What the keymap eventually is after, are things handled by the actual
backend (MetaBackendX11), so let it keep a pointer to that. This
eliminates some usages of globals.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2014>
It tests that if we go from (x is the pointer cursor)
+--------+
| |
| X |
+--------+
to
+----------------+
| |
| |
+--------+ |
| | |
| X | |
+--------+----------------+
i.e. making sure that X ends up somewhere within the logical monitor
region.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2237>
These will be skipped by default, but can be run from a TTY for easier
debugging by doing:
dbus-run-session -- meson test -C build --suite mutter/native/tty --setup plain
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2151>
This commit makes it possible to run test executables in a test
environment constructed of a virtual machine running the Linux kernel
with the virtual KMS driver enabled, and a mocked system environment
using meta-dbus-runner.py/python-dbusmock.
The qemu machine is configured to use 256M of memory, as the default
128M was not enough for the tests to pass.
Using qemu is also only made possible on x86_64; more changes are needed
for it to be runnable on aarch64, so add a warning if it was enabled on
any other architecture.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2151>
This is needed if one wants to run the test suite parts that need KMS or
evdev access in a virtual machine.
However, only initiate these methods if the meta-dbus-runner.py program
was launched with --kvm, as it's only suitable for using while running
as root in a virtual machine.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2151>
When we test, we might not have a systemd session to rely on, and this
may cause some API we depend on to get various session related data to
not work properly. Avoid this issue by passing fallback values for these
when we're running in test mode.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2151>
There will be another mode added later, 'test'; prepare for this by
changing the existing "mode" boolean ('headless') to a mode, which is
either 'default' or 'headless'. Checking the is_headless variable is
changed to using the function is_headless(), except for one place, being
VT switching, which in preparation is only allowed on the 'default'
mode. Other places where it makes sense, the conditions are changed to
switch statements.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2151>
When running in KVM, the EGL driver supports querying the render node
path, but it returns NULL. Handle that better by falling back to
querying the device main device file, instead of falling back on v3 of
the protocol and logging a warning.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2151>
Some API will return NULL or the equivalent; sometimes it's an error,
and sometimes it's not, and the way to check that is by looking at the
return value of eglGetError(). When we check this, don't set the GError
if it returned EGL_SUCCESS, as that indicates that the return value is
expected behavior, and not an error.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2151>
There was a sanity check that complained if there was still a "next
framebuffer" when disposing an onscreen. This is correct to complain
about under normal operation, as we always wait until receiving the page
flip callback before cleaning up the onscreen and their state.
However, when there are many hotplugs occurring, we might end up with
race conditions when the above sanity check is not valid: when we have
more than one monitor active, paint 1 one of them, but receive a hotplug
event before we paint the other(s), we will discard the already painted
onscreen before really issuing a page flip.
In this situation, we will have the "next framebuffer", but having that
is not a bug, it's a race condition, thus to not leak in this situation,
make sure to clean up the next framebuffer here too.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2081
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2225>
If there are any pending updates, for example if we painted one of
multiple monitors but without having posted the update due to waiting
for another monitor to be painted, but before we paint all of them and
post the update, another hotplug event happens, we'd have stale pending
KMS update. When that update eventually would be processed, we'd try to
apply out-of-date updates which may contain freed memory.
Fix this by discarding any update when we're rebuilding the views. We
can be sure not to need any of the old updates since we're rebuilding
the whole content anyway.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1928
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2216>
Following the EGL_KHR_swap_buffers_with_damage specification, the
surface damage used by eglSwapBuffersWithDamage does not need to
contain the damage history.
Rework that to reduce the amount of rectangles that get passed to
the backend.
Also rework some of the regions that were using fb_clip_region and
missing the last scaling to support fractional scaling.
Signed-off-by: Erico Nunes <nunes.erico@gmail.com>
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2089>
When the before-paint function is executed, it's only purpose
is to check if there's any scanout queue, and immediately
record it if any.
However, since [1], we regressed in this specific case with the
introduction of an idle callback in the before-paint function.
The regression only happens when the PipeWire stream is using
DMA-BUF buffers, and it would operate as follows:
1. In before-paint, when there's a scanout available, we queue
an idle callback to capture the monitor. The idle callback
(almost always) executes after the scanout is pulled from
the stage view
2. meta_screen_cast_stream_src_maybe_record_frame() is called
by the idle callback. In the DMA-BUF case, it then runs
meta_screen_cast_monitor_stream_src_record_to_framebuffer()
3. In meta_screen_cast_monitor_stream_src_record_to_framebuffer(),
because the stage view doesn't have a scanout anymore, it
ends up calling cogl_blit_framebuffer() with the stage view
framebuffer. This is the regression bug.
This regression presents itself in the form of the screencast
stream showing the desktop when there's an unredirected fullscreen
application window running.
Revert before-paint - and only that - back to immediately capturing
any available scanout. Only record these frames when the target
buffer is a DMA-BUF handle. Nothing is captured on before-paint if
the stream is not using DMA-BUF, since the regular paint routine
will handle these frames regularly post-paint.
[1] https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1914
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2186>
Next commits will reintroduce a certain behavior of stage
capturing that can only happen with DMA-BUF buffers. To
control this, add a new flag tp MetaScreenCastRecordFlags
for this behavior.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2186>
If a Wayland subsurface is the topmost actor, consider in for
scanout as well. This will extend our scanout capabilities to apps
like Firefox
While on it, correct a unnessary type check to a NULL check.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2211>
On Wayland a window actor may have more than one surface actor,
most importantly when subsurfaces are used.
Add a new function to request the one which is at the top -
it will be used in the next commit.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2211>
If the EGL header is not new enough, it will not contain that relatively
new macro definition, so to avoid breaking compilation, define it
ourselves for now. Should be possible to remove after some time.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2214>
We save the window rect before going fullscreen to a dedicated variable,
so we can go back to the correct dimension. We also have a dedicated
variable for returning from other window states, e.g. maximized, and
this one we initialized when creating the MetaWindow. This meant that we
could always rely on this being up to date on X11 windows that were
mapped maximized or fullscreen.
What the commit that introduced the saved rect dedicated for going
unfullscreen missed was to initialize the new saved rectangle too when
creating the MetaWindow. This resulted in windows mapped as fullscreen
often ending up misbehaving when unfullscreening, as mutter would tell
them to unfullscreen to 0x0.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1786
Fixes: a51ad8f932
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2210>
Since every input stream now uses its own window, the X property used to
transfer the data no longer has to be unique, so we can stop generating
those unique names. This avoids creating a new atom for every transfer
since those are never freed, neither on the shell nor on the server
side. Also don't unnecessarily duplicate other strings that are
(almost) never used and get them from the atom in the rare case when
they are needed.
Fixes https://gitlab.gnome.org/GNOME/mutter/-/issues/1328
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1812>
When there are two (or more) concurrent XConvertSelection requests with
the same target, selection and window and the data is large enough for
SelectionNotify events to overlap. This can result in the affected streams
being considered completed without any data being transferred.
While regular mutter/shell code does not make use of concurrent
XConvertSelection requests with the same targets, some extensions might.
Such as for example a clipboard manager that like the built-in clipboard
manager tries to read the selection on owner-changed.
One potential solution would be to make sure the event is for the correct
property, but not all clients seem to support concurrent requests for the
same targets but different properties on the same window.
This commit instead changes the streams to use their own window which
seems to be more widely supported.
Fixes https://gitlab.gnome.org/GNOME/gnome-shell/-/issues/4034
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1812>
This is a preparation for each input stream creating its own window. It
moves deleting the property from meta_x11_selection_input_stream_xevent
where it can run after the stream has been finalized to a spot where
the stream still exists. Use an error trap in case the property was not
set by the client, such as when the conversion failed.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1812>
This significantly increases the chance of a fullscreen surface buffer
being scanned out instead of being painted via composition. This is
assuming the client supports the DMA buffer feedback Wayland protocol.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2146>
This API can be used to construct a MetaKmsUpdate with plane assignments
that in isolation will be tested against the current KMS state. How it
is tested depends on the KMS implementation; in the simple / legacy KMS
backend, the tests are identical to the current scanout requirements
(dimension, stride, format, modifiers, all must match), and with atomic
KMS, it uses the TEST_ONLY on a real constructed atomic mode setting
commit.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2146>
Whenever a surface is promoted as a scanout candidate by
MetaCompositorNative, it'll get a CRTC set as the candidate CRTC.
When a client asks for DMA buffer surface feedback, use this property to
determine whether we should send a scanout feedback tranche.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1959>
The final tick of a timeline is >= its duration, but when using ticks that
are slightly in the future ("next presentation time") this means the final
tick will execute and complete the timeline up to one frame interval before
the timestamp of that final tick.
For the single clock test we now just check if the overall duration is
within one frame of the expected timeline duration.
The dual clock (switching) test needs a threshold of two frames because
starting each new clock creates a phase shift (error) of up to one frame.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2161>
We're in the destructor, it's pointless to unset the userdata as we'll
never ever see a request being invoked with it ever again, since the
resource itself will be destroyed or marked as destroyed.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2202>
When rendering to a buffer that is not the stage view buffer, we can not
know where the buffer will be displayed on the screen. As a result we
also can not know what translation would need to be applied to culling.
This was causing glitches when the gnome-shell magnifier was applying
offscreen effects. ClutterOffscreenEffect causes MetaWindowGroup to be
rendered to an offscreen buffer at an offset, because it draws to a
slightly larger texture with an accordingly translated origin. This
translation then later is canceled out again when the offscreen buffer
is drawn. To meta_actor_painting_untransformed() however which only sees
the translation used when drawing to the buffer this looked like the
window group was being rendered at the offset. This then lead to
redraw_clip getting translated accordingly, resulting in wrong
coordinates used for culling.
Similarly this was leading to issues when taking area screenshots while
at 1x zoom.
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1678
Fixes: https://gitlab.gnome.org/GNOME/gnome-shell/-/issues/4876
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2080>
Refresh rates >60Hz become ever more common. In order to allow users
to keep hight refresh rates when not running at a natively advertized
resolution, add common refresh rates to our fallback modes.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2189>
Right now we often add a duplicate fallback mode that's almost
identical to the native mode. This adds unnecessary clutter to
UIs, thus filter out such modes.
In order to keep the code small, use `MetaCrtcModeInfo` directly
instead of recalculating the values. And to keep consistency, do
the same in the loop above.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2189>
This is so that it can unregister from it on tear down. The tracker owns
references to cursors too, but this cycle is already broken as the
backend calls 'g_object_run_dispose()' when tearing the cursor tracker
down.
Fixes a crash on shutdown.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2181>
An incorrect assumption that after mode set there would be no pending
page flips was made. This meant that if there was a mode set, followed
by a page flip, if that page flip was for a CRTC on a now unused GPU,
we'd crash due to the renderer GPU data having already been freed. This
commit avoids that by keeping it alive as long as the page flips are
still in the air. It fixes crashes with backtraces such as
0) meta_render_device_get_egl_display (render_device=0x0)
at ../src/backends/native/meta-render-device.c:320
1) secondary_gpu_state_free (secondary_gpu_state=0x1c8cc30)
at ../src/backends/native/meta-onscreen-native.c:560
2) meta_onscreen_native_dispose (object=0x1cb65e0)
at ../src/backends/native/meta-onscreen-native.c:2168
3) g_object_unref (_object=<optimized out>)
at ../gobject/gobject.c:3540
4) g_object_unref (_object=0x1cb65e0)
at ../gobject/gobject.c:3470
5) clutter_stage_view_finalize (object=0x1cbb450)
at ../clutter/clutter/clutter-stage-view.c:1412
6) g_object_unref (_object=<optimized out>)
at ../gobject/gobject.c:3578
7) g_object_unref (_object=0x1cbb450)
at ../gobject/gobject.c:3470
8) meta_kms_page_flip_closure_free (closure=0x1d47e60)
at ../src/backends/native/meta-kms-page-flip.c:76
9) g_list_foreach (list=<optimized out>, func=0x7fb3ada67111 <meta_kms_page_flip_closure_free>, user_data=0x0)
at ../glib/glist.c:1090
10) g_list_free_full (list=0x1cb4d20 = {...}, free_func=<optimized out>)
at ../glib/glist.c:244
11) meta_kms_page_flip_data_unref (page_flip_data=0x1c65510)
at ../src/backends/native/meta-kms-page-flip.c:109
12) meta_kms_callback_data_free (callback_data=0x227ebf0)
at ../src/backends/native/meta-kms.c:372
13) flush_callbacks (kms=0x18e2630)
at ../src/backends/native/meta-kms.c:391
14) callback_idle (user_data=0x18e2630)
at ../src/backends/native/meta-kms.c
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2147>
This ensures we don't have any left over cursor GPU buffers (via
gbm_bo's) after destroying the corresponding gbm_device (owned by
MetaRenderDevice).
Fixes crashes with backtraces such as
1) meta_drm_buffer_gbm_finalize at ../src/backends/native/meta-drm-buffer-gbm.c:450
4) invalidate_cursor_gpu_state at ../src/backends/native/meta-cursor-renderer-native.c:1167
9) update_cursor_sprite_texture at ../src/wayland/meta-wayland-cursor-surface.c:70
10) meta_wayland_surface_role_apply_state at ../src/wayland/meta-wayland-surface.c:1869
11) meta_wayland_surface_apply_state at ../src/wayland/meta-wayland-surface.c:832
12) meta_wayland_surface_commit at ../src/wayland/meta-wayland-surface.c:993
13) wl_surface_commit at ../src/wayland/meta-wayland-surface.c:1158
14) ffi_call_unix64 at ../src/x86/unix64.S:76
15) ffi_call at ../src/x86/ffi64.c:525
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2147>
During tear down, if anything teared down after the seat tries to get
the cursor renderer, we'd crash trying to get it as the seat would
already be gone. Avoid this by returning NULL when there is no seat.
It's assumed that any path that will happen during tear down that relies
on getting the cursor renderer will gracefully handle it not being
present, e.g. by relying on the cursor rendering cleaning up itself.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2147>
Most clients nowadays switched to buffer damage, most notably Mesa
and Xwayland. Thus lets avoid the extra cost of allocating three
`cairo_region_t`s and doing some calculations.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2168>
If no viewport is set, the neutral viewport is the surface size
without viewport destination size applied - i.e. transform and
scale applied to the buffer size. Change it accordingly, giving
us the same values we'd return in `get_width` in this case.
As result, this only changes cases where a viewport destination
size but no viewport source rectangle is set.
The change fixes exactly such cases, e.g. the Gstreamer Wayland
sink. Can be tested with: `gst-play-1.0 --videosink=waylandsink`.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2168>
When checking panel orientation on logical monitors we should take
panel orientation transform to check it's properly applied, so ensure
that we're checking the right one.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2090>
Commit 2289f56112 ("monitor-manager: Don't apply unneeded orientation
changes") added an early return to handle_orientation_change () in case
the transform is unchanged.
But this did not take the correction of the transform for devices
with 90° mounted panels into account causing a desired orientation
change to get skipped if the new orientation matches the corrected
logical orientation from the previous transform setting.
Fix this by calling meta_monitor_crtc_to_logical_transform () on the
transform before comparing it, matching the
meta_monitor_crtc_to_logical_transform () call in
create_for_builtin_display_rotation ().
Related: https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1233
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2090>
When Xwayland was not initalized, we'd still clean things up. What this
accidentally meant was that the uninitialized display number 0 was
cleanud up, which very likely was main display of the host session.
What this meant in practice was that /tmp/.X11-unix/X0 was often
removed, causing every Flatpak X11 application to fail to start until
Xwayland was restarted nad the X0 socket file was restored.
Fix this in two ways: firstly only shutdown Xwayland if we ever started
it, i.e. if the X11 display policy was not 'disabled'. This should fix
the issue most of the times. Secondly only clean up the socket if it was
ever initialized. This should fix things if the socket creation failed,
as if it did, the name would be set.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2162>
A popup surface can be remapped multiple times using the same
wl_surface, if a new xdg_popup object is created. To properly handle
this, we need to reset the 'dismissed_by_client' boolean to false, as
otherwise we won't allow new buffer commits.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1993>
Change to use the headless backend with a virtual monitor, instead of
the nested backend. This means tests can create and use virtual input
devices, which isn't possible with the nested backend.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1993>
The roundtrip in the handle-configure function could in theory (and in
practice in the future) happen to receive another configure event. If we
send yet another invalid geometry the second time, we log one time too
many in the server, which fails the test. Avoid this by ignoring the
second configure event; it's enough to pass through the error handling
path once.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1993>
We are using internal API that has the benefit of checking that the
focus surface still matches, but has the drawback that it does not
check the MetaWaylandKeyboard state.
In order to fix this, look for keyboard focus and serial matches
specifically when triggering activation.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2148>
The GBM support in the NVIDIA driver is fairly new, and to make it
easier to identify whether a problem encountered is related to using GBM
instead of EGLStreams, add a debug environment variable to force using
EGLStream instead of GBM.
