Allow only specific files to use those deprecated APIs making
it easier to find where deprecated APIs are still in use
and avoid introducing new usages without being noticed
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3400>
Currently, json-glib is used for two things:
- For loading scripts, nothing seems to use that in real life other
than some tests
- For debugging paint nodes
For now, the PR drops the first use case and only require json-glib
if it is a debug build
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3354>
A MetaEisViewport represents an absolute region backend by e.g. a
pointer device. There are two kinds: a standalone viewport, which
corresponds to a viewport that has no neighbours, and a non-standalone,
which represents a region of a global coordinate space.
The reason for having non-standalone viewports is to allow to mirror the
logical monitor layout of a desktop, while the standalone are meant to
represent things that are not part of the logical monitor layout.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3228>
The 'suspend state' is meant to track whether a window is likely to be
visible any time soon. The hueristics for this are as follows:
* If a window is hidden, it will enter the 'hidden' state.
* If a window is visible, and unobscured, it will enter the 'active'
state.
* If a window is visible, but obscured by another window, it will enter
the 'hidden' state.
* If there is a mapped clone of a window, it will enter the 'active'
state.
* If the window has been in the 'hidden' state for 3 seconds, it will
enter the 'suspended' state.
This will eventually be communicated to Wayland clients so that they can
change their behaviour to e.g. save power.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3019>
In future commits, we want to be able to handle more complex textures,
such as video frames which are encoded in a YUV-pixel format and have
multiple planes (which each map to a separate texture).
To accomplish this, we introduce a new object `MetaMultiTexture`: this
object can deal with more complex formats by handling multiple
`CoglTexture`s.
It supports shaders for pixel format conversion from YUV to RGBA, as
well as blending. While custom bleding is currently only required for
YUV formats, we also implement it for RGB ones. This allows us to
simplify code in other places and will be needed in the future once
we want to support blending between different color spaces.
Co-Authored-By: Robert Mader <robert.mader@collabora.com>
Co-Authored-By: Sebastian Wick <sebastian.wick@redhat.com>
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2191>
1. Move into the new 'common' folder and build for Wayland as well
so we will be able to share the code in follow-up commits.
2. Rename to cogl-drm-formats to make it more obvious that the format
map is more than an utility these days.
3. Drop the unused CoglTextureComponents part (see also previous
commit).
4. Move the map to the header, simplifying some future use-cases.
5. Sync formats with MetaWaylandBuffer and MetaWaylandDmaBufBuffer and
also use newly introduced opaque formats where appropriate.
This avoids duplicated code, ensures that new drm-formats added to
the dmabuf protocol have an adequate representation in Cogl from which
information like alpha support can be easily derived and finally
ensures we don't crash if the mappings got out of sync.
6. Remove some likely untested formats. In case some of these are
actually needed on certain hardware, we can test whether we got
the correct mapping by also adding support for the corresponding
wl_shm_format in MetaWaylandBuffer by extending the gradient test in
https://gitlab.freedesktop.org/jadahl/wayland-test-clients
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3065>
This new manager object intends to take over management of the cursor
plane from the native cursor renderer. It's API is intended to be used
from the main thread, except for the _in_input() function, but mainly
operates in the KMS context, i.e. the KMS thread.
It makes use of an "update filter" that is called before each
MetaKmsUpdate is turned into a atomic KMS commit or a set of legacy
drmMode*() API calls. When the cursor position has been invalidated,
it'll assign the cursor plane in the filter callback, using an as up to
date as possible pointer position as the source for the cursor plane
position.
Cursor updates from the input thread schedules updates for the affected
CRTCs which will cause the filter to be run, potentially for cursor-only
commits.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2777>
It currently does exactly what MetaKms and MetaKmsImpl did regarding the
context separation, which is to isolate what may eventually run on a KMS
thread into a separate unit. It works somewhat like a "user thread",
i.e. not a real thread, but will eventually learn how to spawn a
"kernel thread", but provide the same API from the outside.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2777>
This adds the actual input capturing rerouting that takes events and
first hands them to the input capture session, would it be active.
Events are right now not actually processed in any way, but will
eventually be passed to a libei client using libeis.
A key binding for allowing cancelling the capture session is added
(defaults to <Super><Shift>Escape) to avoid getting stuck in case the client
doesn't even terminate the session.
The added test case makes sure that the pointer moves again after
pressing the keybinding.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2628>
This API aims to provide a way for users to capture input devices under
certain conditions, for example when a pointer crosses a specified
barrier.
So far only part of the API is implemented, specifially the session
management as well as zone advertisement, where a zone refers to a
region in the compositor which edges will eventually be made available
for barrier placement.
