We don't want to limit ourself to whole integers for configuration, as
that'd mean it wouldn't be able to provide configurations for
fractional scalings. Thus, change scales to be referred to as floats
instead of ints.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Add a 'is_underscanning' entry to the properties map, if the monitor
supports underscanning. The client should assume a monitor does not
support underscanning if no property was added.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Add a D-Bus method for getting the current monitor and logical monitor
state. Currently does not contain information about transforms or any
limitations (such as limited CRTCs and cloning).
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Let the backends decide whether to just rebuild a derived state, or use
the NULL config to rebuild an empty logical state.
This also changes the expected screen size values of the no-outputs
test; as this case is actually handled now.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Add support to configure the logical monitor scale. With this, it
becomes possible to override the automatically calculated scaling
number per logical monitor.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Replace the 'scale' of an output with a vfunc on the MetaMonitorManager
class that takes a monitor and a monitor mode which calculates the
scale. On X11 this always returns 1, on KMS, the old formula is used.
On the dummy and test backends, the already configured values are
returned.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
The default (calculated) scale is derived from the output, but
ultimately set via the monitor scale. This will enable config files to
override the scale. Yet to be done is handling when a scale is not
supported by a backend (i.e. the X11 backend).
https://bugzilla.gnome.org/show_bug.cgi?id=777732
In some cases the hardware cursor is invisible when Mutter is launched from the
TTY, due to drmModeSetCursor2 failing without a fallback being set.
This patch captures the return value of drmModeSetCursor2 and in case of an
error, enables the texture based fallback. It adds a `broken` state, that is
checked in should_have_hw_cursor() and
meta_cursor_renderer_native_realize_cursor_from_*() to avoid copying every
cursor into a gbm buffer when we know it will fail every single time.
https://bugzilla.gnome.org/show_bug.cgi?id=770020
Quick motions can come across as too fast (or slow) if it crosses outputs
with different scales. If this happens, rebuild the motion delta applying
the scale that applies to each logical monitor the pointer is crossing.
https://bugzilla.gnome.org/show_bug.cgi?id=778119
To allow for more natural pointer movements from relative pointer
devices (e.g. mouse, touchpad, tablet tool in relative mode, etc), scale
the relative motion from libinput with the scale of the monitor. In
effect, this means that the pointer movement is twice as fast (physical
movement vs numbers of pixels passed) as before, but it also means that
the same physical movement crosses the distance in a GUI no matter if
it is on a HiDPI monitor or not.
https://bugzilla.gnome.org/show_bug.cgi?id=778119
Clutter's evdev input backend has no support for setting double
click timeout set by gnome-settings-daemon. This results in
touchpad click events timing out on wayland, because the
default timeout value wasn't enough.
This patch moves timeout setting to mutter and removes X11
backend specific setting from clutter.
https://bugzilla.gnome.org/show_bug.cgi?id=771576
The code calculating the output scale involves calculations around pixel
and mm sizes, however we do compare post-transformation pixel sizes to
untransformed mm sizes, which breaks the DPI calculations. Fix this by
transforming back pixel sizes back to untransformed.
While we're at it, actually compare the output height to HIDPI_MIN_HEIGHT
instead of its width, it seems right according to the #define name and
comment.
https://bugzilla.gnome.org/show_bug.cgi?id=777687
When a state changed, e.g. a window went from unfullscreen to
fullscreen, always sync the window geometry, otherwise a compositor
application (e.g. gnome-shell) might end up with an unfinished window
state transition effect.
Without always syncing, the compositor plugin will see a 'size-change'
event, as a result of the state change, but if the size didn't change,
it would never see the 'size-changed' event. If an effect, for example
gnome-shell's fullscreen effect, is triggered on 'size-change' it might
rely on the actual size change to not get stuck. This commit allows it
to have this dependency.
This fixes a bug where a fullscreen effect gets "stuck" when a window
goes fullscreen without changing the window geometry.
https://bugzilla.gnome.org/show_bug.cgi?id=780292
The mitigation to avoid missing EDID blob was incorrect; the reason it
sometimes failed to read was a race between different applications all
trying to read the EDID at the same time. E.g. gnome-shell as GDM would
at the same time as the session gnome-shell try to read the EDID of the
same connector at the same time, triggering a race in the kernel,
making the blob reading ioctl occationally fail with ENOENT.
Remove this mitigation, as it didn't really mitigate anything; the race
could just as well happen when doing the actual read later.
https://bugzilla.gnome.org/show_bug.cgi?id=779837
When mutter is paused (i.e. not the DRM master), stop listening on
hotplug events. Instead read the current state and set modes when
resumed.