To force using EGLStream instead of GBM, use
MUTTER_DEBUG_FORCE_EGL_STREAM=1
Related: https://gitlab.gnome.org/GNOME/mutter/-/issues/2045
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2132>
We created pipes for the stdout of the spawned mock services. This
resulted in the pipe being filled if enough things were logged, as
nothing was reading from it. Change this to allow for two modes:
verbose - where output is logged to the parent stderr, as well as non-verbose
(default) - where things are logged directly to /dev/null.
This fixes frozen tests when running with --repeat and a high enough
repeat count.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2139>
Since this signal is in a hot path during input handling, it makes sense
not to have this be a signal at all, currently most of the time spent in
it is in GLib signal machinery itself.
Replace it with a function/user data pair that are set on the sprite
itself. Only the places that create an sprite are interested in hooking
one ::prepare-at behavior per sprite, so we can do with a single pair.
This makes meta_cursor_sprite_prepare_at() inexpensive enough.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1915>
Let the meta_cursor_sprite_realize() function return a boolean value
telling whether there was an actual change in the sprite cursor. E.g.
the surface/icon for it changed in between.
This is used in the native backend to avoid converting/uploading again
the cursor surface.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1915>
This test is injecting input events without checking the correct stage/
device state. Wait for the pointer to enter the stage, so the event gets
correctly forwarded across.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1915>
Listen to changes in MetaWindow::is-alive, so that the pointer
can logically leave the surface as soon as that happens. This
helps prevent flooding the client socket while it is stalled.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2122>
Change some things in these "app is alive" checks:
- The dialog timeout is separated from the ping timeout, in order
to show it again at a constant rate after dismissing, despite in
flight pings. It still shows immediately after the first failed
ping.
- As we want to tap further into is-alive logic, MetaWindow now
made it a property, that other places in code can fetch and
subscribe.
- Motion events trigger ping (as long as there was none other in
flight for the same window), and are counted between ping and
pong, in order to preemptively declare the window as not alive
before there is trouble with event queues being overflown.
This results in a separate logic between "the application does
not respond" and "we are showing the close dialog" so that the
former may get triggered independently.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2122>
If we were cancelled, it could mean we teared down, meaning fetching
manager instances will attempt to fetch past freed instances. Handle
this by waiting with the fetching until we know we weren't cancelled.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2140>
MetaBackend can now show whether it is in headless mode or not
using a vfunc is_headless.
Fallback of is_headless returns FALSE.
MetaBackendNative implements is_headless returning its
is_headless property.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2130>
This is a strange thing to do since MetaInputMapper also does take care of
devices with an output configured through settings, since we might have
devices that were configure through settings exclude other devices that
belong together with an output (e.g. a display-integrated tablet).
This was essentially here as a last resort to avoid matching two very
similar looking tablets to one of two very similar looking outputs. There
was a 50% chance already that the choice was wrong, and now these devices
can all be configured specifically through settings, so this shouldn't
be missed either.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2107>
Non-display-attached tablets (e.g. Intuos) may find no match, which
should mean "use the span of all monitors", not "pick one for me".
Reserve this fallback to touchscreen devices, since these might
still benefit from it.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2107>
The matrix and aspect ratio of the tablet is irrelevant on pads, and
it actually triggers warnings when trying change that on those devices:
gnome-shell:42536): mutter-CRITICAL **: 17:22:41.994: meta_input_device_native_get_mapping_mode_in_impl: assertion 'device_type == CLUTTER_TABLET_DEVICE || device_type == CLUTTER_PEN_DEVICE || device_type == CLUTTER_ERASER_DEVICE' failed
This is unnecessary to do on pad devices, these just need to be moved
together with their respective stylus.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2107>
Since the completion callback (on_switch_workspace_effect_complete) sets
priv->tml_switch_workspace1 to NULL, the unref was trying to unref NULL,
and the reffed ClutterTimeline was not getting unreffed.
This could be triggered by rapidly switching workspaces, switching again
before the animation of the initial switch was done.
Found while working on #2038.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2120>
This avoids the following crash, that could happen in certain rare race
conditions, e.g. in tests:
0) wl_closure_invoke (closure=0x2fbf9e0, target=0x2e5b3d0, opcode=0)
at ../src/connection.c:1014
1) wl_client_connection_data () at ../src/wayland-server.c:432
2) wl_event_loop_dispatch () at ../src/event-loop.c:1027
3) wayland_event_source_dispatch () at ../src/wayland/meta-wayland.c:104
4) g_main_dispatch () at ../glib/gmain.c:3381
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2127>
Passing a NULL workspace does not make sense, since it silently
returns no windows. Mandate that a workspace is explicitly requested,
and while at it check the other arguments as well.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2124>
The cursor renderer shouldn't assume all the CRTCs of a logical are KMS
CRTC's, as we'll end up checking hardware capabilities for CRTC's of
virtual monitors as well, when they were created to not embed the cursor
image directly in the framebuffer.
Instead, use the newly introduced API for checking CRTC cursor
capabilities. This fixes a crash with the following backtrace:
0) get_plane_with_type_for at ../src/backends/native/meta-kms-device.c:150
1) meta_kms_device_get_cursor_plane_for at ../src/backends/native/meta-kms-device.c:173
2) has_cursor_plane at ../src/backends/native/meta-cursor-renderer-native.c:678
3) foreach_crtc at ../src/backends/meta-logical-monitor.c:247
4) meta_monitor_mode_foreach_crtc at ../src/backends/meta-monitor.c:1920
5) meta_logical_monitor_foreach_crtc at ../src/backends/meta-logical-monitor.c:274
6) crtcs_has_cursor_planes at ../src/backends/native/meta-cursor-renderer-native.c:718
7) should_have_hw_cursor at ../src/backends/native/meta-cursor-renderer-native.c:881
8) meta_cursor_renderer_native_update_cursor at ../src/backends/native/meta-cursor-renderer-native.c:1085
9) meta_cursor_renderer_update_cursor at ../src/backends/meta-cursor-renderer.c:411
Related: https://bugzilla.redhat.com/show_bug.cgi?id=2000183
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1991>
On a KMS backed CRTC, hardware cursor are supported when there are
cursor planes to assign them to. Note that when using legacy mode
setting, fake cursor planes are added when adequate.
On virtual CRTCs, used with virtual monitors, the equivalent of hardware
cursor are always supported, as they are sent using embedded PipeWire
stream metadata.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1991>
This can happen if a texture was newly assigned to the actor, but the
unobscured region hasn't been updated yet. Without bailing here, the
actor would display correctly via direct scanout, but other parts of
mutter would continue considering it obscured, which would e.g. result
in no frame callbacks getting sent for its surface.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1636
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2112>
Previously we chose to only anti-alias texels inside the boundary
(`clip_radius - 1.0`) but zoomed in you could see it was slightly smaller
than the correct curve (#2024).
Similarly if you choose to only anti-alias texels outside that edge
(`clip_radius + 1.0`) then you'd get an overly convex curve that doesn't
match up with the straight line sections.
So now we anti-alias texels that intersect the circle boundary, regardless
of which side they are mostly on. For efficiency we define "intersect" to
mean any texel whose center is within 0.5 of the theoretical edge.
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2024
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2102>
It was dropping to zero after the first frame because it hadn't been
incremented high enough. So the second frame would crash with:
```
#0 g_type_check_instance_cast
#1 META_DRM_BUFFER
#2 copy_shared_framebuffer_cpu
```
That's the CPU-copy path (fallback-fallback) that probably no one is using
but it does work after this fix. Exactly the same issue as was fixed
in `copy_shared_framebuffer_primary_gpu` by 36352f44f9.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2104>
A client can create a token without any seat, serial, or surface. In
this case, we'd still try to grab, which would run into some unforseen
code paths, potentially resulting in the following crash:
0) meta_wayland_tablet_seat_device_added (tablet_seat=0x55dff4271c90,
device=0x7f87b80655b0) at
../src/wayland/meta-wayland-tablet-seat.c:200
1) meta_wayland_tablet_seat_new (seat=0x0, manager=0x55dff3ec7b40) at
../src/wayland/meta-wayland-tablet-seat.c:283
2) meta_wayland_tablet_manager_ensure_seat (manager=manager@entry=0x55dff3ec7b40,
seat=seat@entry=0x0) at
../src/wayland/meta-wayland-tablet-manager.c:239
3) meta_wayland_tablet_manager_ensure_seat (seat=0x0, manager=0x55dff3ec7b40) at
../src/wayland/meta-wayland-touch.c:595
4) meta_wayland_seat_get_grab_info (seat=0x0, surface=0x55dff43ff5b0,
serial=0, require_pressed=0, x=0x0, y=0x0) at
../src/wayland/meta-wayland-seat.c:479
5) activation_activate (...) at
../src/wayland/meta-wayland-activation.c:261
Fix this by not trying to grab if not enough parameters was passed when
creating the token. Also add a test case that reproduces the above
crash.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2081>
When an activation times out, we'll be signalled two signals on the
startup sequence object: "timeout", and "complete".
Normally, the "complete" signal is emitted when a startup sequence is
completed succesfully by it being used for activation, and in this case,
the xdg_activation implementation should remove the sequence from the
startup notification machinery.
However, in the timeout case, we should not remove it, as the startup
notification machinery itself will deal with this. If we would, we'd end
up with use-after-free issues, as the sequence would be finalized when
removed the first time.
To avoid this, just clean up the Wayland side in the "timeout" signal
handler, leaving the "complete" signal handler early out if it was
already handled by it.
This avoids crashes like:
0) g_type_check_instance (type_instance=type_instance@entry=0xdd6740)
1) g_signal_handlers_disconnect_matched (instance=0xdd6740, ...)
2) meta_startup_notification_remove_sequence (sn=0x4cc890,
seq=0xdd6740) at
../src/core/startup-notification.c:544
3) startup_sequence_timeout (data=0x4cc890, ...) at
../src/core/startup-notification.c:504
4) g_timeout_dispatch (...) at ../glib/gmain.c:4933
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2081>
We set it via setenv(), and might not have the MetaX11Display at hand.
This fixes a crash when the stuck-client dialog (using zenity) appears
without any X1 client having appeared.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2081>
This test ensures that windows that were resized such that they extend
beyond the screen will be moved to be fully on the screen (if possible).
This has been working on X11 since forever, but on Wayland only since
the last commit.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2103>
The previous code was trying to detect client resizes by only
considering resizes without any pending configurations as client
resizes. There can however be pending configurations that do not involve
resizing, such as ones triggered by state changes. These may also stay
unacknowledged by the client until the next size change. This was
causing client resizes after showing the window (and therefore changing
its status to focused) to not be detected as client resize.
Fix this by checking whether the queue has any configuration with size
changes rather than just whether it is empty.
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2023
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2103>
Used to log multiple line entries. Just make continue prefix things, no
need to mess with maybe-prefixing; it'll just complicate using some less
custom logging functionality.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2094>
If some connectors disappeared, but the rest didn't change, we missed
actually removing the ones that disappeared, as we incorrectly assumed
nothing changed. Fix this by only assuming nothing changed if 1) we
didn't add any connector, and 2) we have the same amount of connectors
as before the hotplug event. The connector comparison checking makes
sure we report changes if anything of the still available connectors
changed.
Fixes: a8d11161b6
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2007
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2097>
When a docking station is disconnected, a few previously existing DRM
connectors may now be gone. When this happens, getting them via the
libdrm API results in NULL pointers returning, and we need to handle
this gracefully by making sure the connector state is properly updated.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2097>
The 'stop_after_next' will execeute one command, then not return to the main
loop until a 'continue' command is passed. Commands will still be
processed between 'stop_after_next' and 'continue'.
This is intended to be used to induce race conditions.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2066>
Currently the stored unconstrained_rect is only ever updated if there
was a move, resize or state change according to the move_resize_internal
implementation. For Wayland windows however resizes or state changes
are done in two steps, first the new configuration is sent to the client
and then once client acknowledges it, it is set on the mutter side in
another move_resize_internal call. Only the second call would result in
the unconstrained_rect being updated.
This started causing problems when unfullscreening windows was
immediately followed by a strut change. These strut changes started
happening in gnome-shell due to the visibility of the panel now being
considered for the struts and the presence of a fullscreen causing it to
be hidden until unfullscreen. In this situation first the unfullscreen
would resize the window to its pre-fullscreen size as expected, but then
the strut change triggers another window resize. This window resize is
based on the stored unconstrained_rect, which is still at the fullscreen
size because the unfullscreen resize only has sent its configuration,
but it has not been acknowledged yet. As a result the strut change
causes a resize to the fullscreen size which due to the constraints now
looks like a maximized window.
To fix this always update the unconstrained_rect when the requested size
has changed, but not when a previous request has been acknowledged
unless it is originating from the client itself.
If this included the move_resize_internal call from acknowledging the
size as well, it would be possible for this to be delayed long enough on
the client side to overwrite an intermediate resize originating from
mutter. And if this did not include resizes originating from the client,
clients would not be able to set an initial window size.
Fixes https://gitlab.gnome.org/GNOME/mutter/-/issues/1973
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2066>
meta_window_wayland_finish_move_resize() is called for both, finishing
a resize that has been requested through/by mutter and for resizes
directly done by the client. This introduces a CLIENT_RESIZE flag to
differentiate the former from the latter. Having this distinction is
required to know what the last requested size by either the client or
mutter is while ignoring older requests that might only have been
applied now.
This excludes client resizes when there are still pending
configurations, because the resize is known to be only temporary.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2066>
Because POSIX sh was, with hindsight, not a particularly well-designed
programming language, if we don't 'set -e', then we'll respond to failure
of a setup command such as cd by carrying on regardless.
Signed-off-by: Simon McVittie <smcv@debian.org>
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2009>
The assumption here seems to be that it's an overlay onto the
current environment which would make sense; but the implementation in
gnome-desktop-testing currently removes all other environment variables
(see GNOME/gnome-desktop-testing#1). This causes test failure when the
tests are run in Debian's autopkgtest framework, possibly because PATH
is cleared.
Signed-off-by: Simon McVittie <smcv@debian.org>
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2009>
Systems with AMD GPUs do not take advantage of Mutter's zero-copy path
when driving DisplayLink screens. This is due to a very slow CPU access
to the zero-copy texture. Instead they fall back on primary GPU doing a
copy of the texture for fast CPU access. This commit accelerates texture
copy by working through damage regions only.
Tests on a 4K screen with windowed applications show significant
reduction of GPU utilisation.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2033>
If one would end up with an actor attached to mapped actor, where the
attached actor doesn't itself have an up to date stage view list while
listening on the stage for updating, when clearing the stage views of
the list, anything that would query the stage views list at this time
would end up accessing freed memory.
This could happen if
1) An actor was added to a newly created container actor attached to
the stage
2) The actor got a timeline attached to it
3) The actor was moved to a container that already was mapped
4) A hotplug happened
After (1) both the container and actor would not have any stage views.
After (2) the timeline would listen on the stage for stage views
updates. After (3) the actor would still listen on the stage for stage
views updates. When (4) happened, the actor would be signalled when the
stage got its stage view cleared, at which point it would traverse up
its actor's tree finding an appropriate stage view to base its animation
on. The problem here would be that it'd query the already mapped
container and its yet-to-be-cleared stage view list, resulting in
use-after free, resulting in for example the following backtrace:
0) g_type_check_instance_cast ()
1) CLUTTER_STAGE_VIEW ()
2) clutter_actor_pick_frame_clock ()
3) clutter_actor_pick_frame_clock ()
4) update_frame_clock ()
5) on_frame_clock_actor_stage_views_changed ()
6) g_closure_invoke ()
7) signal_emit_unlocked_R ()
8) g_signal_emit_valist ()
9) g_signal_emit ()
10) clear_stage_views_cb ()
11) _clutter_actor_traverse_depth ()
12) _clutter_actor_traverse ()
13) clutter_actor_clear_stage_views_recursive ()
14) clutter_stage_clear_stage_views ()
...
Avoid this issue by making sure that we don't emit 'stage-views-changed'
signals while the actor tree is in an invalid state. While we now end up
traversing tree twice, it doesn't change the Big-O notation. It has not
been measured whether this has any noticible performance impact.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1950
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2025>
Certains keys (such as ~ and |) are in the keyboard map behind the
second shift level. This means in order for them to be input, the
shift key needs to be held down by the user.
The GNOME Shell on-screen keyboard presents these keys separately on
a page of keys that has no shift key. Instead, it relies on mutter
to set a shift latch before the key event is emitted. A shift latch
is a virtual press of the shift key that automatically gets released
after the next key press (in our case the ~ or | key).
The problem is using a shift latch doesn't work very well in the face
of key repeat. The latch is automatically released after the first
press, and subsequent repeats of that press no longer have shift
latched to them.
