-wayland-shell-surface.c
* The majority of subsurface related code was moved into into
meta-wayland-subsurface.c and the object was renamed
MetaWaylandSubsurface.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/5https://bugzilla.gnome.org/show_bug.cgi?id=791938
mutter would discard the shape region set by the client if its matches
the entire client area in meta_window_x11_update_shape_region().
However, if the window is later resized (maximized or other), the
compositor will fail to update the shape region properly for undecorated
windows because the shape region was discarded, which causes black areas
to appear in place of the updated areas.
If the client window is undecorated, keep the shape region even if when
it matches the client area.
https://gitlab.gnome.org/GNOME/mutter/issues/27Closes: #27
When the buffer modifier is DRM_FORMAT_MOD_LINEAR, we can use the
old code path. That means not specifying any modifier parameter.
It was an issue when the primary GPU was creating a linear GBM surface
and that a secondary GPU (not supporting modifiers) was trying to
import it. It was failing because the driver could not use the
import_modifiers extension even though it could in theory easily
import the buffer.
https://gitlab.gnome.org/GNOME/mutter/issues/18
We were retrieving the supported KMS modifiers for all GPUs even
though what we really need to intersect between these sets of
modifiers:
1) KMS supported modifiers for primary GPU if the GPU is used for
scanout;
2) EGL supported modifiers for secondary GPUs (different than the
primary GPU used for rendering);
3) GBM supported modifiers when creating the surface (already
taken care of by gbm_surface_create_with_modifiers());
https://gitlab.gnome.org/GNOME/mutter/issues/18
So the changes can be instantly applied while the tool is in proximity.
Before we would just do it on proximity-in, which doesn't provide a
good look&feel while modifying the tool settings in g-c-c.
https://gitlab.gnome.org/GNOME/mutter/issues/38Closes: #38
If text_input_enable() is called when there no active IM (eg. running plain
mutter), some ClutterInputFocus method calls that are not allowed while
unfocused will end up called, triggering critical warnings.
If there is no IM return early here, all other calls are superfluous then.
We currently don't handle NULLs on these correctly, yet they can be
so when running nested. Just refrain from sending those wp_tablet(_pad)
events in that case.
The property has been 32 bits since around 2011 and has not changed, mutter
expects it to be 8 bits. The mismatch causes change_property to never
actually change the property.
https://gitlab.gnome.org/GNOME/mutter/issues/26Closes: #26
The window checks in the XPropertyEvent handler were wrong both
ways, so transfers would be left stale after the first chunk was
dealt with.
https://gitlab.gnome.org/GNOME/mutter/issues/1Closes: #1
Plain input stream read() calls don't provide hard guarantees about
the number of bytes read, but the async method callback sort of
relies on bytes being less than requested only when reaching the
end of the transmitted data. If that happens mid transfer, that
doesn't bode well.
This is actually the behavior of g_input_stream_read_all(), so
switch to using it.
This was done by the clutter X11 backend before prior to introducing
MetaRenderer, but during that work, enabling of said extension was lost.
Let's turn it on again.
https://bugzilla.gnome.org/show_bug.cgi?id=739178
This is in order to force running as a X11 window manager/compositing
manager. Useful for debugging and other cases where the automatic
detection does not work as expected.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/15
If for whatever reason, there are stalled files in /tmp/.X11-unix/ the
bind() to the abstract socket will succeed but not the bind() to the
to the UNIX socket.
This causes gnome-shell/mutter to fail because it cannot start Xwayland
(while it could actually, by using a different display).
In case of failure to bind to the UNIX socket, try the next display
instead of failing, to avoid stalled entries in /tmp/.X11-unix.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/13
The shortcut inhibitor protocol states that the “active” event should be
sent every time compositor shortcuts are inhibited on behalf of the
surface.
However, mutter would send that event only if the surface is focused,
which might not be the case if focus is on a shell surface.
Send the “active” event unconditionally to match the protocol
definition.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/10
There seems to be a kernel race when one disconnects an external
monitor connected to a DisplayPort via a USB-C adapter. The race
results in a connector being reported as connected, but without any
modes supported.