This avoids a race condition in the drm API which currently only
manages to properly deal with one application querying the EDID state
at the same time when there are multiple mutter instances running at
the same time (e.g. gnome-shell driving gdm at the same time as
gnome-shell as the session instance).
https://bugzilla.gnome.org/show_bug.cgi?id=779837
If the dnd window ends up lower in the overall stack than the window
it's supposed to fence, the drop might end up in some other window
underneath the expected target window.
Maps and raises the dnd window each time it's shown so that it's always
placed above.
Bugzilla: https://bugzilla.gnome.org/show_bug.cgi?id=779800
A MetaOutput is a connector, not exactly a monitor or a region on the
stage; for example tiled monitors are split up into multiple outputs,
and for what is used in input settings, that makes no sense. Change
this to use logical monitors instead of outputs.
https://bugzilla.gnome.org/show_bug.cgi?id=779745
When no output was specified, the screen limit was used to calculate the
aspect ratio. The screen limit, however, is either just an arbitrary
number if no screen limit is applicable, or a hardware graphics buffer
limit, which has nothing to do with anything actually displayed. Change
it to use the screen size instead, to get something that makes more
sense when no output is found.
https://bugzilla.gnome.org/show_bug.cgi?id=779745
Expose via a new API whether the transform on a logical monitor is
handled by the backend. This was previously only exposed only in the
native backend. This will be used to emulate not supporting transforms
in the backend in the nested backend.
https://bugzilla.gnome.org/show_bug.cgi?id=779745
Previously, the size of the logical monitor was derived directly from
the tiling information. This works fine until we add transformations,
or set modes with a dimension different from the resulting resolution
when tiled. Fix this by traversing the assigned CRTC rects, as these
are already transformed by the configuration system.
https://bugzilla.gnome.org/show_bug.cgi?id=779745
By setting the environment variable MUTTER_DEBUG_TILED_DUMMY_MONITORS
to "1", the dummy MetaMonitorManager backend used when running mutter
nested will create tiled monitors instead of single-output/CRTC
monitors. This makes it possible to test tiled monitor configuration.
https://bugzilla.gnome.org/show_bug.cgi?id=779745
Refactor monitor generation by splitting the generation of modes, CRTCs
and outputs into a separate function. A side effect is that each output
will have its own set of possible modes.
https://bugzilla.gnome.org/show_bug.cgi?id=779745
Split up logical monitor cration into derived (when derived from
current underlying configuration) and non-derived (when creating from a
logical monitor configuration). This avoids that type of logic in the
logical monitor creation function.
https://bugzilla.gnome.org/show_bug.cgi?id=779745
Add support for non-tiled monitor modes on tiled monitors. This is done
by adding all the other supported modes, except the modes with the
same resolution as the tile dimensions.
https://bugzilla.gnome.org/show_bug.cgi?id=779745
When adding a monitor and all its outputs, don't try to set the logical
monitor of the outputs CRTC if none was assigned. This might happen if
a tiled monitor only uses a subset of the connectors it are connected
via.
https://bugzilla.gnome.org/show_bug.cgi?id=779745
Don't set the CRTC rect and screen size at in read_current(), as those
depends on how the configuration is done. Instead, don't set the CRTC
rect at all, and update the screen dimensions when being configured.
https://bugzilla.gnome.org/show_bug.cgi?id=779745
QT apps reject DnD if the timestamp received in the SelectionRequest
event isn't the same it gave in XdndPosition/Drop client messages.
Bookkeeping and using it in XConvertSelection makes it happy again.
https://bugzilla.gnome.org/show_bug.cgi?id=779757
We are keeping accounting of the focus window as seen by the DnD bridge
right here, so use it instead of the MetaWaylandDragGrab focus as it may
lag behind the real focus (i.e. till the drag source notices the window
and sends XdndEnter to it).
This leads to the window trying to be repositioned more often than
necessary when the drag source takes long to send the XdndEnter client
message, and maybe not repositioned at all if the pointer leaves the
surface while no XdndEnter message was received.
https://bugzilla.gnome.org/show_bug.cgi?id=763246
We currently wait for the selection being cleared by the drag source,
which might not happen on not quite educated clients. This may leave
a stuck XDND grab in the compositor side.
We can actually do a bit better, and clear the grab if:
1) The drag source sent XdndDrop to the wayland drag destination.
2) There's no accepting drag destination and all pointer buttons are
released.