This commit fixes the problem by using a shift lock instead of a shift
latch. A shift lock is never implicitly released, so it remains
in place for the duration of key repeat.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2045>
The `guess_candidates()` function scores each display that an input
device could be mapped to and then uses the `sort_by_score()` comparator
to find the best option. The function expects the list to be sorted from
best to worst, but the comparator currently sorts them in the opposite
order. This causes the function to end up returning the _worst_ match
rather than the the best. This commit reverses the sort order of the
comparator so that the best display can be returned as intended.
Closes: #1889
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1934>
Mutter already calculates and tracks the damage rectangles to redraw
only areas of the screen that change since the last time a buffer was
used.
This patch extends this by using the EGL_KHR_partial_update extension to
inform the GPU in advance that only those areas will be changed, which
may allow for further optimization.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2023>
This will make clients immediately aware of the output disappearing,
while still allowing for a grace period of 10 seconds for attempting to
bind to it before it turning into a protocol error. This API added as
part of wayland 1.18.
This requires us to not add the output resource to the output resource
list, if the output was made inert. This effectively makes the resource
useless, but that is harmless, since shortly after, the client will
clean it up anyway.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1796>
This will be crucial when we start to remove the global directly when an
output is removed, as that means Xwayland might have removed the output
before we managed to get our queries in.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1796>
We setup Xwayland in an early phase of the X11 display, before we had a
MetaX11Display, and teared down in a couple of places happening when
tearing down the Xwayland integration if the X server died or
terminated. It was a bit hard to follow what happened and when it
happened. Attempt to clean this up a bit, with things being structured
as follows:
* Early during X11 display connection setup, only setup the rudimentary
X11 hooks, being the libX11 error callbacks, and adding the local
user to XHost.
* Move "initialize Xwayland component" code to a new
'x11-display-setup' signal handler. Things setup here are cleaned up
in the 'x11-display-closing' handler.
* Connect to 'x11-display-setup' and 'x11-display-closing' up front,
and stay connected to these two.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1796>
This old handling of session files looked on ~/.mutter, which has
been unused and unsupported for a long time. It also had paths were
the GError was leaked. Fix both by dropping the legacy code, and
falling back to the common error paths.
CID: #1502682
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2061>
When grabbing the devices, there's no error paths that would quit
late enough that both pointer and keyboard would need ungrabbing,
so the keyboard checks were dead code.
Fix this by dropping the boolean variable checks, and adding goto
labels to unroll the operation properly at every stage.
CID: #1418254
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2061>
The monitor orientation tests do a lot of things in sequence. Replace
some of the comments with g_test_message() so that the log from a failed
test gives us a better idea of how far we got.
Signed-off-by: Simon McVittie <smcv@debian.org>
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2049>
Previously, we were waiting up to 300ms for the signal, then proceeding
anyway. However, 300ms is not necessarily long enough to wait on an
autobuilder that might be heavily loaded, particularly if it's a non-x86
with different performance characteristics.
Conversely, if mutter responds to the D-Bus signal from the mock sensor
before we have connected to the signal, then we cannot expect to receive
the signal - it was already emitted, but we missed it. In this case, we
need to avoid waiting.
One remaining use of wait_for_orientation_changes() that would previously
always have timed out was in
meta_test_orientation_manager_has_accelerometer(), which does not
actually expect to see an orientation-changed signal. Make this wait
for the accelerometer to be detected instead.
Resolves: https://gitlab.gnome.org/GNOME/mutter/-/issues/1967
Bug-Debian: https://bugs.debian.org/995929
Signed-off-by: Simon McVittie <smcv@debian.org>
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2049>
When we use gbm together with the NVIDIA driver, we want the EGL/Vulkan
clients to do the same, instead of using the EGLStream paths. To achieve
that, make sure to only initialize the EGLStream controller when we
didn't end up using gbm as the renderer backend.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2052>
This switches the order of what renderer mode is tried first, so that
the gbm renderer mode is preferred on an NVIDIA driver where it is
supported.
We fall back to still try the EGLDevice renderer mode if the created gbm
renderer is not hardware accelerated.
The last fallback is still to use the gbm renderer, even if it is not
hardware accelerated, as this is needed when hardware acceleration isn't
available at all. The original reason for the old order was due to the
fact that a gbm renderer without hardware acceleration would succeed
even on NVIDIA driver that didn't support gbm.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2051>
This replaces functionality that MetaRenderDevice and friends has
learned, e.g. buffer allocation, EGLDisplay creation, with the usage of
those helper objects. The main objective is to shrink
meta-renderer-native.c and by extension meta-onscreen-native.c, moving
its functionality into more isolated objects.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1854>
All render devices that have a device file backing them might be able to
allocate dumb buffers, so add a helper for doing that. Will indirectly
result in an error up front on a surfaceless render device due to lack
of a device file.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1854>
It might not be needed by the user of the buffer, so don't always
require it up front. Instead make sure that any user that needs it first
calls "meta_drm_buffer_ensure_fb_id()" to create the ID.
Only the plain gbm implementation creates the ID lazilly, the other
still does it on construction due to the objects used to create them
only existing during construction.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1854>
Mostly calls into gbm_bo_* API, or something somewhat similar when on
dumb buffers. Added API are:
* get offset for plane
* get bpp (bits per pixel)
* get modifier
This will allow users of MetaDrmBuffer to avoid having to "extract" the
gbm_bo to get these metadata.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1854>
The purpose of MetaRenderDevice is to contain the logics related to a
render device; i.e. e.g. a gbm_device, or an EGLDevice. It's meant to
help abstract away unrelated details from where it's eventually used,
which will be by MetaRendererNative and the MetaOnscreenNative
instances.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1854>
Meant for MetaRenderer and everything related that deals with turning
composited frames, or client buffers, into mode set updates. This is
slightly related to the debug topic 'kms' is meant for the KMS details.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1854>
It was a feature relevant for when Clutter was an application toolkit
that wanted the application window to communicate a minimum size to the
windowing system.
Now, clutter is part of the windowing system component, so this feature
doesn't make any sense, so remove it.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2002>
This feature was configured depending on whether the Cogl backend
reported COGL_WINSYS_FEATURE_MULTIPLE_ONSCREEN or not. All cogl backends
do report this, so any code handled the 'static' case were never used.
While we only ever use one stage, it's arguable more correct to
consilidate on the single stage case, but multiple stages is something
that might be desirable for e.g. a remote lock screen, so lets keep this
logic intact.
This has the side effect of completely removing backend features, as
this was the only left-over feature detection that they handled.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2002>
This changes the setup phase of clutter to not be result of calling an
init function that sets up a few global singletons, via global singleton
setup vfuncs.
The way it worked was that mutter first did some initial setup
(connecting to the X11 server), then set a "custom backend" setup vfunc
global, before calling clutter_init().
During the clutter_init() call, the context and backend was setup by
calling the global singleton getters, which implicitly created the
backend and context on-demand.
This has now changed to mutter explicitly creating a `ClutterContext`
(which is actually a `ClutterMainContext`, but with the name shortened to
be consistent with `CoglContext` and `MetaContext`), calling it with a
backend constructor vfunc and user data pointer.
This function now explicitly creates the backend, without having to go
via the previously set global vfunc.
This changes the behavior of some "get_default()" like functions, which
will now fail if called after mutter has shut down, as when it does so,
it now destroys the backends and contexts, not only its own, but the
clutter ones too.
The "ownership" of the clutter backend is also moved to
`ClutterContext`, and MetaBackend is changed to fetch it via the clutter
context.
This also removed the unused option parsing that existed in clutter.
In some places, NULL checks for fetching the clutter context, or
backend, and fetching the cogl context from the clutter backend, had to
be added.
The reason for this is that some code that handles EGL contexts attempts
to restore the cogl EGL context tracking so that the right EGL context
is used by cogl the next time. This makes no sense to do before Cogl and
Clutter are even initialized, which was the case. It wasn't noticed
because the relevant singletons were initialized on demand via their
"getters".
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2002>
In various places we retrieved the default seat from the ClutterBackend.
All the clutter backends implement this by calling
meta_backend_get_default_seat() which will then return
MetaBackendPrivate::default_seat.
Lets avoid this by fetching the default seat directly.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2002>
Rename all instances of `MetaClutterBackendX11` so they are called
`clutter_backend_x11`. This is because `MetaBackendX11` will start to be
used for some things, and having both be named `backend_x11` would be
confusing.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2002>
This one is a trivial wrapper around clutter_actor_get_children(), so just
use that in the two places where clutter_container_get_children() is used,
and remove clutter_container_get_children().
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2057>
Quoting the spec for `wl_data_device::drop`:
> If the resulting action is "ask", the action will not be considered
> final. The drag-and-drop destination is expected to perform one last
> wl_data_offer.set_actions request, or wl_data_offer.destroy in order
> to cancel the operation.
We did not respect the action choosen by the drop destination when
it called `wl_data_offer::set_actions` after `wl_data_device::drop`
if a user override was still active. This eventually resulted in
a protocol error in `wl_data_offer::finish`, as the current action
could still be `ask`.
Fix this by only allowing a user override to `ask` before `drop` is
called, thus making sure the final `set_actions` preference is
honored.
Closes https://gitlab.gnome.org/GNOME/mutter/-/issues/1952
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2043>
With each wl_ouitput corresponding to a monitor, the logical monitor is
not part of the MetaWaylandOutput anymore.
Previously, send_xdg_output_events() would compare the old logical
monitor against the new one to determine whether the size and/or
position was changed and should be sent along with the xdg_output
events.
But that logic is now defeated as there is no old/new logical monitor
anymore, so the updated size or location would never be sent again.
Xwayland relies on this information to update its X11 clients and its
own internal root size, without this the X11 screen size and XRandR
information would never be updated.
To avoid that issue, always send the xdg_output size and location on
xdg_output events, Xwayland is smart enough to update its X11 clients
with XRandR only when the layout actually change.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1964
Fixes: bf7c3450 - Make each wl_output correspond to one monitor
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2050>
meta_keymap_x11_replace_keycode currently reports to the X server
that the key types data is changed when adding a key to the keymap.
It's not changed. The number of key types is the same, and none of
them are modified.
This has two bad side effects:
1) It sends all of the key types data into the request
2) It hits a bug in the X server leading to the request getting
rejected entirely. See:
https://gitlab.freedesktop.org/xorg/xserver/-/merge_requests/761
Furthmore, the changed structure used to report to the X server
that the key types data is changed doesn't actually need to modified
at all in the function. It's already prepped by libX11 with the
correct state for the changes mutter is doing when
XkbChangeTypesOfKey is called.
This commit addresses the above two problems by just removing the
lines causing the issues.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2039>
Keys in the reserved keycode list are always added for the first group.
Before the previous commit such keycodes were not found unless that was
the current group. But now that we can also find matching keycodes that
are not directly in the current group, this is not necessary anymore.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1955>
Some keys, such as enter or backspace are only bound to a single group,
even if multiple groups are configured. Because the code was previously
only looking for keysyms in the same group as the current one, no
matching keycodes for these would be found if the current group is not
the first group. This was causing those keys to not work on the X11 OSK.
To fix this use the correct action to convert an out of range group for
that key according to its group_info field.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1955>
This effectively changes meta_keymap_x11_get_entries_for_keyval() to
meta_keymap_x11_get_entry_for_keyval() and moves the check if the
keycode maps to the keyval in the current group there. This simplifies
the code a bit and will allow a followup fix.
As a side effect this now also causes the reserved kecodes to be
searched, if no keycodes were found, rather than just when only ones
matching the wrong groups.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1955>
The extra stage update we schedule in `apply_state()` is mainly
needed in two situations:
- a partial update happened only in obscurred or off-screen parts
of a surface
- a surface requests frame callbacks without having done damage,
notably the (in)famous Firefox vsync implementation.
Commit 0330ce1f15 limited the update to cases when the actor
was mapped, breaking it for Firefox in the overview.
Remove the mapped check again and get the stage from the backend,
restoring previous behaviour.
Fixes 0330ce1f15
Closes https://gitlab.gnome.org/GNOME/mutter/-/issues/1957
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2034>
Avoid having laptops suspend or lock as soon as the power cable is
unplugged as the timeout for those actions when on battery are smaller
than the timeouts when on AC.
- laptop is plugged in, and hasn't been used for X minutes
- laptop is unplugged
- the gnome-settings-daemon power plugin sets up its timeouts for
inactivity for the "on battery" case
- those X minutes of inactivity are still counting, and are above
the level of one of the timeouts (say, suspend or lock screen),
mutter fires the timeouts
- gsd-power activates the action associated with the timeout
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1953
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2029>
If the ancestor a window is transient for has already been unmanaged
when the window is activated via meta_window_activate_full while its
transient_for property still points to that ancestor, this will cause
the already unmanaged ancestor to get added to the windows workspace.
This is after the ancestor had its workspace set to NULL when it was
unmanaged, causing this to look like an actual workspace change. Once
the window has been added to the workspace, it will never be removed
again, because the it has already been unmanaged. This confuses things
like the shell window tracker and leads to phantom windows being
considered present for apps that are not even running anymore.
Fixes: https://gitlab.gnome.org/GNOME/gnome-shell/-/issues/4184
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2003>
When a test failed, an exception would be raised. This meant that the
mocked service would stay alive, and the test case being run eventually
failing due to a timeout, not the failure itself.
Fix this by catching the exception during the test, ensuring that we
tear down properly, then re-raise the same exception again after having
teared down.
This avoids the dead lock, while still printing the appropriate error
message.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2008>
With the introduction of MetaContext, the responsibility for handling
signals was changed to the application (e.g. GNOME Shell) using
libmutter. What wasn't fixed was making the stand-alone mutter do the
equivalent as well. This commit fixes this.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2007>
When the native backend is paused we still process the udev events
even though this isn't needed and may just cause unneeded events to be
triggered afterwards.
Since we'll resume with full changes on such event, we can just block
the signal hander when paused and restore it afterwards.
As per this we can cleanup also a bit the device adding signal handling
given that now we don't have to disconnect/reconnect it again.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1964>
Resume happens after we may have received various events that we've
ignored, so at this point we need to just emit an hotplug event like if
everything changed so that user settings may be re-applied.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1964>
On hotplug events we may get informations about what CRTC or connector
changed a property (and the property itself), so in such case let's just
ignore the changes to the non-affected CRTCs/connectors, and let's read
only the affected one
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1964>
On hotplug events we may receive a "CRTC" or "CONNECTOR" property that
indicates which crtc/connector property ID has changed.
In such case, instead of update data for all the devices, only update the
device containing the relative connector.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1964>
Hotplug events may contain CRTC or CONNECTOR ids to notify a property
change to just one owner, so we need to find its parent device.
Also we may want to update properties directly without having to go through
all the devices, so expose a simple way to find them.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1964>
In case we have no devices, after a KMS update (both because they've
all have been removed or because there were none), we may need to behave
differently compared to the case in which nothing changed, so add a more
specific KMS update change type
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1964>
If only gamma changed on drm CRTC's we don't have to rebuild the whole
monitors, nor to inform the backed about, the only consumer could be the
DBus API, and so we still emit a signal, but nothing else is needed.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1964>
Since we cache already all the KMS parameters we care about let's check at
each device update if anything has really changed and only in such case
emit a resources-changed signal.
In this way we can also filter out the DRM parameters that when changed
don't require a full monitors rebuild.
Examples are the gamma settings or the privacy screen parameters, that
emits an udev "hotplug" event when changed, but we want to register those
only when we handle the changed property.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1964>
A client request for maximizing itself should always be handled by mutter
by emitting a configure event with the native maximized resolution,
regardless of the client's own set limits. This also aligns the behavior by
allowing fixed-sized windows to go into fullscreen or maximized state.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1997>
It works correctly with scanouts, in contrast to
clutter_stage_capture_into. Inspired by
meta_screen_cast_area_stream_src_record_to_buffer.
maybe_paint_cursor_sprite is now unused and thus removed.
v2:
* clutter_stage_paint_to_buffer requires switching to recording from an
idle callback as well. (Jonas Ådahl)
v3:
* Set human readable name for idle source. (Ivan Molodetskikh)
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1940
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1914>
The way wl_seat capabilities work, by notifying clients of capabilities
changes, and clients consequently requesting the relevant interface
objects (pointer, keyboard, touch) is inherently racy.
On quick VT changes for example, capabilities on the seat will be added
and removed, and by the time the client receives the capability change
notification and requests the relevant keyboard, pointer or touch,
another VT switch might have occurred and the wl_pointer, wl_keyboard or
wl_touch already destroyed, leading to a protocol error which kills the
client.
To avoid this, create the objects when requested regardless of the
capabilities.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1797
Related: https://bugzilla.gnome.org/show_bug.cgi?id=790932
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/77>
Analogous to `get_image()` this returns a `ClutterContent` for a
given `MetaWindowActor`. This can be used to implement window
effects without a roundtrip from GPU to CPU memory.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1893>
In X11 when we switch to another tty all the the signals are blocked (as
the display fd is not replying back to polling, causing the main loop to
stop), and they are all handled once we switch back to the tty.
