The test tests that (for both X11 and Wayland) that:
* The client unmaximizes after mapping maximized to a predictable size
* That the client unmaximizes to the same size after toggling maximize
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1171
This makes sure that a client has properly responded to a configure
event it itself triggered. In practice, this is just two 'wait'
commands, with a 'dispatch' in between, which is needed because a single
one does not reliably include the two way round trip happening when e.g.
responding to a unmaximize configure event triggered by a unmaximize
request.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1171
The 'assert_size' command checks that the size of the window, both
client side and compositor side, corresponds to an expected size set by
the test case.
The size comparison can only be done when the window is using 'csd', in
order for both the client and server to have the same amount of
understanding of the title bar. For ssd, the client cannot know how
large the title bar, thus cannot verify the full window size.
Sizes can be specified to mean the size of the monitor divided by a
number. This is that one can make sure a window is maximized or
fullscreened correctly.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1171
Gtk is quite buggy and "fluid" in how it handles the shadow margins for
windows under X11. The "size" of the window fluctuate between including and
excluding a shadow margin in a way that causes issues, as there are no
atomic update of any state going on.
In order to avoid running into those particular issues now, lets get rid
of shadows so the margins are always zero, when the client is using the
X11 backend.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1171
To get some kind of consistency between what 'resize' means for the
compositor and the client, make the size correspond to the "frame rect"
of the window, i.e. the window geometry in the Wayland case, and the
window size including the titlebar in the X11 case.
This is so that the window size later can be reliably compared both in
the compositor and in the client using the same expected dimensions.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1171
When toying with the test client to try to reproduce issues (e.g.
writing commands on stdin to create and manipulate windows), when you
write a command incorrectly you'll get a warning printed to standard
out. The problem, however, is that it doesn't include a line break in
the end, meaning when you type the correct command, it won't be on a new
line.
Fix this minor annoyance by adding line breaks to all warning messages.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1171
The test client could already understand the resize command, but they
could not be added to metatests as the command was not properly plumbed
via the test runner. Establish the plumbing for the resize command so
that resize tests can be added.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1171
Dereference the loop variable rather than the original list head. This
fixes a regression introduced in 4413b86a3 ("backends: Replace
ClutterDeviceManager usage in favor of ClutterSeat", 2019-10-04) which
broke button scrolling with trackballs.
Closes:https://gitlab.gnome.org/GNOME/mutter/-/issues/1120
(cherry picked from commit 3e967d731a)
On VT switch, the devices are removed, which means for Wayland disabling
the keyboard.
When the keyboard is disabled, the associated `xkb_state` is freed and
recreated whenever the keyboard is re-enabled when switching back to the
compositor VT.
That means the `xkb_state` for Wayland is lost whereas the same for
clutter is kept, which causes to a discrepancy with locked modifiers on
VT switch.
To avoid that issue, preserve the XKB info only to dispose it when the
keyboard is eventually finalized.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/344https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1185
(cherry picked from commit 5b30a52bbd)
The motion events of tablets for example need to be mapped on the
selected screen area if the input device is configured to use only a
part of the active logical monitor.
To achieve this behavior each motion event is transformed using the
transformation matrix set for the input device.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1118
At some point we crossed the streams... In a short timespan we had
1f00aba92c merged, pushing WacomDevice to a common parent object,
and dcaa45fc0c implementing device grouping for X11.
The latter did not rely on the former, and just happened to
merge/compile without issues, but would promptly trigger a crash
whenever the API would be used.
Drop all traces of the WacomDevice internal to MetaInputDeviceX11.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1183
(cherry picked from commit f0718c7d95)
With the introduction of "shallow" relayouts, we are now able to enter
allocation cycles not only at the stage but also deeper down the
hierarchy if we know an actors allocation isn't affected by its children
since the NO_LAYOUT flag is set.
Now that means when queuing relayouts it's possible that
`priv->needs_allocation` gets set to TRUE for some actors down the
hierarchy, but not for actors higher up in the hierarchy. An actor tree
where that happens could look like that:
stage -> container -> container2 (NO_LAYOUT) -> textActor
With that tree, if the "textActor" queues a relayout, "container2" will
be added to the relayout hashtable of the stage and the actors "stage"
and "container" will have `priv->needs_allocation` set to FALSE.
Now if another relayout on the stage actor is queued,
`clutter_stage_queue_actor_relayout()` currently removes all the other
hashtable entries in favour of the stage entry, (wrongly) assuming that
will allocate everything. It doesn't allocate everything because in the
example above "container" has `priv->needs_allocation` set to FALSE,
which makes clutter_actor_allocate() return early before allocating its
children, so in the end "container2" will never get a new allocation.
