This option to GCC makes it give a warning whenever a global function
is defined without a declaration. This should catch cases were we've
defined a function but forgot to put it in a header. In that case it
is either only used within one file so we should make it static or we
should declare it in a header.
The following changes where made to fix problems:
• Some functions were made static
• cogl-path.h (the one containing the 1.0 API) was split into two
files, one defining the functions and one defining the enums so that
cogl-path.c can include the enum and function declarations from the
2.0 API as well as the function declarations from the 1.0 API.
• cogl2-clip-state has been removed. This only had one experimental
function called cogl_clip_push_from_path but as this is unstable we
might as well remove it favour of the equivalent cogl_framebuffer_*
API.
• The GLX, SDL and WGL winsys's now have a private header to define
their get_vtable function instead of directly declaring in the C
file where it is called.
• All places that were calling COGL_OBJECT_DEFINE need to have the
cogl_is_whatever function declared so these have been added either
as a public function or in a private header.
• Some files that were not including the header containing their
function declarations have been fixed to do so.
• Any unused error quark functions have been removed. If we later want
them we should add them back one by one and add a declaration for
them in a header.
• _cogl_is_framebuffer has been renamed to cogl_is_framebuffer and
made a public function with a declaration in cogl-framebuffer.h
• Similarly for CoglOnscreen.
• cogl_vdraw_indexed_attributes is called
cogl_framebuffer_vdraw_indexed_attributes in the header. The
definition has been changed to match the header.
• cogl_index_buffer_allocate has been removed. This had no declaration
and I'm not sure what it's supposed to do.
• CoglJournal has been changed to use the internal CoglObject macro so
that it won't define an exported cogl_is_journal symbol.
• The _cogl_blah_pointer_from_handle functions have been removed.
CoglHandle isn't used much anymore anyway and in the few places
where it is used I think it's safe to just use the implicit cast
from void* to the right type.
• The test-utils.h header for the conformance tests explicitly
disables the -Wmissing-declaration option using a pragma because all
of the tests declare their main function without a header. Any
mistakes relating to missing declarations aren't really important
for the tests.
• cogl_quaternion_init_from_quaternion and init_from_matrix have been
given declarations in cogl-quaternion.h
Reviewed-by: Robert Bragg <robert@linux.intel.com>
The cogl.h header is meant to be the public header for including the 1.x
api used by Clutter so we should stop using that as a convenient way to
include all likely prototypes and typedefs. Actually we already do a
good job of listing the specific headers we depend on in each of the .c
files we have so mostly this patch just strip out the redundant
includes for cogl.h with a few fixups where that broke the build.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
In a combine string the application can specify TEXTURE_? as a source
to sample from the texture attached to a particular unit. The number
specified here was being interpreted as a unit index. This is not
helpful to applications because theoretically the unit index is an
internal implementation detail so they can't reliably determine what
it is. This patch changes them to be interpreted as layer indices
instead.
To make this work the enums in CoglPipelineCombineSource are no longer
directly mapped to GLenums. Otherwise it implies a low limit on the
number of layer indices because there are only 32 reserved numbers
between GL_TEXTURE0 and GL_ACTIVE_TEXTURE.
This also fixes a bug in the ARBfp fragend where it was generating
code using the texture type of the layer doing the referencing rather
than the layer that was being referenced.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
Instead of storing the GLenum for the target of the last used texture
for a layer it now stores the CoglTextureType instead. The state name
has been renamed to 'texture type' instead of 'texture target'.
Previously the default pipeline layer would store 0 here to represent
that there is no texture. This has been changed to store
COGL_TEXTURE_TYPE_2D instead which means that all pipeline layers
always have a valid value for the texture type. Any places that were
previously fetching the texture from a layer to determine the target
(for example when generating shaders or when enabling a particular
texture target) now use the texture type instead. This means they will
work even for layers that don't have a texture.
This also changes it so that when binding a fallback texture instead
of always using a 2D texture it will now use the default texture
corresponding to the texture type of the layer. That way when the
generated shader tries to do a texture lookup for that type of texture
it will get a valid texture object. To make this work the patch adds a
default texture for 3D textures to the context and also makes the
default rectangle texture actually be a rectangle texture instead of
using a 2D texture.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
This adds two new public experimental functions for attaching
CoglSnippets to two hook points on a CoglPipeline:
void cogl_pipeline_add_vertex_hook (CoglPipeline *, CoglSnippet *)
void cogl_pipeline_add_fragment_hook (CoglPipeline *, CoglSnippet *)
The hooks are intended to be around the entire vertex or fragment
processing. That means the pre string in the snippet will be inserted
at the very top of the main function and the post function will be
inserted at the very end. The declarations get inserted in the global
scope.