This is not a problem for most of external events, but in case of
accelerometer changes, once we reactivate a mutter session we'll get
them all together, causing lots of monitor reconfigurations leading to
black screen for some seconds and most of the times to a wrong
configuration being applied.
To avoid this, batch all these events using an idle to only apply the
last one we got in a loop.
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1217
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1233>
Create a test system bus and use it to run all the tests, add a mock
SensorsProxy (via dbusmock template) server that implements the
net.hadess.SensorProxy interface.
To make testing easier, the service is created on request of a proxy for
it, whose lifetime controls the mock service lifetime as well.
This is done using a further mock service that is used to manage the
others, using python-dbusmock to simplify the handling.
Add basic tests for the orientation manager.
As per the usage dbusmock, we're now launching all the tests under such
wrapper, so that local dbus environment won't ever considered, and
there's no risk that it may affect the tests results both locally and in
CI.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1233>
When creating the configuration for the builtin monitor we try to get
the panel configuration for the builtin panel, but we don't proceed if
that monitor is currently inactive.
This is fine when adjusting an active configuration to the current
device rotation, but it isn't correct when we want to create a new
configuration based on another where the monitor is configured but not
yet enabled.
So, only find the panel configuration without looking the current state
but ensuring that the passed configuration will enable it.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1233>
When we get an orientation event we don't care about keeping track of the
configuration changes, but actually we can consider the new configuration
just a variant of the previous one, adapted to floating device hardware
events, so we only want to apply it if possible, but we don't want to keep
a record of it for reverting capabilities.
Doing that would in fact, break the ability of reverting back to an actual
temporary or persistent configuration.
For example when device orientation events happen while we're waiting for
an user resolution change confirmation, we would save our new rotated
configuration in the history, making then impossible to revert back to
the original persistent one.
So in such case, don't keep track of those configurations in the history,
but only keep track of the last one as current, checking whether the
new current is child or sibling of the previously one.
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1221
Related to: https://gitlab.gnome.org/GNOME/mutter/-/issues/646
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1233>
When creating a configuration taking orientation into account we're using
the sensors orientation even if this is currently not used (for example
when an accelerator is available, but there's no touch screen).
This would cause to have a different behavior when configuration is
created and when we're loading a known configuration on startup.
So always honor whether the monitor's orientation is managed or not.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1233>
All the auto-rotation code is expecting to have a built-in panel, but we
still monitor accelerometer changes if we don't have one (uncommon, but
possible).
Thus manage the panel orientation in such case and update it on monitors
changes.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1233>
These are ClutterInputFocus subclasses, so this will trigger reset of
the input method. As the .done event is possibly deferred in the
zwp_text_input_v3 implementation, ensure the changes caused by the
reset are flushed immediately, before the button press is forwarded
to the client by MetaWaylandPointer.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1940>
This commit adds support to atomic KMS backend for optional plane property
prop_fb_damage_clips. Some drivers (e.g. EVDI) take advantage of this
property and process only updated regions of the screen instead of
processing the full frame. This can save system resources.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1879>
Added a function `meta_window_set_inactive_since` it sets
xattr on the cgroup directory for the given MetaWindow.
Resource management daemons can then monitor these changes on xattr
and make allocation decisions accordingly.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1960>
Currently the only way to get cgroup for a MetaWindow is to get it's
PID and perform a bunch of file accesses and string manipulations.
This is especially not feasible if we want to get the cgroup every
time a MetaWindow has gained or lost focus.
A solution to this is to cache the GFile for a cgroup path.
The creation and access of this GFile is handled by
`meta_window_get_unit_cgroup` function.
`meta_window_unit_cgroup_equal` is a utility function which allows
us to compare whether two MetaWindows belong to the same cgroup.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1960>
To utilize the API provided by libsystemd it would be better to
create a separate HAVE_LIBSYSTEMD configuration option instead of
having to rely on HAVE_NATIVE_BACKEND.
For now this will be utilized for getting the control group of a
MetaWindow.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1960>
and the subsurface was not previously detached from it using
`wl_subsurface_destroy()`.
Without 'window-actor/wayland: Remove subsurface actors on dispose' this
test would fail.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1958>
commit c4a73e7950 added
code to cleanup the renderer when the meta backend is
disposed. Unfortunately, this introduced a crash when
the window manager is replaced.
This is because cleaning up the renderer involves talking
to the X server over a display connection that's closed
two lines higher as part of the clutter_backend_destroy
call.
This commit fixes the crash by swapping their order.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1965>
There is very little point in sending an X11 client message to
gnome-panel in case gnome-shell isn't handling the binding. We
can just as well do nothing, so do exactly that.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1886>
We fetch a frame clock that we schedule update on when queuing
_NET_WM_FRAME_DRAWN events. In some situations this frame clock is the
one from the stage, and if there are multiple hotplugs in a row, we
failed to update it as there were no stage views changes on the window
actor itself. As an actor updates the stage views list on layout, When a
queue_frame_drawn() call was done (typically from an X11 event) after a
second hotplug, it'd attempt to schedule an update on the frame clock
from the previous hotplug, as it didn't get notified about any
stage-views changes since for itself there was none.
Fix this by not caching the frame clock at all and just fetch it every
time.
In the majority of cases, this fetching means iterating over a very
short list (most often a single entry, rarely more), so it's very
unlikely to be of any relevance. The only situations where it might be a
heavier operation is the short time between a hotplug and a layout, as
it will attempt to traverse up to the stage to find a clock, but that's
likely only a few levels, so even that is unlikely to be an issue.
Closes: https://gitlab.gnome.org/GNOME/gnome-shell/-/issues/4486
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1947>
This is more in line with the protocol, and allows us to remove some
awkward code that tries to "combine" different metadata from different
monitors into one, which sometimes meant picking an arbitrary "main"
monitor, or "and" metadata together to find a common ground.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1712>
Makes workspace transitions in gnome-shell look more seamless, since
both outgoing and incoming workspace have focused windows.
This is only done for click focus mode, since it's not known which
window would be focused for the other modes.
Track the state and recompute it when it changes, to avoid redrawing
the windows needlessly.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/850>
Each workspace has a window that will be focused when switching to that
workspace. Add a function to retrieve that window.
This is only relevant for click-to-focus focus mode, since with the two
other modes no window will be focused upon switching, and will only gain
focus when hovered.
This will be used in the next commit to make this window appear focused.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/850>
This was introduced by accident in commit 1467b6b02a
y-inverted textures in combination with shape masks appear to
be only commonly used with EGLstreams. However, as we draw the
shape mask ourselves, we don't want to apply the y-invert to it
as testified by the left over `cogl_pipeline_set_layer_matrix()`.
Note that we still allow to apply viemports and buffer transforms,
as the Xwayland mode setting emulation may use it (in fact only
the former, but it probably does not hurt to leave the later as well).
Closes https://gitlab.gnome.org/GNOME/mutter/-/issues/1792
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1937>
Monitor configuration check tests can be very complex and in case of
failures we can't easily catch where a failure happened without entering
in debug mode, something that isn't always an option in CI or external
builders.
So add more debug statements in configuration check functions and use
macros to ensure that we print the caller function and location on more
complex check functions.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/522>
Primary monitor is just the same of the other monitors, but it has a
primary monitor flag. Since the computation of the scaling isn't
dependent anymore on the computed configuration we can now generate the
primary monitor config together with the others.
However, we've to ensure that the primary monitor is the first of the
configs list in order to properly compute the positioning.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/522>
Compute the monitor scaling in a separated function using the primary
monitor (not its config) and pass it to the creation function instead.
This will allow removing the special logic for the primary monitor.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/522>
Factorize the creation of a configuration inside one function that looks for
the primary monitor and the other monitors using the matching rules and
dispose them according to the chosen policy (checking if the result is valid
when using the suggested positioning).
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/522>
Add a find_monitors function that allows to search for monitors that match
the MonitorMatchRule filter and use this to look for the primary monitor and
the other monitors that need to match the requested filter in order to be
configured.
Having just one function doing this kind of checks reduces the possibility
of unexpected results.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/522>
Verify that the suggested monitor configuration contains only adjacent monitors,
and that if this is not the case we fallback to the linear configuration.
This can happen in case of multi-DPI setup, so add a test checking this too.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/522>
It could happen that monitors suggest to use coordinates that don't take
in consideration the scaling applied to one monitor, and such the
generated configuration is not valid because not all the monitors are
adjacent.
So enforce this check before accepting a suggested configuration as it
is.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/522>
We may need to check if rectangles region has adjacent neighbors and
so if there are no gaps in between monitors.
This can be done by checking if each monitor is adjacent to any other in
the same region.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/522>
This code sneaked unconditionally, even though we can disable
tracing code with -Dprofiler=false. Add some COGL_HAS_TRACING
checks so that this code is also optionally built.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1951>
This code sneaked unconditionally, even though we can disable
tracing code with -Dprofiler=false. Add some COGL_HAS_TRACING
checks so that this code is also optionally built.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1951>
When a selection owner advertises a mime type, but does not provide the
content upon a request for the mime type content, the requesting side
might wait indefinitely on the content.
To avoid this situation, add a timeout source, which will cancel the
selection transfer request after a certain timeout (15 seconds) passed.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1874>
Currently, if g-r-d closes the read end of the pipe for a
SelectionRead() operation, due to realizing that the application, that
should provide the mime type content, does not provide any content,
mutter won't notice that and still assumes that the read() operation
on the pipe in g-r-d is still happening, as mutter never writes to the
pipe in that situation and therefore cannot realize that the pipe is
already closed.
The effect of this is, that if g-r-d aborts a read() operation and
requests a new read() operation via SelectionRead(), mutter will deny
the request since it assumes that the previous read() operation is
still ongoing.
Fix this behaviour by also checking the pipe fd in mutter before
denying a SelectionRead() request.
https://gitlab.gnome.org/GNOME/gnome-remote-desktop/-/issues/60
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1874>
With some resolutions (such as 4096x2160) we may compute duplicated
scale factors because we used a too wide threshold to check for an
applicable value.
In fact, while when we're at the first and last values it's fine to
search applicable values up to SCALE_FACTORS_STEP, on intermediate ones
we should stop in the middle of it, or we're end up overlapping the
previous scaling value domain.
In the said example in fact we were returning 2.666667 both when
looking to a scaling value close to 2.75 and 3.00 as the upper bound of
2.75 (3.0) was overlapping with the lower bound of 3.0 (2.75).
With the current code, the lower and upper bounds will be instead 2.875.
Adapt test to this, and this allows to also ensure that we're always
returning a sorted and unique list of scales (which is useful as also
g-c-c can ensure that this is true).
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1878>
We introduced META_MONITOR_SCALES_CONSTRAINT_NO_FRAC to get global scale
values however, this didn't work properly for some resolutions.
In fact it may happen that for some resolutions (such as 3200x1800) that
we did not compute some odd scaling levels (such as 3.0) but instead
its closest fractional value that allowed to get an integer resolution
(2.98507452 in this case).
Now this is something relevant when using fractional scaling because we
want to ensure that the returned value, when multiplied to the scaled
sizes, will produce an integer resolution, but it's not in global scale
mode where we don't use a scaled framebuffer.
So, take a short path when using no fractional mode and just return all
the applicable values without waste iterations on fractional values.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1878>
Scaling values computation code served us well in the past years but
it's quite delicate and it has some issues in edge cases, so add a test
that verifies that the computed scaling values for all the most common
resolutions (and some that may be common in future) are what we expect
to be.
This may also serve us in future when we'd define a better algorithm to
compute the preferred scale, but this not the day.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1878>
When deriving the global scale from current monitor, we were just checking the
supported value by the primary monitor, without considering weather the current
scale was supported by other monitors.
Resolve this by checking if the picked global scale is valid for all active
monitors, and if it's not the case, use a fallback strategy by just picking the
maximum scale level supported by every head.
Fixes https://gitlab.gnome.org/GNOME/mutter/issues/407
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/336>
In Xrandr we were caching the available scaling modes that were computed just
for the current mode, for each monitor, while we can actually reuse the
default implementation, by just passing the proper scaling constraint.
In monitor we need then to properly filter these values, by only accepting
integer scaling factors that would allow to have a minimal logical monitor
size.
Fixes https://gitlab.gnome.org/GNOME/mutter/issues/407
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/336>
This will require some symbol exporting, but the benefit is that have
better control of what external test cases can do in terms of creating
more testing specific contexts.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1861>
This makes it possible to declare the type in an installed header (so
that e.g. META_CONTEXT_TEST(context) works), but without having to
expose the MetaContextClass struct.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1861>
Add a method meta_context_destroy() that both runs dispose and unrefs
the context. Tear down is moved to dispose() so that things owned by the
context are destroyed when calling meta_context_destroy(), or when the
last reference is released.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1861>
Before we first created the MetaWaylandCompositor instance, which would
repare Clutter/Cogl so they could initialize and turn on Wayland display
server features, then later to initialize the rest. Now that part is
done by the Wayland infrastructure itself, so we don't need the early
initialization. Simplify things a bit by centralizing it all into a
single meta_wayland_compositor_new() call.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1861>
This is done by keeping around a pointer to MetaContext as
"client_pointer" (which is practically the same as "user_pointer"
elsewhere), as well as creating a `MetaIceConnection` wrapper for ICE
connections.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1861>
As with the compositor type enum, also have the X11 display policy enum,
as it's also effectively part of the context configuration. But as with
the compositor type, move it to a header file for enums only, and since
this is a private one, create a private variant meta-enums.h.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1861>
Since this tests the `--virtual-monitor` command line argument, it uses
the `MetaContextMain` variant of the context, as it's there that command
line argument is handled.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1861>
This object intends to replace the scattered functions that are used to
make up what is effectively a "mutter context". It takes care of the
command line arguments that is now done in main.c, persistant virtual
monitors, and the like.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1861>
The clutter tests neeed to start and stop, thus uses their own main loop
instead of the one in MetaContext. Shouldn't matter, since nothing
in mutter should happen that makes the test self-terminate from inside
mutter.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1861>
Users can add option entries, and it'll be part of the configuration
phase.
Create the main group manually to be able to set a user_data pointer;
this will be required to not have to rely on globals when parsing
options using a callback.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1861>
This intends to replace the call to `meta_register_with_session()` that
deals with X11 session management, and is called when the user is
"ready". In thet test context, doing that makes no sense, so make it a
no-op.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1861>
The start phase creates the MetaDisplay object, and initializes Wayland, and
creates the main loop.
The run phase runs the main loop and handles returning an error if the
context was terminated with an error.
The terminate phase terminates the main loop, with or without an error.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1861>
Configuration is the first step of the lifetime of a context, after
creation; it's here where argc/argv is processed, and it's determined
what kind of compositor, etc, it is going to be.
The tests always run as Wayand compositors, so the configuration is
quite simple, but will involve more steps later on.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1861>
It'll be part of and owned by MetaContext, intending to replace
`meta_is_wayland_compositor()`, but place it in a new file for public
enums so that it can be used from wherever.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1861>
This introduces a MetaContext implementation aimed to be used for test
cases, with as little boiler plate as possible needed in the test.
It currently doesn't do anything, just fills out the GObject boiler
plate and sets a name.
Build it into every core test, for compilation, even though it isn't
used anywhere yet.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1861>
This type is intended to replace the scattered functions used to
configure how the Mutter compositor is run. It currently doesn't do
anything, and only has a human readable name, intended to be set to e.g.
"GNOME Shell".
It's an abstract type, and is intended to be used via either a future
`MetaContextMain` for real display server use cases, and a
`MetaContextTest` for test cases.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1861>
Scanout doesn't go through the usual path of compositing and doing
eglSwapBuffers, therefore it doesn't hit the timestamp query placed in
that path. Instead, get the timings by binding the scanout buffer to an
FBO and doing a timestamp query on the FBO.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1762>
In order to make it possible to e.g. unload an unused DRM device, we
need to make sure that we don't keep the file descriptor open if we
don't need it; otherwise we block anyone from unloading the
corresponding module.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1828>
The DRM buffers aren't really tied to mode setting, so they shouldn't
need to have an associated mode setting device. Now that we have a
device file level object that can fill this role, port over
MetaDrmBuffer and friends away from MetaKmsDevice to MetaDeviceFile.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1828>
Keep a private MetaDeviceFile instance for the GPU's managed by the
renderer. This is a step towards decoupling rendering from mode setting,
as well as on-demand holding of device file descriptors.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1828>
Tags are meant to make it possible for a device file opener to tag a
file if it has affected the state the file descriptor is in; e.g. if it
has enabled a DRM capability.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1828>
Handle open() failing due to being interrupted by trying again until it
either succeeds, or fails due to some other error. This was an error
handling path taken when opening sysfs files; do the same here to not
potentially regress once we open sysfs files with the device pool.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1828>
It's only when we take/release from/to logind we need these two
integers, so only retrieve them when that's done. Making this change
makes it possible to open devices that don't have these parameters.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1828>
This changes the way the KMS backends load; if we're headless, we always
use the dummy one and fail otherwise; in other cases, we first try the
atomic backend, and if that fails, fall back on the simple one.