This had the side effect that we tried to set a preferred mode to
the first listed mode, but as no modes were available, we instead tried
to dereference the first element of a NULL array, causing a
segmentation fault.
Mitigate this by skipping adding output if no supported modes are
advertised and the output doesn't support scaling, while moving the
fallback path for calculating a preferred output mode to after possibly
adding the common modes, to avoid the unvolentary NULL dereference.
https://bugzilla.gnome.org/show_bug.cgi?id=789501
Opening and closing the device may result into XI2 grabs being cut short,
resulting into pad buttons being rendered ineffective, and other possible
misbehaviors. This is an XInput flaw that fell in the gap between XI1 and
XI2, and has no easy fix. It pays us for mixing both versions, I guess...
Work this around by keeping the XI1 XDevice attached to the
ClutterInputDevice, this way it will live long enough that this is not
a concern.
Investigation of this bug was mostly carried by Peter Hutterer, I'm just
the executing hand.
https://gitlab.gnome.org/GNOME/mutter/issues/7Closes: #7
A comparison in translate_device_event() does not account for the fact
that X's clock wraps about every 49.7 days. When triggered, this causes
an unresponsive GUI.
Replace simple less-than comparison with XSERVER_TIME_IS_BEFORE macro,
which accounts for the wrapping of X's clock.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/12
The tertiary-button-action (see bug 790028) is a place for g-c-c to store
the action which should be performed when a stylus' third button is pressed.
Pressing this button is signaled as a BTN_STYLUS3 event from the kernel or
X11 button 8.
https://bugzilla.gnome.org/show_bug.cgi?id=790033
When a window's workspace is not NULL, on_all_workspace should be FALSE.
Similarly, when on_all_workspace is TRUE, the window workspace should be
NULL.
This is an assumption in multiple places in the code, including when
setting the workspace state, the window is either added or removed from
all workspaces only if the window's workspace is NULL.
This rule is initially enforced at creation in _meta_window_shared_new()
when a initial workspace is set. However, when the initial workspace is
set from the session info, the initial workspace is not marked as “set”
which leads to an assertion failure when unmanaging windows, because the
window is not removed from all the workspaces.
When applying the session info to a window, mark the workspace as “set”.
https://gitlab.gnome.org/GNOME/mutter/issues/4Closes: #4
Having “on_all_workspaces_requested” FALSE on a window does not imply a
workspace is set.
If the X11 window is placed on a secondary monitor while workspaces
applies on primary monitor only (“workspaces-only-on-primary” set) then
“on_all_workspaces_requested” is FALSE while “on_all_workspaces“ is TRUE
and the associated workspace is NULL, leading to a crash when saving the
gnome-shell/mutter session.
So if no workspace is set, use the “initial_workspace” instead to avoid
a NULL pointer dereference.
https://bugzilla.gnome.org/show_bug.cgi?id=792818
Now that we have the list of supported modifiers from the monitor
manager (via the CRTCs to the primary planes), we can use this to inform
EGL it can use those modifiers to allocate the GBM surface with. Doing
so allows us to use tiling and compression for our scanout surfaces.
This requires the Mesa commit in:
Mesa 10.3 (08264e5dad4df448e7718e782ad9077902089a07) or
Mesa 10.2.7 (55d28925e6109a4afd61f109e845a8a51bd17652).
Otherwise Mesa closes the fd behind our back and re-importing will fail.
See FDO bug #76188 for details.
https://bugzilla.gnome.org/show_bug.cgi?id=785779
Newer versions of GBM support buffer modifiers, including multi-plane
buffers. Use this new API to explicitly pull the information from GBM,
and feed it to drmModeAddFB2WithModifiers.
https://bugzilla.gnome.org/show_bug.cgi?id=785779
The KMS IN_FORMATS blob property contains a structure defining which
format/modifier combinations are supported for each plane. Use this to
extract a list of acceptable modifiers to use for the primary plane for
XRGB8888, so we can ask EGL to allocate tiled/compressed buffers for
scanout when available.
https://bugzilla.gnome.org/show_bug.cgi?id=785779
Using 800x600 as minimum logical size is very 4:3 thinking, while a lot of
modern devices are 16:9. The specific reason for this commit is to allow
1.5 scaling at mini-laptops (clamshell devices) with e.g. a 5.5"
1280x720 screen. Given that this device has a keyboard, one obviously
is not holding it very close to ones eyes and at 220 dpi that means the text
is too small at scale 1.0. For one real world example of such a device see:
https://en.wikipedia.org/wiki/GPD_Winhttps://bugzilla.gnome.org/show_bug.cgi?id=792765
Offer the text-input interface global, so it can be used by clients. The
MetaWaylandSeat will also let MetaWaylandTextInput intercept key events
before the keyboard interface handles those.