The snippets are stored in two separate linked lists with a structure
containing an enum representing the hook point and a pointer to the
snippet. The lists are meant to be for hooks that affect the vertex
shader and fragment shader respectively. Although there are currently
only two hooks and the names match these two lists, the intention is
*not* that each new hook will be in a separate list. The separation of
the lists is just to make it easier to determine which shader needs to
be regenerated when a new snippet is added.
When a pipeline becomes the authority for either the vertex or
fragment snipper state, it simply copies the entire list from the
previous authority (although of course the shader snippet objects are
referenced instead of copied so it doesn't duplicate the source
strings).
Each string is inserted into its own block in the shader. This means
that each string has its own scope so it doesn't need to worry about
name collisions with variables in other snippets. However it does mean
that the pre and post strings can't share variables. It could be
possible to wrap both parts in one block and then wrap the actual
inner hook code in another block, however this would mean that any
further snippets within the outer snippet would be able to see those
variables. Perhaps something to consider would be to put each snippet
into its own function which calls another function between the pre and
post strings to do further processing.
The pipeline cache for generated programs was previously shared with
the fragment shader cache because the state that affects vertex
shaders was a subset of the state that affects fragment shaders. This
is no longer the case because there is a separate state mask for
vertex snippets so the program cache now has its own hash table.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
Currently features are represented as bits in a 32bit mask so we
obviously can't have more than 32 features with that approach. The new
approach is to use the COGL_FLAGS_ macros which lets us handle bitmasks
without a size limit and we change the public api to accept individual
feature enums instead of a mask. This way there is no limit on the
number of features we can add to Cogl.
Instead of using cogl_features_available() there is a new
cogl_has_feature() function and for checking multiple features there is
cogl_has_features() which takes a zero terminated vararg list of
features.
In addition to being able to check for individual features this also
adds a way to query all the features currently available via
cogl_foreach_feature() which will call a callback for each feature.
Since the new functions take an explicit context pointer there is also
no longer any ambiguity over when users can first start to query
features.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
Both the GLSL and the ARBfp pipeline backends were using a variable
called last_used_for_pipeline to keep track of the last pipeline that
the shader or program state was used for. If this address is the same
as last time when the pipeline state is flushed then Cogl will only
flush the uniforms that have been modified, otherwise it will flush
all of them. The problem with this is that there was nothing to keep
that address alive so it could be destroyed and reused for a different
pipeline by the time the shader state is reused. This is quite likely
to happen in an application using legacy state because in that case
the shader state will always be used with a one-shot pipeline that
will likely be recycled in the next frame.
There is already a destroy callback to unref the shader state when the
pipeline is destroyed so this patch just makes that callback also
clear the last_used_for_pipeline pointer if it matches the pipeline
being destroyed.
https://bugzilla.gnome.org/show_bug.cgi?id=662542
Reviewed-by: Robert Bragg <robert@linux.intel.com>
It seems that cogl-context-private.h needs to be included before including
any of the pipeline-related stuff to avoid build errors on C89 compilers.
This is due to the recent cogl-pipeline decoupling, seems like.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
During arbfp codegen we weren't checking for NULL textures and so we
would crash when trying to query a NULL texture's GL texture target.
Since NULL texture targets result in ctx->default_gl_texture_2d_tex
being bound we can assume that a NULL texture corresponds to a
GL_TEXTURE_2D target.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
This splits out the core CoglPipelineLayer support code from
cogl-pipeline.c into cogl-pipeline-layer.c; it splits out the debugging
code for dumping a pipeline to a .dot file into cogl-pipeline-debug.c
and it splits the CoglPipelineNode support which is shared between
CoglPipeline and CoglPipelineLayer into cogl-node.c.
Note: cogl-pipeline-layer.c only contains the layer code directly
relating to CoglPipelineLayer objects; it does not contain any
_cogl_pipeline API relating to how CoglPipeline tracks and manipulates
layers.
The ARBfp backend can't handle fog so it tries to check for when it's
enabled and bails out. However it was checking using the global legacy
state value on the CoglContext but this doesn't necessarily reflect
the state that will actually be used by the pipeline because Cogl may
have internally pushed a different pipeline.
This patch adds an internal _cogl_pipeline_get_fog_enabled which the
ARBfp backend now uses.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
When we are about to start arbfp codegen we call shader_state_new() to
allocate new state structures used to build up the code and that
function makes sure to zero the newly allocated structures.