To fix this, stop flushing the relayout hashtable when queuing a
stage-relayout and still add new entries to the hashtable if a stage
relayout is already queued to make sure we still go through all the
previously queued "shallow" relayouts. That shouldn't hurt performance,
too, because as soon as an actor got allocated once, it doesn't need an
allocation anymore and should bail out in clutter_actor_allocate() as
long as it's absolute position didn't change.
Fixes https://gitlab.gnome.org/GNOME/gnome-shell/-/issues/2538https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1173
(cherry picked from commit e74c2e42cf)
Currently we check whether a window is alive everytime it's focused.
This means that an application that doesn't respond to the check-alive
event during startup always showing the "application froze" dialog,
without the user ever trying to interact with it.
An example where this tends to to happen is with games, and for this
particular scenario, it's purely an annoyance, as I never tried to
interact with the game window in the first place, so I don't care that
it's not responding - it's loading.
To avoid these unnecessary particular "app-is-frozen" popups, remove the
alive check from the focus function, and instead move it back to the
"meta_window_activate_full()" call. To also trigger it slightly more
often, also add it to the path that triggers the window focus when a
user actively clicks on the window.
This means that we currently check whether a window is alive on:
* Any time the window is activated. This means e.g. alt-tab or
selecting the window in the overview.
* The user clicks on the window.
Note that the second only works for an already focused window on
Wayland, as on X11, we don't refocus it. This particular case isn't
changed with this commit, as we didn't call meta_window_focus() to begin
with here.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1182
(cherry picked from commit 8df3b21a51)
This fixes an issue where a non-maximized screen casted window would be
stretched to fill the whole screen cast stream, instead of just the crop
that corresponds to the current window size.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1174
(cherry picked from commit a6f94696e2)
It isn't immediately obvious that this is impossible, because there's some
"action at a distance" going on with framebuffers that have their size
set lazily, after their textures get allocated; so let's make this a
critical warning rather than crashing.
In particular, this works around a crash when gnome-shell tries to blur a
background that hasn't yet had any space allocated for it - which it seems
is really an actor layout bug, but more robustness seems good to have.
Workaround for <https://gitlab.gnome.org/GNOME/gnome-shell/-/issues/2538>.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1172
Signed-off-by: Simon McVittie <smcv@debian.org>
(cherry picked from commit c389aadff9)
A texture with no pixels isn't a useful thing to have, and breaks
assumptions elsewhere. For example, CoglFramebuffer assumes that after
a texture has been allocated, it will have width and height both greater
than 0.
In particular, this works around a crash when gnome-shell tries to blur a
background that hasn't yet had any space allocated for it - which it seems
is really an actor layout bug, but more robustness seems good to have.
Workaround for <https://gitlab.gnome.org/GNOME/gnome-shell/-/issues/2538>.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1172
Signed-off-by: Simon McVittie <smcv@debian.org>
(cherry picked from commit 37eda498f2)
Previously clutter timelines advanced according to `g_source_get_time`.
But that meant the spatial stepping of animations was visibly sensitive to
any irregularities in the main loop. It also represented a time older [1]
than the intended presentation time of each frame.
Now we instead use `master_clock_get_next_presentation_time`. This ensures
we get the smoothness of hardware vsync as well as being closer to the
actual presentation time.
This means, for example, backends like Xorg that move the hardware cursor
independently of repaints will have their animations more closely matching
the hardware cursor position. So the cursor appears to stick more closely
when dragging windows or on the lock screen etc.
[1] "older" = (refresh_interval - sync_delay) = ~14ms for 60Hz
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/25https://gitlab.gnome.org/GNOME/mutter/merge_requests/724
Disabling a click action after a button-press but before a
button-release is captured makes ClutterClickAction connect to
captured-event and never disconnect.
This change fixes it by making sure the captured-event is only
processed if the action is still enabled, otherwise releasing
the action (reset state) and propagating the event.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1170
(cherry picked from commit 5f5ce08ba4)
Picking now only happens on allocated actors, but the
callback in the actor-pick test is not waiting for the
stage to run an allocation cycle. Ideally, we'd wait
for this cycle, but for now, forcing an allocation works
as well.
Allocate the overlay actor in the actor-pick test.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1169
(cherry picked from commit 7f488e3e1d)
When selecting the pick regions for an actor we were not considering
whether the actor was allocated and that was causing issues where the
preferred width/height of the actor was used when deciding whether
the actor should be considered as a pick target.
Check if the actor has a valid allocation, in addition to being mapped
and being in pick mode, in clutter_actor_should_pick_paint().