This is the implementation of the internal text-input protocol that will
be used to communicate IMs (to be implemented by gnome-shell) with clients.
The text_input protocol has its own focus expressed through enter/leave
events, that will typically follow the keyboard's.
The client will be able to communicate its current status (eg. focus state,
cursor rectangle in surface coordinates, text surrounding the cursor
position, ...) and will receive commands from the compositor (eg. preedit
text, committing a string, ...).
Whenever there is an active input method, the compositor will route key
events directly through it. The client will not receive wl_keyboard
events if the event is consumed by the IM.
Issuing a shortcut inhibit request for a surface without a window set
will lead to a crash when trying to show the shortcut inhibitor dialog.
In such a case, it's safer to deny the request.
https://bugzilla.gnome.org/show_bug.cgi?id=792599
The events might fall through if there's no corresponding active
pointer/keyboard/touch interface. Barring bugs this should be safe to do,
just a bit wasteful.
When maximizing a window, the previous location is saved so that
un-maximize would restore the same original window location.
However, if a Wayland client starts with a window maximized, the
previous location will be 0x0, so if we have to force placement in
xdg_toplevel_set_maximized(), we should update the location as well so
that the window is placed on the right monitor when un-maximizing.
For that purpose, add a new flag to force the update of the window
location, and use that flag from xdg_toplevel_set_maximized().
https://bugzilla.gnome.org/show_bug.cgi?id=783901
Wayland clients know their size better, so for Wayland we'd rather not
try to resize the client on un-maximize, but for this to work we need a
new MetaMoveResizeFlags.
https://bugzilla.gnome.org/show_bug.cgi?id=783901
When closing a window and showing a new one, the new one may not be
granted input focus until it gets a buffer on Wayland.
If another window is chosen to receive focus and raised on top of stack,
the newly mapped window is focused but placed underneath that other
window.
Meaning that for Wayland surfaces, we need to defer adding the window to
the stack until we actually get to show it, once we have a buffer
attached.
Rather that checking the windowing backend prior to decide if a window
is stackable or not, introduce a new vfunc is_stackable() which tells
if a window should be added to the stack regardless of the underlying
windowing system.
Also add meta_window_is_in_stack() API rather than checking the stack
position directly (replacing the define WINDOW_IN_STACK only available
in stack.c) and remove a window from the stack only if it is present
in the stack, so that the test in meta_stack_remote() becomes
irrelevant.
https://bugzilla.gnome.org/show_bug.cgi?id=780820
Wayland clients using the wl_shell interface were never receiving mouse
input. It meant they also couldn't be raised with a click.
This was because the call to meta_wayland_surface_set_window for wl_shell
surfaces did nothing while surface->window == window already. As such, it
never called clutter_actor_set_reactive() and the wl_shell window remained
a non-reactive actor.
Just make sure surface->window isn't already set before calling
meta_wayland_surface_set_window so it can actually do what it's meant to.
https://bugzilla.gnome.org/show_bug.cgi?id=790309
The device orientation coming out of iio-sensor-proxy defines upright/normal
as the direction in which the picture is displayed on the LCD panel without
any rotation. This is necessary for accelerometer rotation to work properly
in desktop environments which are not aware of panel-orientation issues.