3) As usual, whenever the drag source clears the selection data
https://bugzilla.gnome.org/show_bug.cgi?id=763246
No XDnD events which notify DnD status change comes in Wayland. To emulate XDnD
behavior, MetaDnd checks whether there is a grab or not when the modal window
starts showing. When there is a grab, it processes the raw events from
compositor, and emits DnD signals for plugin.
https://bugzilla.gnome.org/show_bug.cgi?id=765003
Implement MetaDnd for emitting DnD signals to plugins such as gnome-shell. The
xdnd handling code comes from gnome-shell, and it is hidden behind MetaDnd now.
https://bugzilla.gnome.org/show_bug.cgi?id=765003
When running nested, the pointer can be outside of the stage, meaning
outside of any logical monitor. Handle this when getting the current
logical monitor by falling back to the first logical monitor when the
pointer coordinate is outside of any logical monitor.
https://bugzilla.gnome.org/show_bug.cgi?id=779001
Whenever an EGLOutput consumer is temporary unable to handle
eglStreamConsumerAcquire() operations (e.g. during a VT-switch),
an EGL_RESOURCE_BUSY_EXT error is generated.
This change adds the appropriate error handling to flip_egl_stream() in
order to recover from such errors.
https://bugzilla.gnome.org/show_bug.cgi?id=779112
This change adds descriptions for the following errors to
get_egl_error_str():
- EGL_BAD_STREAM_KHR
- EGL_BAD_STATE_KHR
- EGL_BAD_DEVICE_EXT
- EGL_BAD_OUTPUT_LAYER_EXT
https://bugzilla.gnome.org/show_bug.cgi?id=779112
Ungrabbed pointer motion events over a client window area don't even
reach mutter in X compositor mode, but as a wayland compositor we
process those events which ends up in a call stack like:
- meta_window_handle_ungrabbed_event
- meta_ui_frame_handle_event
- handle_motion_notify_event
- get_control
- meta_ui_frame_calc_geometry
Computing frame geometry is a relatively CPU expensive operation and
doing it on every motion event over a client window is pointless work
since we aren't going to change the cursor or prelight any frame
widget.
This commit special cases the determination of
META_FRAME_CONTROL_CLIENT_AREA using a much faster method. When
continuously moving the pointer over an X (client) window, it results
in a ~40% decrease in mutter cpu usage.
https://bugzilla.gnome.org/show_bug.cgi?id=779436
Set up things so that if the INTEL_swap_event extension is not present,
but the driver is known to have good thread support, we use an extra
thread and call glXWaitVideoSync() in the thread. This allows idles
to work properly, even when Mutter is constantly redrawing new frames;
otherwise, without INTEL_swap_event, we'll just block in glXSwapBuffers().
https://bugzilla.gnome.org/show_bug.cgi?id=779039
Commits 6dbec6f8, 734402e1 and f041b35b introduced memory leaks by
switching to returning copies instead of the original buffers but
forgetting to free those original buffers.
Some error cases were also not freeing the ->prop buffer as they
should.
https://bugzilla.gnome.org/show_bug.cgi?id=642652
Wayland windows can be zero sized until clients attach a buffer, but
our rectangle code doesn't deal with this case well, in particular,
meta_screen_get_monitor_for_rect() might end up choosing the wrong
monitor for a zero sized rectangle since
meta_rectangle_contains_rect() considers a zero sized rectangle at the
right or bottom edges of another rectangle (the monitor's) to be
contained there.
Since out size limits constraint will enforce a minimum size of 1x1,
we might as well enforce that when setting up the constraint info so
that the correct monitor gets chosen and the single monitor constraint
doesn't move these windows to the wrong one.
https://bugzilla.gnome.org/show_bug.cgi?id=772525
Wayland windows are initially zero sized until clients commit the
first buffer. Despite being invisible, clients are allowed to request
such windows to be fullscreened on a specific output before they
attach the first buffer which means we need to be able to move them.
meta_window_move_to_monitor() doesn't handle this case because these
windows' initial monitor is a placeholder since their initial
coordinates are 0,0+0+0, which results in us using a rectangle as
old_area for meta_window_move_between_rects() that might be to the "right"
of the window causing the move to go further out of the visible
screen's coordinates. This is later "corrected" by the constraints
system but the window might end up in the wrong monitor.
To fix this, we can make meta_window_move_between_rects() accept a
NULL old_area, meaning that we move the window to the new_area without
trying to keep a relative position.
https://bugzilla.gnome.org/show_bug.cgi?id=772525
The reason for the display to be closed may be meta_screen_new()
returning NULL, in which case we don't have a screen to free.