The aim for this is to have the impl device open and close the device
when needed, using the device pool directly.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1828>
This practically does the same thing as part of MetaLauncher, except
with added thread safety and caching. For example, opening the same file
a second time will return the same MetaDeviceFile, and only once all
acquired MetaDeviceFile's are released, will the file descriptor be
closed and control of the device released.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1828>
ClutterInputDevice's get_group_n_modes() vfunc is meant to return
-1 for groups that are out of the known range, not within. Fix the
early return condition, and let the native backend return correctly
the number of modes for the given group.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1920>
Scanouts are taken away after painting. However, when we're
streaming, what we actually want is to capture whatever is
going to end up on screen - and that includes the scanout
if there's any.
Add a before-paint watch that only records new frames if a
scanout is set.
Inspired by (and commit log mostly copied from) e6a13e5d57
("monitor-stream-src: Add before-paint watch to catch scanouts").
v2:
* Do not call stage_painted from before_stage_painted (Georges Basile
Stavracas Neto)
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1707
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1902>
When the MetaWindow resize machinery for toplevels ended up in the
Wayland window implementation, we tried to avoid configuring
not-yet-mapped windows that just had its zero sized dimension pass
through the constraint machinery, resulting in a 1x1 sized window.
If we'd properly set up the min size metadata earlier, that 1x1 would
likely be the minimum size set of a window, which makes things harder to
predict when peeking at side effects.
However, what the side effect peeking intends to do, as documented in
the comment, was to figure out when the client hadn't committed any
buffer yet, i.e. during the initial map, and in those cases avoid
sending that nasty 1x1 size, resulting in silly window sizes. A more
robust way to detect this is instead checking when we shouldn't really
try resize things our own way, and in those cases early out as was done
before.
This means that, for a yet to me mapped window, we only ever want to
send an initial non-zero configuration when 1) it's initially maximized,
2) initially fullscreen, or 3) initially tiled in any way, as those are
the situations where the compositor is the one deciding the size.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1912>
When drmModePageFlip() or drmModeAtomicCommit() unexpectedly failed (e.g.
ENOSPC, which has been seen in the wild), this failure was not handled
very gracefully. The page flip listener for the scanout was left in the
MetaKmsUpdate, meaning when the primary plane composition was later page
flipped, two page flip listeners were added, one for the primary plane,
and one for the scanout. This caused the 'page-flipped' event to be
handled twice, the second time being fatal.
Handle this by making 'no-discard' listener flag be somewhat reversed,
and say 'drop-on-error', and then drop all 'drop-on-error' listeners
when a MetaKmsUpdate failed to be processed.
Also for a "preserve" flagged update, don't ever trigger "discard"
callbacks just yet, as preserved updates are used again for the primary
plane composition, in order to not miss e.g. CRTC gamma updates, or
cursor plane updates, which were added separately.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1809
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1910>
The cancel phase for swipe gestures was not being handled, hence,
Wayland "end" events where not sent to clients when the gesture was
cancelled.
A swipe gesture is cancelled when extra finger(s) are put down on the
touchpad in the middle of the gesture or when some, but not all, of the
fingers are put up.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1857>
There is an udev rule marking whether a device should be ignored by
mutter or not, but it was only respected on hotplug events not on init,
partly defeating its purpose. Fix this.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1892>
Getting crossing events is necessary between client surfaces while
there is a popup grab in effect (e.g. allow press-drag-release in
menus), we should only stick with the focus surface while the pointer
is outside any client surface.
This partially undoes commit 79050004b0 (or, at least, mutter no
longer fixes the bug it claimed to fix). This will be addressed in
gtk4.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1885>
A view is only a 'CoglOnscreen' if it ends up on a CRTC, thus needs a
mode. Other views are for virtual monitors, and require no mode setting,
so exclude them from the pending mode set list.
This avoids a dead lock when we'll be waiting indefinitely for mode
setting on a virtual monitor.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1891>
The mutter tests require to run in a valid environment where a display
is available and a session bus, however currently we rely on the current
environment, and this may lead to unexpected behaviors.
So let's just ensure that a display is running through xvfb-run and
that a session bus is running in a temporary directory.
We also ensure to use the gsettings memory backend, even because by
setting TestEnvironment we ensure that no other env variable is leaked
to the test.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1876>
When running multiple tests at once (with --all) as in the
installed-tests cases, we may open and close the display multiple times,
this leads to setting the alarm filter each time that the x11 display is
opened (causing a critical error) because we never disconnect from the
::x11-display-opened signal.
So disconnect from the signal on test destruction, to avoid this to be
emitted multiple times.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1876>
We first initialized the Wayland infrastructure, then the display, but
on shutdown, we first teared down the Wayland infrastructure, then the
display.
Make things a bit more symmetric and tear down the display before
Wayland. This however means we need to tear down some things Wayland a
bit earlier than the rest. For now this is a separate function, but
eventually, it can be replaced with a signal shared by the backend's
'prepare-shutdown' signal.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1863>
This way we can initialize without having any way to retrieve it via
some global variable. This isn't needed now, but will be once Wayland
infrastructure initializiation is done in a single step.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1863>
This is especially important as we might end up here when initializing
the Wayland infrastructure. Later that will be done in one step, meaning
the "get_default()" function will not work properly.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1863>
It might not be there when shutting down, so get it from a more managed
place. Note that this isn't strictly needed right now, but eventually,
the MetaWaylandCompositor pointer will be cleared using a g_clear*()
helper, which clears the pointer before freeing the instance, which
wouldn't work here.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1863>
This will allow us less awkward startup, where previously we had to
pre-initialize Wayland very early so Cogl could bind the Wayland display
when it initialized. Move things around so we bind the Wayland EGL
display when initializing the rest of Wayland infrastructure.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1863>
This object takes over the functionality of meta-idle-monitor-dbus.c,
meta-idle-monitor.c and meta-backend.c, all related to higher level
management of idle watches etc.
The idle D-Bus API is changed to be initialized by the backend instead
of MetaDisplay, as it's more of a backend functionality than what
MetaDisplay usually deals with.
It also takes over the work of implementing "core" idle monitors. The
singleton API is replaced with thin wrapper functions on the backend.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1859>
It just complicates things; we can't run them right now, so just get rid
of the runtime variability; just change the macros if you want to tweak
the test, would you be able to get it running.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1833>
Wayland support is not really a "backend" thing, it just lacked a better
place to store its instance pointer. Eventually we'll have a better
place, but prepare for that by initializing it together with the more
similar subsystems.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1833>
The rest of debug flag details are in util.c and util.h, make things
less scattered by moving the rest to util.c too.
While at it, put the coredump:ability setting needed for being suid
there too, so we have a common place for initializing "debug utils".
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1833>
Commit 64c9c9c5b0 fixed monitor
screencasting, when fractional screencasting is enabled.
For the remote desktop usage, NotifyPointerMotionAbsolute() submits
the new mouse pointer position in addition to the stream, where the
mouse pointer was moved.
When not using fractional scaling, the mouse pointer position is
correct.
With the usage of fractional scaling, the mouse pointer position is
wrong, as the scale of the position is applied two times.
Fix this behaviour, by reverting the second scale by dividing by the
logical monitor scale, when fractional scaling is used.
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1808
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1867>
When finalizing, the MetaDisplay instance will already be gone, so to be
able to gracefully tear down the clipboard integration, make sure to
close sessions before the display is closed, i.e. on prepare-shutdown.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1853>
The callback on_displayfd_ready() would unconditionally set the return
value to TRUE, regardless of the condition.
Use the GIO condition to determine if there was data written and adjust
the return value accordingly.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1851>
Some clients such as mpv might set the WM_TITLE as a UTF8_STRING based
on some unconverted/unvalidated metadata that is not actually UTF8. This
would then be set as the title of a MetaWindow (in the absence of a
valid UTF8 _NET_WM_TITLE). The shell then tries to use this window title
for things like the overview or the window switcher where it would
trigger an UTF8 validation error and leave the shell in an unusable
state.
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1794
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1850>
This commit adds scaling support to clutter_stage_capture_into, which
is currently used when screencasting monitors. This is supposed to
fix graphical issues that arise when using fractional scaling.
Fixes#1131
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1855>
We initialize, but might not start, e.g. when a test case just needs a
backend and doesn't start mutter. When cleaning up, we'll still try to
clean up Xwayland integration, and this commit handles cleaning up
without having made the mess.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1856>
We make objects inert when disabling the seat, but we requests may still
have effect. This is especially bad if disabling is followed by
destroying, but also means e.g. set_cursor() not doing an early out
after the pointer capability was disabled.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1822>
MetaDisplay does a lot of things, and is a central part to anything
window management. To let Wayland units have an easier time tearing
down, make it so that the Wayland infrastructure is terminated before
MetaDisplay.
This also makes sure that X11 support is turned off, so that we don't
stumble upon Xwayland terminating due to the Wayland socket connection
being broken. Will mitigate that in a better way in a later commit.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1822>
We might not be the only entity holding on to the X11 GdkDisplay,
meaning the X11 connection will stay alive indefinitely, e.g. if the gjs
context has some reference to it.
Avoid running into issues due to X11 connection errors by setting the
libX11 handlers to no-ops, so when we are terminating; that means the
GDK X11 connection can stay "alive" until its too late, and we'll just
silently ignore any connection errors that may happen due to the
lingering GDK display reference.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1822>
It keeps references to cursors, and cursors keep references to DRM
buffers. In order to be able to clean up on exit, explicitly destroy the
cursor tracker on shutdown.
We can't rely on GObject reference counting, as gjs might hold onto a
reference until it's garbage collected.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1822>
Various things, e.g, the renderer, the stage, either directly or
indirectly depends on GPU objects being alive during tear-down. Make it
so, by moving GPU cleanup after the other cleaning. This will allow
tearing down a couple of more objects.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1822>
The first phase happens early, which discards pending page flips,
meaning the references held by those page flip closures are released.
The second phase happens late, after other units depending on the KMS
abstraction, have been cleaned up.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1822>
We already swapped the front buffer, and even if it didn't get
presented, we should still swap our representation of the state, to not
get into a confused buffer tracking state.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1822>
All pointer a11y is a fabrication of Clutter backend-independent
code, with the help of a ClutterVirtualInputDevice and with some
UI on top.
On the other hand, MetaInputSettings is a backend implementation
detail, this has 2 gotchas:
- In the native backend, the MetaInputSettings (and pointer a11y
with it) are initialized early, before the ClutterSeat core
pointer is set up.
- Doing this from the MetaInputSettings also means another dubious
access from the input thread into main thread territory.
Move the pointer a11y into ClutterSettings, making this effectively
backend-independent business, invariably done from the main thread
and ensured to happen after seat initialization.
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1765
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1849>
Compositor behaviour when calling `wl_data_device_manager_get_data_device`
for the same seat multiple times is not very clearly defined in
the spec and both Mutter and Weston currently don't handle
the DnD case properly.
While Weston handles DnD only for the last created data device,
Mutter, because of some internal reshuffling, ends up toggling
between two devices.
Properly handling this case requires some bigger changes. So
in order to behave predictable and in line with Weston,
only take the last created data device into account while
still keeping the previous created ones around.
The main affect client here is Firefox, which gets very
confused by the toggling behaviour and becomes more stable
with this patch.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1841>
Virtual Kernel Mode Setting (vkms) is a virtual /dev/dri/card* device
not backed by any actual hardware. It's intended for testing purposes,
e.g. to run tests suites with a reproducable setup, or in continuous
integration pipelines.
Currently mutter don't have any tests that can run on top of vkms, but
will eventually get that. To prepare for the ability to do that, and
having said kernel module loaded without causing wierd issues with any
active session, add an udev rule that tells mutter to ignore any vkms
device.
Otherwise, when vkms is loaded, mutter would detect it, assume it's a
regular monitor, configure it as such, thus add a region of the stage
that ends up nowhere, which isn't very helpful. It might also conflict
with running actual tests that need to interact with vkms if the active
session has taken control of it.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1740>
With atomic mode setting, commits don't work when CRTCs aren't enabled,
which they aren't when we're power saving. This means the gamma state
fails to being update. To fix night light and for whatever other reason
gamma ramps was changed during power saving by marking the CRTC gamma
state as invalid when leaving power saving, as well as when resuming.
This means that the next frame will append the CRTC gamma state to the
KMS commit.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1755
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1835>
This GSource is not being properly unref nor the variable holding it
cleared. This on one hand leaks the GSource memory, on the other hand
may trigger warnings in keyboard_repeat() as the source may be
(reentrantly) cleared, yet we don't exit early as
seat_impl->repeat_source is never NULL.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1839>
When a viewport source rect or destination size is set, `stex->dst_width`
gives us the the cropped and/or scaled size. At this step, we need the
uncropped/unscaled size however.
Note: this is only ever relevant if buffer transform and viewport are
used together - otherwise the values are the same.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1836>
The shadow size is factored into the paint volume MetaWindowActorX11
returns in its get_paint_volume() vfunc override, so we should
invalidate the paint volume every time that shadow might change.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1829>
When using buffer transforms and viewports together, we currently
apply the transformation (read: rotation) first, resulting in
wrong buffer coordinates for viewport source rects.
Flip the order in whitch we apply our matrix transformations.
This can be tested e.g. via:
`weston-simple-damage --use-viewport --transform=flipped-180`
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1832>
If a subsurface first gets reordered and afterwards detached from
the parent before the parent surface got commited, we currently
would end up reattaching the subsurface to its previous parent.
While clients should avoid this behaviour, it's legit according
to the spec.
We already prevent similar cases where the subsurface is destroyed -
extend that check to detaching, which includes the destroy case.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1831>
Currently when reordering subsurfaces, we un- and reparent all child
actors of the window actor. This is unnecessarily wasteful and
triggers bugs in clutter. While the underlying issue should be fixed
eventually, simply reorder the actors with the tools clutter provides
us with, avoiding those bugs and likely being faster as well.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1831>
The X server generates a property change notification whenever it processes a
property change request, even if the value of the property is not changing. This
triggers libgdk to probe all display outputs, which can be slow depending on
which display driver and hardware are in use.
#0 0x00007f8e4d5e91a0 in XRRUpdateConfiguration () at /usr/lib/libXrandr.so.2
#1 0x00007f8e505208da in _gdk_x11_screen_size_changed (screen=0x5566e4b7e080, event=0x7ffe0e44bd60) at ../gdk/x11/gdkscreen-x11.c:1199
#2 0x00007f8e505066d1 in gdk_x11_display_translate_event (translator=0x5566e4b5b110, display=0x5566e4b5b110, event=0x7f8dec001b20, xevent=0x7ffe0e44bd60) at ../gdk/x11/gdkdisplay-x11.c:1201
#3 0x00007f8e505135a0 in _gdk_x11_event_translator_translate (translator=0x5566e4b5b110, display=0x5566e4b5b110, xevent=0x7ffe0e44bd60) at ../gdk/x11/gdkeventtranslator.c:51
#4 0x00007f8e50512c97 in gdk_event_source_translate_event (event_source=0x5566e4b764a0, xevent=0x7ffe0e44bd60) at ../gdk/x11/gdkeventsource.c:243
#5 0x00007f8e50512f57 in _gdk_x11_display_queue_events (display=0x5566e4b5b110) at ../gdk/x11/gdkeventsource.c:341
#6 0x00007f8e50497644 in gdk_display_get_event (display=0x5566e4b5b110) at ../gdk/gdkdisplay.c:442
#7 0x00007f8e5051301f in gdk_event_source_dispatch (source=0x5566e4b764a0, callback=0x0, user_data=0x0) at ../gdk/x11/gdkeventsource.c:363
#8 0x00007f8e516ecf9c in g_main_context_dispatch () at /usr/lib/libglib-2.0.so.0
#9 0x00007f8e51740a49 in () at /usr/lib/libglib-2.0.so.0
#10 0x00007f8e516ec503 in g_main_loop_run () at /usr/lib/libglib-2.0.so.0
#11 0x00007f8e508ef5fd in meta_run_main_loop () at ../src/core/main.c:928
#12 0x00007f8e508ef60e in meta_run () at ../src/core/main.c:943
#13 0x00005566e450842a in ()
#14 0x00007f8e50649b25 in __libc_start_main () at /usr/lib/libc.so.6
When GNOME is animating a display fade when the night light feature is toggled
on or off, it sends a lot of change requests for the CTM property in the
process, which triggers a lot of display probes from gdk. In the case of the
night light feature, the CTM itself is not actually changing, so these requests
are redundant. Fix this by caching the CTM value in the MetaOutputXrandr and
skipping the server requests if it's not being changed.