This means that we need to correct the logical-monitor-config / user-visible
rotation for the panel-orientation when we get rotation info from
iio-sensor-proxy.
https://bugzilla.gnome.org/show_bug.cgi?id=782294
Just like we swap the x and y resolution of the monitor modes when
the panel-orientation requires 90 or 270 degree rotation to compensate,
we should do the same for the width and height in mm of the monitor.
https://bugzilla.gnome.org/show_bug.cgi?id=782294
If a monitor's max resolution is a portrait resolution, then assume it is
a native portrait monitor and add portrait versions of the common modes.
https://bugzilla.gnome.org/show_bug.cgi?id=782294
Even if the logical_monitor config does not have an active transform,
we might still be doing a transform under the hood to compensate for
panel-orientation. Check for this and fall back to the sw cursor if this
is the case.
https://bugzilla.gnome.org/show_bug.cgi?id=782294
If a LCD panel has a non normal orientation (mounted upside-down or 90
degrees rotated) then the kernel will report touchscreen coordinates with
the origin matching the native (e.g. upside down) coordinates of the panel.
Since we transparently rotate the image on the panel to correct for the
non normal panel-orientation, we must apply the same transform to input
coordinates to keep the aligned.
https://bugzilla.gnome.org/show_bug.cgi?id=782294
Some x86 clamshell design devices use portrait tablet LCD panels while
they should use a landscape panel, resoluting in a 90 degree rotated
picture.
Newer kernels detect this and rotate the fb console in software to
compensate. These kernels also export their knowledge of the LCD panel
orientation vs the casing in a "panel orientation" drm_connector property.
This commit adds support to mutter for reading the "panel orientation"
and transparently (from a mutter consumer's pov) fixing this by applying
a (hidden) rotation transform to compensate for the panel orientation.
Related: https://bugs.freedesktop.org/show_bug.cgi?id=94894https://bugzilla.gnome.org/show_bug.cgi?id=782294
If input happens to be grabbed somewhere along the shell, and ungrabbed
while a touch operation is ongoing, the wayland bits will happily start
sending wl_touch.update events from an undeterminate point, without
clients having ever received wl_touch.down for that id.
Consider those touches grabbed for the entirety of their lifetime, if
wl_touch.down wasn't received by the client, no other events will.
https://bugzilla.gnome.org/show_bug.cgi?id=776220
When a Wayland client issues a shortcut inhibit request which is granted
by the user, the Super key should be passed to the surface instead of
being handled by the compositor.
https://bugzilla.gnome.org/show_bug.cgi?id=790627
On VT switch, the xkb state layout index is lost and reset to the first
group, so if the first layout is not the last one being used, the xkb
state used in both meta-wayland-keyboard.c and clutter/evdev will be
desynchronized with the keyboard source indicator in the gnome-shell UI.
Save the effective layout chosen along with the seat so it can be
restored when reclaiming devices.
Use the saved layout index from the clutter/evdev's seat to restore the
layout in meta-wayland-keyboard, so that switching VT doesn't reset the
layout and causes further discrepancies with the layout indicator in the
gnome-shell UI.
https://bugzilla.gnome.org/show_bug.cgi?id=791383
The reason why multiple keycodes could be mapped to a single keysym was
to support having both KEY_FAVORITES and KEY_BOOKMARK map to
XF86Favorites. However, iterating through all layout levels adding all
key codes has severe consequences on layouts with levels that map
things like numbers and arrow. The result is that keybindings that
should only have been added for keycodes from the first level, are
replaced by some unexpected keycode where the same keysym was found on
another level.
An example of this is the up-arrow key and l symbol. Normally you'd find
both the up-arrow symbol and the l symbol on the first level and be done
with it. However, on the German Neo-2 layout, layout level 4 maps the
KEY_E to the l symbol, while layout level 4 maps KEY_E to up-arrow.
Which ever gets to take priority is arbitrary, but for this particular
case KEY_E incorrectly mapped to up-arrow instead of the l symbol,
causing the keyboard shortcut Super+l, which would normally lock the
screen, to trigger the workspace-up (Super+up-arrow) key binding.
https://bugzilla.gnome.org/show_bug.cgi?id=789300
This protocol is limited to Xwayland only and is not visible/usable by
any other client.
Mutter uses the following mechanisms to determine if an X11 client
should be granted a grab:
- is "xwayland-allow-grabs" set?
- if set, is the client blacklisted?
- otherwise, has the client set the X11 window property
_XWAYLAND_MAY_GRAB_KEYBOARD on the window using a client message?