Right after calling shader_state_new() we were then also explicitly
iterating though the newly allocated unit_state structures and zeroing
the .sampled and .dirty_combine_constant members as well as resetting
shader_state->next_constant_id = 0. This patch removes that redundant
re-initialization of state.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
We weren't actually tracking which layers have been allocated param
space for combine constants; all layers just had a default constant_id
of 0 that indexes into the program.local[] params array and a dirty flag
to say when the constant needs updating. There are times though when we
say to update everything by-passing the dirty flag and because we
weren't actually tracking which layers needed constants we would always
write a constant to program.local[0] for every layer. The upshot was
that we could end up clobbering a real constant that was actually
allocated the constant_id = 0 slot.
This patch adds a new UnitState bitfield to track if the layer has a
corresponding constant that may need flushing and we only ever write the
constant with glProgramLocalParameter4fv if that's set.
https://bugzilla.gnome.org/show_bug.cgi?id=658092
Reviewed-by: Neil Roberts <neil@linux.intel.com>
The template_pipeline variable in _cogl_pipeline_fragend_arbfp_start
was not being initialised if the program caches are disabled with
COGL_DEBUG=disable-program-caches so it would crash. The other
backends have a similar variable but they already initialise it.
https://bugzilla.gnome.org/show_bug.cgi?id=655400
The pipeline cache is now handled in CoglPipelineCache instead of
directly in the ARBfp fragend. The flags needed to hash a pipeline
should be exactly the same for the ARBfp and GLSL fragends so it's
convenient to share the code. The hash table now stores the actual
pipeline as the value instead of the private data so that the two
fragends can attach their data to it. That way it's possible to use
the same pipeline key with ancestors that are using different
fragends.
The hash table is created with g_hash_table_new_full to set a
destructor for the key and value and there is a destructor for
CoglPipelineCache that gets called when the CoglContext is
destroyed. That way we no longer leak the pipelines and shader state
when the context is desroyed.
Previously the fragends had a separate private data pointer which was
used by the GLSL and ARBfp fragends to store a tiny struct containing
a single pointer to the ref-counted shader state. The space for the
private data pointer is reserved in all of the pipelines for all of
the potential backends. The vertends and progends however did this
differently by directly storing the pointer to the ref counted data
using cogl_object_set_user_data. This patch unifies the different
methods so that they all use cogl_object_set_user_data and the
fragends don't bother with the separate tiny allocation for the
private data. The private data pointer array has been removed from
CoglPipeline and the corresponding fragend virtual to free the private
data has also been removed because this can instead be done with the
destroy notify from the object user data.
The variable names used have been unified so that all of the vertends
and fragends name their data struct CoglPipelineShaderState and use a
variable called shader_state to refer to it. The progend uses
CoglPipelineProgramState and a variable called program_state.
This should also fix two potential bugs. the ARBfp fragend was
apprently leaking a reference to the private state when it creates the
private data because it was adding a reference before stroring the
pointer to the newly allocated data but the ref count is already set
to 1 on creation. The other potential bug is that the free function
for CoglPipeline was only calling the free_priv virtual for the
currently used fragend of the pipeline. The design of the fragends is
meant to allow a pipeline to have multiple fragend priv datas because
a child pipeline could be attaching its fragend data to the ancestor
and its allowed to pick a different fragend.
The GL or GLES library is now dynamically loaded by the CoglRenderer
so that it can choose between GL, GLES1 and GLES2 at runtime. The
library is loaded by the renderer because it needs to be done before
calling eglInitialize. There is a new environment variable called
COGL_DRIVER to choose between gl, gles1 or gles2.
The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have
been changed so that they don't assume the ifdefs are mutually
exclusive. They haven't been removed entirely so that it's possible to
compile the GLES backends without the the enums from the GL headers.
When using GLX the winsys additionally dynamically loads libGL because
that also contains the GLX API. It can't be linked in directly because
that would probably conflict with the GLES API if the EGL is
selected. When compiling with EGL support the library links directly
to libEGL because it doesn't contain any GL API so it shouldn't have
any conflicts.
When building for WGL or OSX Cogl still directly links against the GL
API so there is a #define in config.h so that Cogl won't try to dlopen
the library.
Cogl-pango previously had a #ifdef to detect when the GL backend is
used so that it can sneakily pass GL_QUADS to
cogl_vertex_buffer_draw. This is now changed so that it queries the
CoglContext for the backend. However to get this to work Cogl now
needs to export the _cogl_context_get_default symbol and cogl-pango
needs some extra -I flags to so that it can include
cogl-context-private.h
cogl-ext-functions.h now contains definitions for all of the core GL
and GLES functions that we would normally link to directly. All of the
code has changed to access them through the cogl context pointer. The
GE macro now takes an extra parameter to specify the context because
the macro itself needs to make GL calls but various points in the Cogl
source use different names for the context variable.