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1169
(cherry picked from commit 902302a174)
Normally we bail out in `sync_actor_geometry()`. The comment there
states:
```
Normally we want freezing a window to also freeze its position; this allows
windows to atomically move and resize together, either under app control,
or because the user is resizing from the left/top. But on initial placement
we need to assign a position, since immediately after the window
is shown, the map effect will go into effect and prevent further geometry
updates.
```
The signal for the initial sync originates in `MetaWindow` though and predates
`xdg_toplevel_set_maximized`, which again calls `meta_window_force_placement`,
triggering the signal too early. As a result, Wayland clients that start up
maximized have a wrong map animation, starting in the top-left corner.
In order to fix this without changing big parts of the geometry logic and risking
regressions, force the initial sync again before mapping.
Solution suggested by Jonas Ådahl.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1164
cogl_object_[get|set]_value_object() are annotated as [get|set]-value-func
for objects and primitives, so they must be visible for any derived types
to be usable from introspection.
https://gitlab.gnome.org/GNOME/mutter/-/issues/1146
IBusInputContext/ClutterInputFocus/GtkIMContext all go for offset+len
for their ::delete-surrounding signals, with offset being a signed int
(neg. to delete towards left of selection, pos. to delete towards right
of selection) and len being an unsigned int from the offset (and
presumably, skipping the current selection).
The text-input protocols however pass in this event two unsigned integers,
one being the length of text to delete towards the left of the selection,
and another the length of text to delete towards the right of the selection.
To translate properly these semantics, positive offsets shouldn't account
for before_length, and negative offset+len shouldn't account for after_length.
The offset/length approach may of course represent deletions that are
detached from the current cursor/selection, we simply delete the whole range
from the cursor/selection positions then.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/517
The input method can assign a negative value to
clutter_input_method_delete_surrounding() to move the cursor to the left.
But Wayland protocol accepts positive values in delete_surrounding() and
GTK converts the values to the negative ones in
text_input_delete_surrounding_text_apply().
https://gitlab.gnome.org/GNOME/mutter/issues/539
GObject recommends to break references to other objects on dispose
instead of finalize, also we want to release the pressed virtual buttons
as early as possible if we know the object is getting destroyed.
So release the pressed buttons and unref our virtual
MetaInputDeviceNative when the dispose vfunc is called, which also
allows us to release the buttons immediately from javascript instead of
waiting for the garbage collector by calling run_dispose() on the
object.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1157
In commit d846fabda we moved to using the override color alpha, however
it was missed that the actor opacity is transferred to the PangoRenderer
through the default color alpha, and the reason it was used there.
We actually want to factor in both alpha values, in order to respect
both foreground color alpha and actor opacity. This is done on the
unpremultiplied color, so we just need to change the alpha value.
Fixes effects on text actors that involve actor opacity.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1158
pango_renderer_get_alpha() returns 0 to indicate that the alpha value
should be inherited from the environment, but we are passing it on
(and therefore making the text fully translucent).
Instead, make the text fully opaque as expected.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1156
This allows us to screencast any window continuously, even
without it being visible. Because it's still being painted,
clients continue to receive frame callbacks, and people
are happy again.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1129
Just like what's done for monitor screencasting. Unfortunately, there's
no mechanism to share fences with PipeWire clients yet, which forces
us to guarantee that a frame is completed after blitting.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1129
MetaScreenCastWindowStreamSrc connects to the "damaged" signal of
MetaWindowActor. This signal is not exactly tied to the paint cycle
of the stage, and a damage may take quite a while to arrive when
a client doesn't want to draw anything. For that reason, the window
screencast can start empty, waiting for a damage to arrive.
Ensure at least one frame is recorded when enabling the window stream.
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/1097https://gitlab.gnome.org/GNOME/mutter/merge_requests/1129
cogl_framebuffer_push_rectangle_clip() acts on the current modelview
matrix. That means the result of clipping then translating will be
different of the result of translating then clipping.
What we want for window screencasting is the former, not the latter.
Move the translation code (and associated) to after clipping.
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/1097https://gitlab.gnome.org/GNOME/mutter/merge_requests/1129
Fix a regression that got introduced with
c483b52d24 where we started passing the
redraw_clip to paint_stage() instead of creating a temporary view_region
for unclipped redraws: In case we detect an invalid buffer age, we fall
back to doing an unclipped redraw after we passed the first check
setting up may_use_clipped_redraw. That means we didn't reset the
redraw_clip to the view_rect, and we're now going to redraw the stage
using the original redraw clip even though we're swapping the full
framebuffer without damage.
To fix that, check for the buffer age before setting up the
fb_clip_region and the redraw_clip and set may_use_clipped_redraw to
FALSE if the buffer age is invalid, too. This ensures the redraw_clip is
always going to be correctly set to the view rect when we want to force
a full redraw.
Fixes https://gitlab.gnome.org/GNOME/mutter/issues/1128