Fixes: https://gitlab.gnome.org/GNOME/gnome-shell/-/issues/3978
Signed-off-by: Aaron Plattner <aplattner@nvidia.com>
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1816>
When we set the matrix, we checked the device mapping mode in the main
thread, then passed along the calculated matrix to the input thread for
application. This could however be racy, as the mapping mode is managed
in the input thread. Fix this by sending the unaltered matrix, having
the input thread checking the mapping mode.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1806>
The connector state wasn't properly predicted, as it earlied out if
the connector wasn't part of a mode set connector list.
Instead use the old CRTC to check whether it was used in any mode set,
and whether the connector was part of any new mode set, to predict
whether the connector is inactive or active.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1821>
When a device only had mode sets which turned off monitors, not enabling
anything, there would be no KMS update created and posted, and the
active monitors would remain on.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1821>
On hybrid graphics system, the primary path used to transfer the stage
framebuffer onto the dedicated GPU's video memory preparing for scanout,
is using the dedicated GPU to glBlitFramebuffer() the content from the
iGPU texture onto the scanout buffer.
After we have done this, we reset the current EGL context back to the
one managed by cogl. What we failed to do, however, was to reset the
current EGL context when we inhibited the actual page flip due to having
entered power save mode.
When we later started to paint again, Cogl thought the current EGL
context was still the correct one, but in fact it was the one used for
the iGPU -> dGPU blit, causing various EGL surface errors, and as a side
effect, eventually hitting an assert.
Fix this by making sure we reset to the Cogl managed EGL context also
for this case.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1803>
Destroying the EGLSurface frees the underlying container structs. When
we call gbm_surface_release_buffer() with a gbm_surface the EGLSurface
was created from, doing that after the EGLSurface was destroyed results
in attempts to access freed memory. Fix this by releasing any buffer
first, followed by destroying the EGLSurface, and lastly, the
gbm_surface.
This was not a problem prior to CoglOnscreen turning into a GObject, as
in that case, the dispose-chain was not setup correctly, and the
EGLSurface destruction was done in the native backend implementation.
This also changes a g_return_if_fail() to a g_warn_if_fail(), as if we
hit the unexpected case, we still need to call up to the parent dispose
vfunc to not cause critical issues.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1803>
It's handled by CoglOnscreenEgl's dispose() implementation. It was
failed to be invoked in the past because the old non-GObject web of
vtables were not setup correctly, meaning the old generic EGL layer of
the CoglOnscreen de-init was never invoked.
When the type inheritence was cleaned up, this mistake was not cleaned
up, so do that now.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1803>
Mutter would deny the application the right to resize itself during an
interactive resize, to avoid the user and the client to fight for the
size.
When the client is not allowed to resize, it would use the client rect
rather than the buffer rect.
As a result, the client window with client side decorations would
quickly shrink to its minimum size.
Use the buffer rect instead, so that the size really remains the same.
https://gitlab.gnome.org/GNOME/mutter/-/issues/1674
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1777>
Meson doesn't seem to handle depending on generated headers, at least
when those headers are pulled in indirectly via another header file.
Luckily, we don't actually need to include the generated D-Bus boiler
plate in meta-monitor-manager-private.h, since the MetaMonitorManager
type no longer is based on the D-Bus service skeleton.
So, by moving the inclusion of the generated D-Bus header file into
meta-monitor-manager.c, we should hopefully get rid of the sporadic
build issues.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1682
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1819>
If there was only a single mode, add the common modes to provide options
to select other resolutions than the built in default. This avoids
issues where the connector listed multiple supported modes, but where
the common modes added would exceed the possible bandwidth. We could
probably make an attempt to filter out more modes from the common mode
list to avoid these issues, but it's likely that the driver already
lists suitable modes, meaning there is no point in adding the common
modes.
The common modes were initially added[0] to add modes to connectors with
a single bundled mode, so we shouldn't regress the original bug fix.
[0] https://bugzilla.gnome.org/show_bug.cgi?id=744544
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1232
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1824>
The intel DRM driver is known for not being able to handle multi head
setups when KMS modifiers are enabled, due to the implicitly selected
modifiers, while being more suitable for single head setups, cause
bandwidth issues when a certain number of monitor times resolution and
refresh rate is configured.
We don't yet support automatically finding a combination of modifiers
that work, and have because of this disabled KMS modifiers unless the
driver actually needs it.
Lets flip this configuration the other way around, changing the current
udev rule to decide wen to *disable* KMS modifier support, as it so that
only the Intel driver has this problem, while on the other hand, there
several drivers that requires modifiers to function at all.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1792>
The input thread is in deep water doing the meta_is_*() check itself,
as that pokes the MetaMonitorManager managed by the main thread. Use
the getter from the MetaViewportInfo instead.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1793>
We need to pass this info from the main thread, as that pokes the
MetaMonitorManager underneath. Store it in the MetaViewportInfo
so that the input thread can use this information.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1793>
Use the new API to make sure the shaped texture has a valid size
during the next layout phase.
This is needed here because, quoting the previous commit:
When the texture size is invalidated using `invalidate_size()`, the new
size will only get calculated the next time `update_size()` is
called. This happens e.g. in `meta_shaped_texture_get_preferred_size()`
via `ensure_size_valid()`.
`update_size()` can chain up to `clutter_content_invalidate_size()`
as well as emitting a `size-changed` signal. If this happens during
layout, the result is a 'change the layout conditions during layout'
issue, causing heavy breakage in e.g. the Shell overview.
To fix this, expose `ensure_size_valid()` as API so callers can make
sure the texture has a valid size without creating redundant size
invalidations calls.
Note that if a buffer with a new size is attached we already trigger
`update_size()` explicitely, avoiding such situations.
Closes https://gitlab.gnome.org/GNOME/mutter/-/issues/1718
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1799>
When the texture size is invalidated using `invalidate_size()`, the new
size will only get calculated the next time `update_size()` is
called. This happens e.g. in `meta_shaped_texture_get_preferred_size()`
via `ensure_size_valid()`.
`update_size()` can chain up to `clutter_content_invalidate_size()`
as well as emitting a `size-changed` signal. If this happens during
layout, the result is a 'change the layout conditions during layout'
issue, causing heavy breakage in e.g. the Shell overview.
To fix this, expose `ensure_size_valid()` as API so callers can make
sure the texture has a valid size without creating redundant size
invalidations calls.
Note that if a buffer with a new size is attached we already trigger
`update_size()` explicitely, avoiding such situations.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1799>
If only a viewport destination size is set, the noop viewport has
to take the buffer scale into account.
If a viewport source but no viewport destination size is set, the
destination size is that of the viewport source, not of the whole
texture.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1786>
If a client is naive enough to assume that it can set the selection while
it has got no surfaces, mutter will simply ignore the request and leave
the selection unchanged.
This is good and the expected behavior, however the poor client that did
this will enter in an inconsistent state where it "claimed" the selection,
but nobody told it that the wl_data_source is not current.
So, when the client is focused the next time, it will receive wl_data_offers
as usual, but it will still think all the time that it is owning the
selection. In the case of GTK, that takes client-side shortcuts, so any
attempted paste will still bring back the client-side aborted selection.
To fix this, cancel the selection right away if it happened while unfocused,
the client will be able to undo its own failed selection, and not assume
that future offers are its own.
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1469
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1772>
It seems to be the preferred format of the Mesa V3D driver on
Raspberry Pi 4. If the compositor doesn't advertise it then Mesa will
fallback from `zwp_linux_dmabuf_v1` to `wl_drm`, incorrectly. Meaning
it will keep using a buffer with modifiers on an interface that does
not have modifiers.
Add support for `DRM_FORMAT_ABGR2101010`. It works, and prevents Mesa
from taking its broken fallback path.
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1520
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1798>
As documented in g_once_init_enter(): "While @location has a volatile qualifier,
this is a historical artifact and the pointer passed to it should not be
volatile.". And effectively this now warns with modern glibc.
Drop the "volatile" qualifier from these static variables as it's expected.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1785>
For Xwayland, mutter creates the sockets in the standard /tmp/.X11-unix
directory.
Yet, if that directory already exists, it may have been created by
another user with full control over the created socket.
To avoid that issue, if the directory /tmp/.X11-unix already exists,
check that the permissions are as we expect, i.e. the directory belongs
to either root or the user herself, is writable and has the sticky bit.
Thanks to fabian@ritter-vogt.de for reporting that issue.
https://gitlab.gnome.org/GNOME/mutter/-/issues/1708
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1787>
Unlike other subsurface state, placement operations need to get
applied in order. As per spec:
```
Requests are handled in order and applied immediately to a pending
state. The final pending state is copied to the active state the
next time the state of the parent surface is applied.
```
Having placement operations being part of the subsurface state
makes it difficult to support arbitrary orderings. Make them
part of the parents surface pending state instead.
Closes https://gitlab.gnome.org/GNOME/mutter/-/issues/1691
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1768>
MetaInputSettings unref:ed the seat on destruction, but it never ref:ed
it on construction, meaning it "stole" the reference from the rightful
owner. Make MetaInputSettings less of a thief.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1775>
XIQueryPointer allocates the button state mask that we were leaking in
some places. We need to manually free this, because there is no XI
function that would do this for us.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1728>
In case the shell ignores or can't accept the restart request we should
hide the message that has been just requested to be shown.
As per ::show-restart-message signal documentation, this has to be done by
emitting the signal with a NULL message.
So follow the API properly in such case
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1780>
In non-systemd managed session we are unable to start services on
demand. Instead, gnome-session will start everything at login time,
including any X11 related service (i.e. gsd-xsettings).
However, in order to start gsd-xsettings, Xwayland needs to be started
already. Otherwise it will connect to GNOME_SETUP_DISPLAY and login will
hang at that point.
Fix this by detecting whether mutter is running in a systemd unit. If it
is, we assume that we are systemd managed and the machinery to start the
services works fine. If not, we assume that the session management may
unconditionally try to start X11 related services and Xwayland must be
started in order to not block this.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1771>
On Wayland MetaInputSettings is part of the input thread. Connecting
a GSettings binding to the default ClutterSettings could result in the
change notification being emitted on the input thread. This then could
end up triggering the same handler from two different threads at the
same time. In the case of the ClutterText layout cache it was attempting
to unref the same layout twice, leading to a crash.
This can be avoided by simply removing the GSettings bind. This does not
cause changes to this setting to be missed by ClutterSettings because it
itself already sets up a bind.
Fixes https://gitlab.gnome.org/GNOME/mutter/-/issues/1696
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1776>
When deciding if `configure` event should be sent,
`meta_window_wayland_move_resize_internal` compares requested window size
with `window->rect` size. However, `window->rect` is only updated when `commit`
is received. So the following sequence produces incorrect result:
1. a window initially has size `size1`
2. `move_resize_internal` is called with `size2`. `configure` is sent
3. `move_resize_internal` is called with `size1` to restore original size,
but `commit` for `size2` haven't arrived yet. So `window->rect` still has size
`size1`, and thus new `configure` is not sent
4. `commit` for `size2` arrives, window changes size to `size2`
Expected window size in the end: `size1`
Actual: `size2`
To fix the issue, take size from pending `configure` events into account.
Fixes https://gitlab.gnome.org/GNOME/mutter/-/issues/1627
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1755>
This eliminates the need for any render node or device nodes, thus can
be used without any graphics hardware available at all, or with a
graphics driver without any render node available.
The surfaceless mode currently requires EGL_KHR_no_config_context to
configure the initial EGL display.
This also means we can enable the native backend tests in CI, as it
should work without any additional privileges.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
Tests that creating and starting a virtual screen cast monitor works,
and that at least one one buffer is processed.
Currently the content of the buffer isn't checked more than it can be
mmap():ed. Only MemFd buffers are tested for for now, as DMA buffers
would need a surfaceless EGL context to check properly.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
The new RecordVirtual API creates a virtual monitor, i.e. a region of
the stage that isn't backed by real monitor hardware. It's intended to
be used by e.g. network screens on active sessions, virtual remote
desktop screens when running headless, and scenarios like that.
A major difference between the current Record* API's is that
RecordVirtual relies on PipeWire itself to negotiate the refresh rate
and size, as it can't rely on any existing monitor, for those details.
This also means that the virtual monitor is not created until the stream
negotiation has finished and a virtual monitor resolution has been
determined.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
The area source, window source, and monitor source, currently set up the
stream size up front, given the area, maximum allowed window size or
monitor resolution, but for to be introduced sources, the size will be
negotiated using PipeWire, instead of specified via the D-Bus API. This
commit changes the internal source API to allow for this. There are
currently no users of this new behaviour.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
There may be a race between the ability to turn stream relative input
coordinates and turning them into screen coordinates, due to the future
scenario where the entity backing a stream is created and managed ad-hoc
depending on PipeWire stream negotiations.
When an input event is sent during this time, drop it.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
Make it possible to create persintent virtual monitors using command
line argument. This will not be the only way to create virtual monitors,
the primary way will be using the screen cast API, but using command
line argumenst is convenient for debugging purposes.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
The testing currently done is:
* Creating a virtual monitor succeeds and gets the right configuration
* Painting a few times results in the expected output
* Changing the content of the stage also changes the painted content
accordingly
* Destroying the virtual monitor works as expected
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
This adds a test framework that makes it possible to compare the result
of painting a view against a reference image. Test reference as PNG
images are stored in src/tests/ref-tests/.
Reference images needs to be created for testing to be able to succeed.
Adding a test reference image is done using the
`MUTTER_REF_TEST_UPDATE` environment variable. See meta-ref-test.c for
details.
The image comparison code is largely based on the reference image test
framework in weston; see meta-ref-test.c for details.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
Virtual monitors are monitors that isn't backed by any monitor like
hardware. It would typically be backed by e.g. a remote desktop service,
or a network display.
It is currently only supported by the native backend, and whether the
X11 backend will ever see virtual monitors is an open question. This
rest of this commit message describes how it works under the native
backend.
Each virutal monitor consists of virtualized mode setting components:
* A virtual CRTC mode (MetaCrtcModeVirtual)
* A virtual CRTC (MetaCrtcVirtual)
* A virtual connector (MetaOutputVirtual)
In difference to the corresponding mode setting objects that represents
KMS objects, the virtual ones isn't directly tied to a MetaGpu, other
than the CoglFramebuffer being part of the GPU context of the primary
GPU, which is the case for all monitors no matter what GPU they are
connected to. Part of the reason for this is that a MetaGpu in practice
represents a mode setting device, and its CRTCs and outputs, are all
backed by real mode setting objects, while a virtual monitor is only
backed by a framebuffer that is tied to the primary GPU. Maybe this will
be reevaluated in the future, but since a virtual monitor is not tied to
any GPU currently, so is the case for the virtual mode setting objects.
The native rendering backend, including the cursor renderer, is adapted
to handle the situation where a CRTC does not have a GPU associated with
it; this in practice means that it e.g. will not try to upload HW cursor
buffers when the cursor is only on a virtual monitor. The same applies
to the native renderer, which is made to avoid creating
MetaOnscreenNative for views that are backed by virtual CRTCs, as well
as to avoid trying to mode set on such views.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
The order of which function argument expressions are executed is
undefined, so don't rely on this for setting the background colors, as
it results in different colors on different architectures.
For example, it has been observed that the order of execution is
reversed comparing x86_64 and aarch64, making these two architectures
having different background color.
Fix this confusion, and also reproduceability in future reference tests,
by making the order of execution predictable.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
It's useful to be able to have very very tiny monitors (e.g. 60x60
pixels) when doing reference testing, as tests have reference images
that the output is compared to. Smaller reference images the less
storage they use.
To avoid annoying pointless warnings when this is done, change the
pedantic workspace work area code to be more forgiving if the work area
happens to match the display size.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
When rebuilding the monitors (e.g. during hotplug), make sure to detach
the disposed monitors from any outputs before creating the new monitors.
While this isn't currently needed, as outputs are too being recreated,
with the to be introduced virtual outputs that are created for virtual
monitors, this is not always the case anymore, as these virtual outputs
are not regenerated each time anything changes.
Prepare for this by making sure that cleaning up disposed monitors
detach themself properly from the outputs, so new ones can attach
themself to outputs without running into conflicts.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
This makes it possible to pass custom properties to backends when
constructing tests. This will be used to create "headless" native
backend instances for testing the headless native backend.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
With this commit, it's possible to run mutter without being DRM master.
It's not yet possible to add virtual monitors, but one can for example
already add virtual input devices.
This currently doesn't try to hook up to any logind session, thus will
not have a real seat assigned. Currently it's hard coded to "seat0".
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
Currently our only entry point for DRM devices is MetaKms*, but in order
to run without being DRM master, we cannot use /dev/dri/card*, nor can
we be either of the existing MetaKmsImplDevice implementation (legacy
KMS, and atomic KMS), as they both depend on being DRM master.