Instead of storing all of the feature function pointers in the driver
specific data of the CoglContext they are now all stored directly in
CoglContext. There is a single header containing the description of
the functions which gets included by cogl-context.h. There is a single
function in cogl-feature-private.c to check for all of these
functions.
The name of the function pointer variables have been changed from
ctx->drv.pf_glWhatever to just ctx->glWhatever.
The feature flags that get set when an extension is available are now
separated from the table of extensions. This is necessary because
different extensions can mean different things on GLES and GL. For
example, having access to glMapBuffer implies read and write support
on GL but only write support on GLES. The flags are instead set in the
driver specific init function by checking whether the function
pointers were successfully resolved.
_cogl_feature_check has been changed to assume the feature is
supported if any of the listed extensions are available instead of
requiring all of them. This makes it more convenient to specify
alternate names for the extension. Nothing else had previously listed
more than one name for an extension so this shouldn't cause any
problems.
The COGL_DEBUG=disable-texturing debug variable disables texturing in
the fixed function fragend by not bothering to enable the texture
targets. This wasn't working for the programmable fragends because the
texture targets don't need to be enabled to use them. This patch
modifies the two programmable backends to generate a constant value
for the texture lookups in the shader when the debug variable is
given.
The CoglDebugFlags are now stored in an array of unsigned ints rather
than a single variable. The flags are accessed using macros instead of
directly peeking at the cogl_debug_flags variable. The index values
are stored in the enum rather than the actual mask values so that the
enum doesn't need to be more than 32 bits wide. The hope is that the
code to determine the index into the array can be optimized out by the
compiler so it should have exactly the same performance as the old
code.
There are several places where we need to compare the texture state of a
pipeline and sometimes we need to take into consideration if the
underlying texture has changed but other times we may only care to know
if the texture target has changed.
For example the fragends typically generate programs that they want to
share with all pipelines with equivalent fragment processing state, and
in this case when comparing pipelines we only care about the texture
targets since changes to the underlying texture won't affect the
programs generated.
Prior to this we had tried to handle this by passing around some special
flags to various functions that evaluate pipeline state to say when we
do/don't care about the texture data, but this wasn't working in all
cases and was more awkward to manage than the new approach.
Now we simply have two state bits:
COGL_PIPELINE_LAYER_STATE_TEXTURE_TARGET and
COGL_PIPELINE_LAYER_STATE_TEXTURE_DATA and CoglPipelineLayer has an
additional target member. Since all the appropriate code takes masks of
these state bits to determine what to evaluate we don't need any extra
magic flags.
The ARBfp fragend was bypassing generating a shader if the pipeline
contains a user program. However it shouldn't do this if the pipeline
only contains a vertex shader. This was breaking
test-cogl-just-vertex-shader.
The GLES2 wrapper is no longer needed because the shader generation is
done within the GLSL fragend and vertend and any functions that are
different for GLES2 are now guarded by #ifdefs.
Once the GLES2 wrapper is removed then we won't have the GLenums
needed for setting up the layer combine state. This adds Cogl enums
instead which have the same values as the corresponding GLenums. The
enums are:
CoglPipelineCombineFunc
CoglPipelineCombineSource
and
CoglPipelineCombineOp
The GLSL vertend is mostly only useful for GLES2. The fixed function
vertend is kept at higher priority than the GLSL vertend so it is
unlikely to be used in any other circumstances.
The pipeline function _cogl_pipeline_find_codegen_authority has been
renamed to _cogl_pipeline_find_equivalent_parent and it now takes a
set of flags for the pipeline and layer state that affects the
authority. This is needed so that we can reuse the same code in the
vertend and progends.
Previously enabling and disabling textures was done whatever the
backend in cogl-pipeline-opengl. However enabling and disabling
texture targets only has any meaning if no fragment shaders are being
used so this patch moves the code to cogl-pipeline-fragend-fixed.
The GLES2 wrapper has also been changed to ignore enabledness when
deciding whether to update texture coordinate attribute pointers.
The current Cogl pipeline backends are entirely concerned with the
fragment processing state. We also want to eventually have separate
backends to generate shaders for the vertex processing state so we
need to rename the fragment backends. 'Fragend' is a somewhat weird
name but we wanted to avoid ending up with illegible symbols like
CoglPipelineFragmentBackendGlslPrivate.