So far the remote access handle is created while the session is enable,
despite the input capturing isn't actually active yet. This will change
in the future once it can actually become active.
v2: Remove absolute/relative pointer, keep only pointer (ofourdan)
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2628>
Hides libdisplay-info under a build time default-off flag,
provides provision to parse essential edid parameters with
APIs provided by libdisplay-info. This implementaion increases
readibility, avoids code duplication and decreases complexity
of edid parsing.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2642>
Do the few remaining things that GDK is doing for us:
- Open and close the X11 Display
- Set up a GSource on the Display FD to handle events
- Allocate and free the content of XGenericEventCookie,
to "unroll" the few XInput2 events that Mutter still
does handle.
And remove the GdkDisplay we've so long relied on.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2864>
MetaRendererViewNative is a MetaRendererView which contains logic
specific to views of the native backend. It will be used by following
commits.
In the future, per-view logic from MetaRendererNative can be moved to
MetaRendererViewNative where it makes more sense to have it.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2855>
This class is intended to be used as a base class for D-bus interface
implementations that deal with "session" objects, i.e. a D-Bus object
representing a certain session of some kind, e.g. a screen cast session.
It handles things such as hooking up to the D-Bus client watcher,
generates IDs, handles shutdown procedures.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2713>
This protocol is intended to let special clients create transient-for
relationships between X11 and Wayland windows. The client that needs
this is xdg-desktop-portal-gnome, which will create e.g. file chooser
Wayland dialogs that should be mapped on top of X11 windows.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2810>
The service channel D-Bus interface aims to be a "back door" for
services that needs special casing in Mutter, e.g. have custom private
protocols only meant to be used by that particular service.
There are currently no special casing implemented; only the basic
service channel infrastructure is added. There is a single method on the
interface, that is meant to eventually be used by
xdg-desktop-portal-gnome to open a Wayland connection with a private
protocol needed for the portal backend's rather special window
management needs.
The service channel Wayland client works by allowing one instance of
each "type", where each time needs to be defined to work in parallel. If
a new service client connects, the old one will be disconnected.
MetaWaylandClient's are used to manage the service clients, and are
assigned the service client type.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2810>
One can add a wl_global filter to a wl_display instance, which can be
used to decide what clients should see what globals. This has so far
been used to limit a Xwayland specific protocol extension to only
Xwayland. In order to expand the logic about what globals are filtered
to what clients, introduce a filter manager and port the Xwayland
specific protocol filter to this new manager.
Tests are added, using a new dummy protocol, to ensure that filtering is
working as expected.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2810>
This API creates a "client" then later sets up a wl_client and returns a
file descriptor some Wayland client can connect to. It's meant to be
used as a method other than WAYLAND_SOCKET and process launching, e.g.
passing a file descriptor via a D-Bus API.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2810>
This compositor-side object will single-handedly drive a window
drag operation. Currently, this largely copies meta_display_begin_grab_op
and meta_display_end_grab_op, except grabbing is done through a
ClutterGrab instead of direct meta_backend_grab_device() calls. This
also means that the switch from passive to active keyboard grabs is
handled differently.
Currently, this object is dormant. It requires moving more code from
other places to become a fully functional replacement.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2683>
When sysprof-4 and libsysprof-capture-4 are installed into different
prefixes, such as with Nix package manager, the D-Bus interfaces
are likely not discoverable from the latter package.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2572>
This replaces the v1 implementation, which is now renamed to
legacy-xdg-foreign. Both implementations use the same data structures
internally, so that protocol version mismatches between
the importer client and exporter client don't fail.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2770>
This small X11 client takes care of creating frames for client
windows, Mutter will use this client to delegate window frame
rendering and event handling.
The MetaWindowTracker object will keep track of windows created
from other clients, and will await for _MUTTER_NEEDS_FRAME property
updates on those (coming from Mutter), indicating the need for a
frame window.
This process is resilient to restarts of the frames client, existing
windows will be queried during start, and the existence of relevant
properties checked. Mutter will be able to just hide/show
SSD-decorated windows while the frames client restarts.
The frames are created through GTK4 widgets, the MetaWindowContent
widget acts as a replacement prop for the actual client window,
and the MetaFrameHeader wraps GtkHeaderBar so that windows can be
overshrunk, but otherwise a MetaFrame is a 100% true GTK4 GtkWindow.
After a frame window is created for a client window, the
_MUTTER_FRAME_FOR property will be set on the frame window,
indicating to mutter the correspondence between both Windows.
Additionally, the pixel sizes of the visible left/right/top/bottom
borders of the frame will be set through the _MUTTER_FRAME_EXTENTS
property, set on the frame window.
In order to make the frame window behave as the frame for the
client window, a number of properties will be tracked from the
client window to update the relevant frame behavior (window title,
resizability, availability of actions...), and also some forwarding
of events happening in the frame will be forwarded to the client
window (mainly, WM_DELETE_WINDOW when the close button is clicked).
Other than that, the frames are pretty much CSD GTK4 windows, so
window drags and resizes, and window context menus are forwarded for
the WM to handle.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2175>