Thus to handle running without being DRM master (i.e. headless), add a
"dummy" MetaKmsImplDevice implementation, that doesn't do any mode
setting at all, and that switches to operate on the render node, instead
of the card node itself.
This means we still use the same GBM code paths as the regular native
backend paths, except we never make use of any CRTC backed onscreen
framebuffers.
Eventually, this "dummy" MetaKmsImplDevice will be replaced separating
"KMS" device objects from "render" device objects, but that will require
more significant changes. It will, however, be necessary for e.g. going
from being headless, only having access to a render node, to turning
into a real session, with a seat, being DRM master, and having access to
a card node.
This is currently not hooked up, but will be in a later commit.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
Add a flag to MetaSeatNative and MetaSeatImpl that tells it not to
attempt to create a libinput context. This is intended to be used when
mutter is to run headless, as in without any input devices other than
virtual ones.
Currently not hooked up.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
This leaves only the atomic mode setting cap check before creating the
impl device, aiming to make it possible to create a non-mode-setting
MetaKmsImplDevice implementation.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
Make it possible to pass --headless as a command line argument in order
to turn the native backend "headless". This currently doesn't do
anything, but the intention is that it should not use logind nor KMS,
and work completely headless with only virtual outputs.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
Input settings requires a valid seat in order to initialize the a11y
settings (since commit 1609d145), however in X11 we never set it and
even if we create the input settings early (as per commit 7547891a) we
never initialize the seat for it.
This leads to startup critical errors on X11:
clutter_seat_get_pointer_a11y_settings: assertion
'CLUTTER_IS_SEAT (seat)' failed
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1763>
This commit adds the events created in the function
`meta_seat_x11_notify_devices` to the clutter events queue, which
are currently only added to the stage queue making the events not
being picked up by the `clutter_seat_handle_event_post` function.
This results in devices not getting added to the device-list of
`MetaInputSettings`.
Fixes the bug in which mouse and touchpad settings are not working in
the settings app during x11 session.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1767>
Since commit 2ceac4a device-related X11 events aren't processed anymore,
causing the input settings not to handle the devices.
This is due to the fact that we may never call clutter_seat_handle_event_post()
for such events.
While this is always happening for the native backend, it doesn't happen in
X11 because the events are removed from the queue as part of
meta_x11_handle_event(), and thus no event was queued to the stage by the
backend events source.
This also makes sure that the event post handler is called after the
event is actually processed, and not before an event is queued.
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1564
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1769>
The nested backend may need to have an input setting implementation,
while we don't want to change the host settings (re-using an X11 input
settings) we can add a dummy implementation, until something more
complex is needed.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1769>
The sync ring has an API about "frames", where it is notified about
the end of frames. However, its "insert wait" call is done before
updates, meaning that some "insert waits" will never see the "after
frame" if there was no frame drawn. This will cause mismatching in the
frame counting, causing freezes in the synchronization until something
else triggers an actual frame, effectively "unfreezing" the sync ring.
Fix this by not only notifying the sync ring about frames when there
were actual frames drawn, but also on plain updates which didn't result
in a drawn frame.
Related: https://gitlab.gnome.org/GNOME/mutter/-/issues/1516
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1754>
When a gtk theme uses larger shadows for the unfocused state than for
the focused one, this can cause a crash in meta_frame_left_click_event.
Since whether to call meta_frame_left_click_event is decided based on
the decoration size before focusing and the control that was clicked on
after focusing, this can result in an event handled in
meta_frame_left_click_event being on the client area.
Fixes https://gitlab.gnome.org/GNOME/mutter/-/issues/1668
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1748>
With commit 7d78768809 we switched to
storing pointer coordinates in MetaInputDeviceNative instead of
ClutterInputDevice, and while we had set the coordinates of the
ClutterInputDevice in ClutterStage when queueing an event, we now set
the MetaInputDeviceNative coordinates in new_absolute_motion_event().
Here a small mistake snuck in: new_absolute_motion_event() only
translates the coordinates of the event, but we call
meta_input_device_native_set_coords() using the x and y variables
(which remain untranslated), so now the input device coordinates are no
longer translated.
Fix that by translating the coordinates of the x and y variables in case
we're we handling a tablet/stylus event instead of only translating the
event coordinates.
Fixes https://gitlab.gnome.org/GNOME/mutter/-/issues/1685
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1760>
This fixes the interpolate test to not use the wall clock, but the
monotonic clock. It also cleans up the timestamp granularity naming, so
that the different granularity is clearer, as in the test, different
timestamps have different granularity.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1751>
This more or less rewrites this test so that it explicitly tests the
"interpolation" when a timeline loops, i.e. that if something occupies
the thread when a timeline was supposed to have looped, we end up in the
right place "in the middle" of the next timeline cycle.
The test more or less does this:
* Start a 3 second looping timeline
* Sleep so that we're in the middle of the first cycle
* Sleep again so that we end up in the middle of the next cycle
The semantics checked are that we see the following frames:
* The first frame with timestamp 0
* The second frame in the middle of the first cycle (timestamp ~= 1.5
sceonds)
* The third frame in the end of the first cycle (timestamp == 3.0
seconds)
* The fourth frame, first in the second cycle, with timestamp ~= 1.5
seconds)
This means we can increase the "grace period" to the double (from 0.5 s
to 1 s), while at the same time decrease the time spent running the test
(from 10 s to 4.5 s). This should hopefully make the test less flaky,
especially in slower runners, e.g. aarch64.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1751>
With commit c985753442 the support for
multiple hardware cursors broke, but those were never properly supported
anyway as we usually assume there's only one hardware cursor around.
With the introduction of the KMS thread in the future, we'll only have
one KMS cursor that gets updated directly from the input thread. So
apart from the fact that it never really makes sense to have two cursors
visible, in this new model having multiple cursors won't work anyway.
So make the cursor we show for stylii a software cursor again.
Eventually the plan is to make the input device that's driving the KMS
cursor interchangeable, so that we can always use hardware cursors.
This reverts commit 165b7369c8.
Fixes https://gitlab.gnome.org/GNOME/mutter/-/issues/1645
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1758>
This commit assumes that cursor surfaces work in a "mailbox" fashion. If
they are painted multiple times before a successful flip, all commits
but the last get discarded, and the last commit gets presented after the
flip succeeds. This is more or less how it works in the atomic backend,
and also more or less how it works in other backends, with the exception
that the cursor painting might fail without any way of knowing. This
assumption is still better than unconditionally discarding all cursor
surface feedbacks as if the cursor painting always fails.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1484>
Regarding the sequence = 0 fallback: in some cases (moving a cursor
plane on atomic amdgpu) we get sequence = 0 in the page flip callback.
This seems like an amdgpu bug, so work around it by assuming a sequence
delta of 1 (it is equal to 1 because of the sequence != 0 check above).
Sequence can also legitimately be 0 if we're lucky during the 32-bit
overflow, in which case assuming a delta of 1 will give more or less
reasonable values on this and next presentation, after which it'll be
back to normal.
Sequence is also 0 on mode set fallback and when running nested, in
which case assuming a delta of 1 every frame is the best we can do.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1484>
The presentation-time protocol allows surfaces to get accurate
timestamps of when their contents were shown on screen.
This commit implements a stub version of the protocol which correctly
discards all presentation feedback objects (as if the surface contents
are never shown on screen). Subsequent commits will implement sending
the presented events to surfaces shown on screen.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1484>
This concerns only the cases when the presentation timestamp is received
directly from the device (from KMS or from GLX). In the majority of
cases this timestamp is already MONOTONIC. When it isn't, after this
commit, the current value of the MONOTONIC clock is sampled instead.
The alternative is to store the clock id alongside the timestamp, with
possible values of MONOTONIC, REALTIME (from KMS) and GETTIMEOFDAY (from
GLX; this might be the same as REALTIME, I'm not sure), and then
"convert" the timestamp to MONOTONIC when needed. An example of such a
conversion was done in compositor.c (removed in this commit). It would
also be needed for the presentation-time Wayland protocol. However, it
seems that the vast majority of up-to-date systems are using MONOTONIC
anyway, making this effort not justified.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1484>
KMS and GLX device timestamps have microsecond precision, and whenever
we sample the time ourselves it's not the real presentation time anyway,
so nanosecond precision for that case is unnecessary.
The presentation timestamp in ClutterFrameInfo is in microseconds, too,
so this commit makes them have the same precision.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1484>
A flag indicating whether the presentation timestamp was provided by
the display hardware (rather than sampled in user space).
It will be used for the presentation-time Wayland protocol.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1484>
A flag indicating whether the presentation timestamp was provided by the
display hardware (rather than sampled in user space).
It will be used for the presentation-time Wayland protocol.
This is definitely the case for page_flip_handler(), and I'm assuming
this is also the case for the two instances in the GLX code.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1484>
The old calculation was introduced to improve the precision
with commit c16a5ec1cf.
Here, I call the calculation as "revision 2", and the
calculation even older as "revision 1", and the new
calculation introduced with this commit as "reivion 3".
Revision 2 has two problems:
1. The calculation is mixed with fixed-point numbers and
floating-point numbers.
To overcome the precision loss of fixed-point numbers division,
it first "calculates refresh rate in milliHz first for extra
precision", but this requires converting the value back to Hz.
An extra calculation has performance and precision costs.
It is also hard to understand for programmers.
2. The calculation has a bias.
In the process, it does:
refresh += (drm_mode->vtotal / 2);
It prevents the value from being rounded to a smaller value in
a fixed-point integer arithmetics, but it only adds a small
bias (0.0005) and consumes some fraction bits for
floating point arithmetic.
Revision 3, introduced with this commit always uses
double-precision floating-point values for true precision and
to ease understanding of this code. It also removes the bias.
Another change is that it now has two internal values, numerator
and denominator. Revision 1 also calculated those two values
first, and later performed a division with them, which minimizes
the precision loss caused by divisions. This method has risks of
overflowing the two values and revision 1 caused problems due to
that, but revision 3 won't thanks to double-precision. Therefore,
revision 3 will theoretically have the result identical with
the calculation with infinite-precision.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1737>
Handle the case of a TOUCH_BEGIN event during window dragging separately
instead of treating it like a TOUCH_UPDATE event: Simply return TRUE to
make Clutter stop event propagation if it's the pointer emulating
sequence and let Clutter propagate the event if it isn't.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/427>
Window dragging should be cancelled when the touch sequences we're using
are no longer available. Also listen to TOUCH_CANCEL events if the
window is grabbed and cancel the grab op when a TOUCH_CANCEL event
happens.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/427>
This removes the responsibility of tracking these from the backend to
the base object. The backends are instead responsible for calling the
function to update the values.
For the native backend, it's important that this happens on the correct
thread, so each time either of these states may change, post a idle
callback on the main thread that sets the, at the time of queuing said
callback, up to date state. This means that things on the main thread
will always be able to get a "new enough but not too new" state when
listening on the 'notify::' signals and getting the property value
after.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1739>
Make sure to reset all the state that was set for an interactive grab op
back to the defaults after a grab op has ended.
Especially important here is setting grab_frame_action back to FALSE,
since this will constrain window-titlebars to the panel. We set this to
TRUE on some grabs, for example when resizing, but not when moving
windows. Since this remained being set to TRUE, it would also constrain
non-grab window movements, like calling MetaWindow.move_frame(), which
is used by gnome-shells OSK. By resetting it back to FALSE after a grab,
the OSK can now always move non-maximized windows to the position it
wants.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1736>
The cache had the size 9, which was "big enough" in the past, but when
more ways pipelines could be constructed, the size was not enough. The
need to increase the cache size was hard to spot though, since adding
pipeline flag didn't give any hints about the cache being directly tied
to these flag values.
So, when enough flag bits were set when attempting to retrieve and put a
pipeline in the cache, it'd instead overwrite some arbitrary stack
memory, which would sooner or later result in a memory corruption
induced crash. Valgrind could not detect this particular memory
corruption, as it messed up stack memory, not e.g. freed heap memory, so
it instead got confused and thought plain stack values were unreadable.
Fix these two issues by making the cache size the combination of all
pipeline flags + 1, so that we can safely put any flag combination in
the cache.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1747>
If `meta_xwayland_start_xserver()` returned via an error path, some of
the socket FDs were leaked.
Fix that, and add `steal_fd()` calls to make it clearer that FDs passed
to `g_subprocess_launcher_take_fd()` are transferred to it. There were
no bugs with how `GSubprocessLauncher` was being used.
Spotted while working on
https://gitlab.gnome.org/GNOME/glib/-/issues/2332.
Signed-off-by: Philip Withnall <pwithnall@endlessos.org>
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1738>
Each next and current scanout buffer has a reference on them making sure
they stay alive. When dumb buffers were used on the secondary GPU state,
this didn't happen, leading to crashes due to unref:ing one time too
many, with backtraces such as
0) g_type_check_instance_is_fundamentally_a ()
1) g_object_unref ()
2) secondary_gpu_release_dumb ()
3) import_shared_framebuffer ()
4) update_secondary_gpu_state_post_swap_buffers ()
5) meta_onscreen_native_swap_buffers_with_damage ()
6) cogl_onscreen_swap_buffers_with_damage ()
7) swap_framebuffer ()
8) clutter_stage_cogl_redraw_view_primary ()
9) clutter_stage_cogl_redraw_view ()
10) _clutter_stage_window_redraw_view ()
11) handle_frame_clock_frame ()
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1746>
gnome-shell has this hack where it sets the environment variable
"NO_AT_BRIDGE" to "1" before calling meta_init() and then unsets it
after meta_init() returns.
This variable being set to "1" will then cause the ATK bridge in
at-spi2-gtk to fail to load, which GTK then ignores. This is on purpose,
since accessibility is supposed to be done done by GNOME Shell via
Clutter, not via GTK.
The problem is that, now, by default, setting "NO_AT_BRIDGE" to
"1" during meta_init() only has the desired effect on an X11 session,
where we always connect to the X11 server on startup (i.e. during
meta_init()). With Xwayland on-demand, we do not attempt to create the
GDK display during meta_init(), thus this hack falls apart.
Since there are no real altenatives to this hack, just move it to
mutter, which have a better idea when GDK displays are created or not.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1744>
Commit afa43154 tried to make sure the focus was properly changed when
calling focus_default_window() by checking the focused window just after
trying to set the focus.
However, the X11 “Inter-Client Communication Conventions Manual” version
2.0 (ICCCM 2 for short) states that some X11 client may want to use a so
called “globally active input” model in which case the client expects
keyboard input and set input focus even when it's not one of its own
window.
To comply with this, when dealing with such clients, mutter will not
change the focus and send a WM_TAKE_FOCUS message instead.
That mechanism will defeat the logic introduced by commit afa43154
because the focused window is not changed in this case. As a result, the
input focus will fallback to the no-focus window.
To avoid this, only check that the focus change occurred for windows
using a synchronous focus model.
v2: Split specific test for "globally active input" model (Florian).
v3: Remove the check for window->unmanaging which is useless (Jonas).
Fixes: afa43154 - "core: Make sure focus_default_window() worked"
Close: https://gitlab.gnome.org/GNOME/mutter/-/issues/1620
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1716>
X11 clients can use different models of input handling, of which some
may not result focus being set synchronously.
For such clients, meta_focus_window() will not change the focus itself
but rely on the client itself to set the input focus on the desired
window.
Add a new MetaWindow API to check when dealing with such a window.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1716>
Without these devices, things that depend on the existance of input
device classes won't know about the existance of e.g. pointer devices,
if the only pointer device is from a virtual one.
This requires handling situations where e.g. a device doesn't have a
device node thus can't be matched against a udev device.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1688>
Libinput will queue a few initial events when a seat is assigned to the
udev backend; a result of it probing udev adding detected devices. For
us to see these events, we need to dispatch libinput before going idle,
as nothing will show up on the libinput file descriptor until something
else (e.g. keyboard event or mouse movement) wakes us up.
Do this by adding a prepare() function to the libinput GSource, that
checks whether there are any events in the queue already, and return
TRUE if so is the case, causing us to dispatch before going fully idle.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1688>
The API for NotifyKeyboardKeycode() does not mention what type of
keycode is expected to be submitted.
So, clarify in the API that the keycode to submit is expected to be an
evdev keycode.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1732>
Currently, when a remote desktop user submits a keycode, it will be
interpreted differently, when using the x11 session, instead of a
wayland session.
In a wayland session, submitting a keycode will have the expected
result (as if the key was pressed locally).
In a x11 session, this is not the case. Instead of getting the expected
key, some other key will be pressed (or sometimes even none).
The reason for this is that the native backend interprets the keycode
as evdev keycode and the x11 backend interprets the keycode as xkb
keycode.