- if not, is it a client white-listed either via the default system
list or the settings "xwayland-grab-access-rules"?
https://bugzilla.gnome.org/show_bug.cgi?id=783342
Add a new client message "_XWAYLAND_MAY_GRAB_KEYBOARD" that X11 clients
can use to tell mutter this is a well behaving X11 client so it may
grant the keyboard grabs when requested.
An X11 client wishing to be granted Xwayland grabs by gnome-shell/mutter
must send a ClientMessage to the root window with:
- message_type set to "_XWAYLAND_MAY_GRAB_KEYBOARD"
- window set to the xid of the window on which the grab is to be issued
- data.l[0] to a non-zero value
Note: Sending this client message when running a plain native X11
environment would have no effect.
https://bugzilla.gnome.org/show_bug.cgi?id=783342
MetaWindowXwayland derives from MetaWindowX11 to allow for some Xwayland
specific vfunc that wouldn't apply to plain X11 windows, such as
shortcut inhibit routines.
https://bugzilla.gnome.org/show_bug.cgi?id=783342
The xdg-output protocol aims at describing outputs in way which is
more in line with the concept of an output on desktop oriented systems.
For now it just features the position and logical size which describe
the output position and size in the global compositor space.
This is however much useful for Xwayland to advertise the output size
and position to X11 clients which need this to configure their surfaces
in the global compositor space as the compositor may apply a different
scale from what is advertised by the output scaling property (to achieve
fractional scaling, for example).
This was added in wayland-protocols 1.10.
https://bugzilla.gnome.org/show_bug.cgi?id=787363
When the top window actor is destroyed, we need to make sure that
all its references are removed or it could be picked again in next
windows sync, causing crashes.
Since the window might or might not be destroyed when removed (depending
weather animations are in progress over it or not), it's just safer
to wait it to be destroyed before cleaning up any of its reference.
https://bugzilla.gnome.org/show_bug.cgi?id=791006
Changing the test monitor managers ability to rotate CRTCs in one test
affected the next test. Avoid leaking such state by resetting it before
each test. To continue passing, some tests needed to be updated
regarding to still pass.
https://bugzilla.gnome.org/show_bug.cgi?id=788915
Add a test case that checks that we don't try to revert to a
laptop-panel-only configuration after closing the lid after an external
monitor is connected.
https://bugzilla.gnome.org/show_bug.cgi?id=788915
We only counted configured monitors and whether the config was
applicable (could be assigned), howeverwe didn't include disabled
monitors when comparing. This could caused incorrect configurations to
be applied when trying to use the previous configuration.
One scenario where this happened was one a system with one laptop
screen and one external monitor that was hot plugged some point after
start up. When the laptop lid was closed, the 'previous configuration'
being the configuration where only the laptop panel was enabled, passed
'is-complete' check as the number of configured monitors were correct,
and the configuration was applicable.
Avoid this issue by simply comparing the configuration key of the
previous configuration and the configuration key of the current state.
This correctly identifies a laptop panel with the lid closed as
inaccessible, thus doesn't incorrectly revert to the previous
configuration.
https://bugzilla.gnome.org/show_bug.cgi?id=788915
When deriving the list of disabled monitors when creating new monitors
configs, don't include the laptop panel if the lid is currently closed,
as we consider the laptop panel nonexistent when the laptop lid is
closed when it comes to configuration.
The laptop panel connector(s) will either way be appropriately disabled
anyway, as the field listing disabled monitors in the configuration do
not affect actual CRTC/connector assignments.
https://bugzilla.gnome.org/show_bug.cgi?id=788915
If a parent doesn't have a window, it means it could have been
dismissed (for example due to a input serial race), but the more recent
popup might win the input serial race and try to map anyway. This would
result in a crash later on when trying to process the placement rule,
as the parent already has no window.
https://bugzilla.gnome.org/show_bug.cgi?id=790358
Move the top-most-popup correctness check to the finish_popup_setup()
function after checking the serial. If we pass the serial check, we
should have reached a state that if there are any popups they should be
the one from the same client.
Also avoid failing a client that correctly set the top-most popup at map
time, but where at the time of processing the top most popup have
already been dismissed by the compositor for some arbitrary reason.
https://bugzilla.gnome.org/show_bug.cgi?id=790358