To ensure that both backends produce the same behaviour when submitting
a keycode, fix the x11 backend to always interpret the keycode as evdev
keycode, instead of a xkb keycode.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1732>
GObject signals pass the emitting GObject as the first argument to
signal handler callbacks. When refactoring the grab-op-begin/end signals
to remove MetaScreen with commit 1d5e37050d,
the "screen" argument was replaced with a "display" argument instead of
being removed completely. This made us call the signal handlers with two
identical MetaDisplay arguments, which is very confusing and actually
wasn't handled in a grab-op-begin handler in gnome-shell.
So fix this by not adding the MetaDisplay as an argument to those
signals, GObject will take care of that for us.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1734>
We're going to round the workspace backgrounds in the new overview for
gnome-shell 40.
So far corner-rounding was only possible for StWidgets because the
rounded clipping was done using cairo drawing. We now need rounded
clipping for ClutterActors too because backgrounds are drawn using
ClutterActors (or more specifically a ClutterContent). To implement
that, first a ClutterOffscreenEffect subclass together with a fragment
shader from GSK (see gskSetOutputColor() [1] in the GSK GL renderer
code) was investigated, and while that was generic and worked quite
well, it was extremely slow for the case of drawing wallpapers because
of all the FBOs that had to be allocated.
This is the new, more performant approach: Use the same fragment shader,
but perform the rounded clipping right in MetaBackgroundContent while
we're painting the wallpaper. This has almost no performance impact,
with the downside of not being a generic solution.
To allow for rounded clipping not only at the edges of the wallpaper,
but using any given bounding rectangle, the API exposes not only the
radius, but also a bounding rect.
[1] https://gitlab.gnome.org/GNOME/gtk/-/blob/master/gsk/resources/glsl/preamble.fs.glsl
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1717>
Currently, the documentation for NotifyPointerAxis() just mentions that
a smooth scroll event is emitted.
However, this is not entirely correct. For each NotifyPointerAxis(),
mutter emits an emulated discrete scrolling event based on the
submitted accumulated smooth scrolling deltas.
Additionally, it doesn't mention how the motion deltas need to be
interpreted.
So, document the NotifyPointerAxis() notification better by mentioning
the emulation of discrete scroll events, how these discrete scroll
events are calculated and how the motion deltas need to be interpreted.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1727>
When a remote desktop user emits a virtual smooth scrolling event, a
smooth scroll event, that is not emulated, is emitted and on occasion
a discrete scroll event, that is emulated, is emitted.
As base for the discrete scrolling event, the smooth scrolling steps
are accumulated.
When the accumulated smooth scrolling steps surpass the
DISCRETE_SCROLL_STEP, the discrete scrolling event is emitted.
Currently, mutter uses for DISCRETE_SCROLL_STEP the value 10, which is
a terrible value to work with, especially for high resolution mouse
wheels.
When a triple resolution mouse wheel is used, each scrolling step will
have the value 3 1/3.
Three of such events won't however surpass the DISCRETE_SCROLL_STEP.
To fix this situation, add DBL_EPSILON to the calculation step, when
checking for the discrete scroll event to ensure that 3 smooth scroll
events, with each having the value 3 1/3, emit a discrete scrolling
event.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1727>
MetaVirtualInputDeviceX11 currently doesn't handle smooth scroll events
at all.
So, if a user of the remote desktop API uses smooth scroll events, then
only the wayland backend handles these events.
The user of the remote desktop API however, might not know which
backend is being used and actually the user should not even have to
care about it.
Actual smooth events cannot be emulated in the X11 events.
What can be done however is accumulating smooth events and then when
the accumulated steps surpass the DISCRETE_SCROLL_STEP value, emit a
discrete scroll event.
So, do exactly that, to make smooth scroll events work when the remote
desktop API is used with the x11 backend.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1727>
Given X11 nature, the pointer "leaves" the stage anytime it wanders into
a client window, or any other areas that are not deemed part of the
stage input region.
Yet we want to stay correct in those situations, e.g. have the clutter
side reasonably in sync, picking and highlighting to work properly, etc.
In order to achieve that, emulate motion events on XI_RawMotion. These
are as much throttled as our pointer tracking for a11y, in order to avoid
too many XIQueryPointer sync calls. This emulation only kicks in anytime
that X11 notifies us that we are not "on" the stage.
This replaces some sync_pointer() calls in GNOME Shell code that are
there just to compensate for this trait of X11, e.g. in the message tray
code.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1659>
Ensure we issue a motion event for the current pointer position,
as there might be situations where compositor modals get X grabs
from other clients stacked on top, or missed events in between
otherwise.
Ensure the Clutter state is still up-to-date afterwards here. This
replaces some sync_pointer() calls done in GNOME Shell code, always
done after modality changes.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1659>
Do these Wayland operations (that apply on both native and nested backends)
in the MetaCompositorServer subclass. We want to add more backend specific
behavior here in the future.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1659>
In the case that DnD is performed and succeeds, we want to release
the grab early, and let the transfer IPC happen in the back. For
that to happen without a hitch, drag source and offer must be left
related to each other after undoing the grab, even though the default
ungrabbing code does that automatically (indirectly, by unsetting the
drag focus).
In these cases, we used to manually unset the current source, so
this decoupling was skipped. Notably, one missed case is X11 DnD,
so we might end up with the situation there that DnD did succeed,
transfer is ongoing, but the source and offer are already decoupled,
this confused the machinery and missed the finishing XdndFinished
to be emitted to the X11 drag source.
The prior commits prepared for this source/offer decoupling being
a manual operation, this commit avoids doing this automatically
when ungrabbing.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1720>
This object is just being detached, with no code unref'ing it. Do
this whenever the XDnD selection goes unowned, usually a good
indication that the drag source no longer is one.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1720>
g_set_error_literal() asserts that the provided message is not NULL.
If it is NULL, the function is entirely no-op.
This resulted in a NULL dereference of the GError, which remained
NULL in this case, when trying to print a warning in
clutter_stage_cogl_redraw_view().
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1715>
PipeWire recently introduced busy buffers, which actually fixes the last remaining
issue that blocked us from downgrading these cogl_framebuffer_finish() calls into
cogl_framebuffer_flush() ones.
Switch to cogl_framebuffer_flush() in all three stream sources.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1701>
When a transfer request is done to the MetaSelectionSourceRemote source,
it's translated to a SelectionTransfer signal, which the remote desktop
server is supposed to respond to with SelectionWrite.
A timeout (set to 15 seconds) is added to handle too long timeouts,
which cancels the transfer request.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1552>
Nothing is hooked up, it only does basic sanity checking i.e. whether
the clipboard was enabled when interacting with it. No actual clipboard
integration is hooked up yet.
This also syncs org.gnome.Mutter.RemoteDesktop.xml from
gnome-remote-desktop.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1552>
The original implementation of ::touch-mode tested for keyboard
presence to know whether the OSK and other touch-only features were
enabled.
However that didn't pan out, every webcam, card reader and kitchen
sink like to live a second life as EV_KEY devices. This made the
detection of actual external keyboards a much harder task than it
sounds, and was thus removed in commit f8e2234ce5.
Try a different approach here, and test for pointer devices, it
doesn't matter if internal or external devices, the rationales:
- It is significantly easier to get this right, there's virtually
no devices with abs/rel axes that don't try to be a real input
device of some sorts.
- It's not as good as testing for keyboard presence, but it's the
next best thing. These usually come in pairs, except in weird
setups.
- It is better than not having anything for a number of situations:
- Non-convertible laptops with a touchscreen will get touch-mode
disabled due to touchpad presence (plus keyboard). There's
been complains about OSK triggering with those.
- Same for desktop machines with USB touchscreens, the mouse
(and presumably keyboard) attached would make touch-mode
get in the middle.
- Convertible laptops with a broken tablet-mode switch get a
chance to work on tablet modes that do disable input devices
(e.g. detachable keyboards, or via firmware)
- Kiosk machines, tablets, and other devices that have a
touchscreen but will not regularly have a mouse/keyboard
will get the touch-mode enabled.
All in all, this seems to cover more situations the way we expect it,
there's only one situation that the OSK would show where it might
not be desirable, and one that might not show when it better should:
- Tablets and kiosk machines that get one keyboard plugged, but not a
mouse, will still show the OSK, despite being able to type right
away.
- Convertible laptops with broken/unreliable tablet-mode switch (e.g.
ignored by the kernel) rely entirely on the device/firmware
characteristics to work. If after folding into tablet mode the
touchpad remains active, touch-mode will not turn on.
Fixing the tablet-mode switch on these devices should be preferred,
as that'll also make libinput magically disable the touchpad.
The latter can be worked around with the a11y toggle. The former is
merely inconvenient, and nothing prevents the user from plugging a mouse
in addition.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1710>
Technically this is still wrong if the source actor or dnd actor are
transformed in other ways. However geometry scale is the by far most
common case and we currently lack convenience API in Clutter to
easily compute the right values.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1683>
When recording the screen and real time encoding it using a gstreamer
pipeline, that pipeline can stall when the encoder is too slow. Log a
debug message using the new SCREEN_CAST debug topic in that case so we
know when framedrops are happening.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1709>
Since commit c255031b6d, we allow some modifier+scroll events to
pass through to Clutter to enable gnome-shell to handle them. That
action shouldn't trigger a modifier-only action at the same time, so
reset the corresponding tracking just like we do for modifier+click.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1695>
Since commit c255031b6d we pass scroll-events through to
the compositor if the window_grab_modifiers are pressed;
in order to allow gnome-shell to check for those events,
expose the struct member as a MetaDisplay property.
Also take the opportunity to pick a more generic name, now
that the modifier is no longer used exclusively for mouse
clicks (unless we maintain the notion of scroll events as
button 4 and 5 "clicks").
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1695>
The other end of the PipeWire stream can set the buffer data type to a
bitmask of supported buffer types. We should respect this, and not
attempt to allocate a DMA buffer if it isn't asked for.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1697>
Instead of getters, pass the width, height and stride around when
relevant. This also removes the redudant "stream_size" and
"stream_height" variables from the src struct, as they are already part
of the video format.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1697>
Mutter freezes Xwayland commits when resizing windows, and thaw them in
the window actors' after_paint() for X11.
Yet, after_paint() could be never called, as when a new window is mapped
while the overview is active in gnome-shell.
As a result, the content of the X11 window will remain invisible to the
overview.
Add a new window actor API to tell whether commits can be frozen. For
Wayland window actors, this always return FALSE, whereas for X11 window
actors, it checks whether the Clutter actor is mapped.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1678>
When (un)maximizing, (un)fullscreening, the move/resize action is
flagged with 'ACTION_MOVE' and 'ACTION_RESIZE' , while e.g.
'appears-focus' does not.
When a client misbehaved and didn't immediately reply to a configure
request with a commit with the corresponding ack_configure, the
following commit would trigger a oddly timed move, making the window
appear to move back to a previous position.
Avoid this issue by only carrying over the target window position if the
configuration actually contained a new position.
We cannot only rely on the flags however, as e.g. a new position should
be respected during interactive resize, even though only 'ACTION_RESIZE'
is passed in such scenarios.
Do the same for the size, except if the window state dictates that the
size is fixed to a certain size, e.g. being fullscreen or maximized.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1445>
Mutter needs to fetch the X11 Window ID from the onscreen and did that
by using an X11 specific API on the CoglOnscreen, where the X11 type was
"expanded" (Window -> uint32_t). Change this by introducing an interface
called CoglX11Onscreen, implemented by both the Xlib and GLX onscreen
implementations, that keeps the right type (Window), while avoiding X11
specific API for CoglOnscreen.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1514>
Instead of calling "init_onscreen()" on two different separate vtables
from the allocate() funtion, just have the CoglOnscreen sub types
themself implement allocate() and initialize in there.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1514>
Thins means that e.g. MetaOnscreenNative now inherits CoglOnscreenEgl,
which inherits CoglOnscreen which inherits CoglFramebuffer, all being
the same GObject instance.
This makes it necessary to the one creating the onscreen to know what it
wants to create. For the X11 backend, the type of renderer (Xlib EGL or
GLX) determines the type, and for the native backend, it's currently
always MetaOnscreenNative.
The "winsys" vfunc entries related to onscreens hasn't been moved yet,
that will come later.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1514>
To get meta-renderer-native.c down to a bit more managable size, and to
isolate "onscreen" functionality from other (at least partly), move out
the things related to CoglOnscreen to meta-onscreen-native.[ch].
A couple of structs are moved to a new shared header file, as
abstracting those types (e.g. (primary, secondary) render devices) will
be dealt with later.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1514>
The mutter naming convention for types and their instance variables is:
Type name:
[Namespace][BaseName][SubType]
Instance name:
[base_name]_[sub_type]
This means that e.g. CoglOnscreenGLX is renamed CoglOnscreenGlx, and
glx_onscreen is renamed onscreen_glx. This is in preparation for
GObjectification.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1514>
Makes sure that monitor specs which may be read from EDID data do not
contain characters that are invalid in XML. Makes it possible to restore
monitor configs of monitor models with characters such as '&' in them.
To make this change not break any tests, the sample monitor configs need
to be adjusted as well. Apostrophes don't strictly have to be escaped in
XML text elements. However, we now do escape the elements in
`<monitorspec>` specifically.
Closes: <https://gitlab.gnome.org/GNOME/mutter/-/issues/1011>
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1685>
Previously the wl_resource and MetaWaylandGtkSurface corresponding to
any client gtk_surface have been kept around until the exit of the
client due to the client side destroy method not signaling the
destruction to the server. Ideally the protocol would have specified a
destroy request marked as destructor to handle this automatically,
however this is no longer possible due to the destroy method being
implicitly generated in the absence of an explicit request in the
protocol. Adding a destroy request marked as destructor now would
generate a new destroy method that unconditionally would send the
request to the server, which would break clients running on servers not
supporting that request.
So instead of modifying the destroy request add a new "release"
destructor, that indicates to the server that it can release the
resource. This can be optionally be used by clients depending on the
server protocol version.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1307>
The MetaWaylandSurface corresponding to a MetaWaylandGtkSurface can be
destroyed before the MetaWaylandGtkSurface is destroyed. In its destroy
function MetaWaylandSurface however was unsetting the destructor of the
correspnding resource along with the gtk_surface1 interface
implementation. This was done to prevent further gtk_surface1 requests
on a NULLed MetaWaylandSurface, if it has been destroyed before the
MetaWaylandGtkSurface.
It would be enough to just unset the resource implementation, while
keeping the destructor to fix this leak. However the following commit
will rely on the implementation being available after the
MetaWaylandSurface has been destroyed. So instead introduce NULL checks
for all functions that can be called on the gtk_surface1 interface and
do not unset the implementation.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1307>
If the monitor configuration changed, even though the streamed monitor
didn't change, we'd still fail to continue streaming, as we failed to
update the stage watchers, meaning we wouldn't be notified about when
the stage views were painted.
Fix this by reattaching the stage watches, i.e. update the painted
signalling listeners to listen to the right views, when monitor changes
happens.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1691>
Make the API used more shared and better named.
meta_monitor_manager_on_hotplug() was renamed
meta_monitor_manager_reconfigure(), and meta_monitor_manager_reload()
was introduced to combine reading the current state and reconfiguring.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1689>
It was named "backend_native" and "backend" which is easily confused with
MetaBackendNative and MetaBackend which tends to have those names.
Prepare for introducing the usage of a MetaBackendNative and MetaBackend
pointers here by cleaning up the naming.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1689>
Fullscreen X11 windows that attempt to change the resolution on Wayland
use a surface viewport to achieve this without affecting the resolution
of the display. This however also means that pointer events will be
delivered in the display coordinates while the code handling the window
frame is not aware of any such viewport scaling. So a right click
outside of the area corresponding to the new resolution will not be
considered to be on the client area. And since the only area that is
ignored when determining whether to perform the right click action, such
as opening the context menu, is the client area, this will result in the
action being performed, despite happening on the (scaled) client area.
While it would be possible to scale the event coordinates so that
get_control() correctly determines the frame element the cursor is on,
viewport scaling only affects fullscreen windows. Since fullscreen
windows have no frame, we can always assume that if the window gets
delivered an event for a fullscreen window, it is on the client area
without doing any additional calculations.
Fixes https://gitlab.gnome.org/GNOME/mutter/-/issues/1592
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1661>
We remove pending pings when unmanaging a window, but currently
don't prevent new pings to be scheduled after that.
The previous commit fixed a code path where this did indeed happen,
but as the result of gnome-shell trying to attach a Clutter actor
to a non-existent window actor is pretty bad, also guard can_ping()
against being called for an unmanaging window.
https://gitlab.gnome.org/GNOME/gnome-shell/-/issues/2467
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1676>
This seems to have been the default in the past, but was (accidentally?) modified
by 8adab0275.
For GNOME 40, we'll be returning to our root with horizontal workspaces, so instead
of overriding it in GNOME Shell side, change the default back to what it once was.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1684>