Avoid a segfault on exit by adding a proper check.
https://bugzilla.gnome.org/show_bug.cgi?id=778831
We currently don't have any shadow class for combo box popups,
which means the default shadow of normal windows is used. That's
clearly odd given that the two are very different, and isn't
consistent with GTK+-3's client-side shadows for popups. While
we could add a dedicated shadow class, the designers are fine
with reusing the existing shadow for dropdown-menus, so let's
do that.
https://bugzilla.gnome.org/show_bug.cgi?id=744667
Split up the X11 backend into two parts, one for running as a
Compositing Manager, and one for running as a nested Wayland
compositor.
This commit also cleans up the compositor configuration calculation,
attempting to make it more approachable.
https://bugzilla.gnome.org/show_bug.cgi?id=777800
In order to minimize the amount of breakage, while at the same time
making it easier to make backward incompatible changes needed to
continue turning libmutter into a capable Wayland compositor, make the
libmutter and friends (libmutter-clutter, libmutter-cogl*) parallel
installable by adding a version number to the name. This changes
various filenames, for example what previously was libmutter.so is now
libmutter-0.so (assuming the version for now is 0), and
libmutter-clutter-1.0.so is now libmutter-clutter-0.so. The pkg-config
filenames and GObject introspection has been renamed to reflect this as
well.
This enables a downstream compositor rely on a specific version of the
libmutter API, while gracefully handling API/ABI changes by having to
update to the new version at their own pace.
https://bugzilla.gnome.org/show_bug.cgi?id=777317
This signal provides the necessary information to let gnome-shell trigger
updates of pad leds/oleds whenever a pad group switches mode, and the
actions associated to buttons do too.
https://bugzilla.gnome.org/show_bug.cgi?id=776543
And add specific private methods to notify about tablet mapping and mode
switches. The signal allows the mutter side to trigger OSDs in a generic
way.
https://bugzilla.gnome.org/show_bug.cgi?id=771098
As all the relevant backends are expected to provide
ClutterPadButtonEvents, it makes no sense to split the information,
plus all other event fields are now available and might be needed
in the future.
https://bugzilla.gnome.org/show_bug.cgi?id=771098
Using ClutterInputDeviceEvdev::output-aspect-ratio. This only applies
to devices which are not calibratable, so again we need to implement
this at the toolkit level.
https://bugzilla.gnome.org/show_bug.cgi?id=774115
We couldn't properly merge output-mapping matrix and calibration into
one. Now that libinput calibration matrix is free to use, we can
actually implement tablet calibration with it.
https://bugzilla.gnome.org/show_bug.cgi?id=774115
Function "handle_raise_or_lower (src/core/keybindings.c)" is called
when running 'raise-or-lower' on a window. This function iterates
through all the windows in the stack to determine if our window is
already on top or obscured. The problem is that the window stack
includes windows in another workspaces and also windows that are
minimized.
https://bugzilla.gnome.org/show_bug.cgi?id=705200
The initial state of the hardware cursor is not known, so always force
update it the first time we update the cursor. Do this by changing the
'force' flag of update_hw_cursor() to an 'invalidated' hw cursor state.
https://bugzilla.gnome.org/show_bug.cgi?id=771056
Clutter assumed seat0 which is most usually, but not always correct.
Add an evdev-backend specific function to allow passing the seat
that will be used for ClutterDeviceManager construction, which we
already obtain in MetaLauncher.
https://bugzilla.gnome.org/show_bug.cgi?id=778092
If the meta_window_actor_effect_completed() triggers inconsistent
accounting, there's also high chances that the thaw call will be
unexpected at this time too, which will lead to a g_error().
This makes mutter more lenient to effect_completed() calls of the
right type (i.e. those triggering freeze/thaw) being performed more
times than necessary in the upper parts. A warning will be issued,
but the process won't abort.
https://bugzilla.gnome.org/show_bug.cgi?id=777691
Make sure that each logical monitor owns the expected actual monitors.
This currently needs special care when dealing with laptop lid the
configuration, as the MetaMonitorConfigManager path still deosn't
handle restoring the previous configuration, meaning the logical
monitor with the external monitor will continue being primary.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
This is partly redundant given that the current monitor mode is checked
against the CRTC mode, but this also checks the disabled CRTCs. Later
the configured mode position and transform will be checked.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Check that the crtc mode has the correct intra-monitor position. In
effect, this tests that the CRTCs in a tiled monitor are configured with
the correct mode on the correct position.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
The MetaOutput::is_primary state was not correctly managed in two cases:
* for tiled monitors, the primary state got overridden when setting
the preferred resolution
* for laptop lid, it was not set if the laptop panel happened to be
the first output
https://bugzilla.gnome.org/show_bug.cgi?id=777732
The main output of the main (first) monitor of a primary logical
monitor should have the MetaOutput::is_primary field set; all other
outputs should have it not set.
All outputs associated with a logical monitor with presentation set
should have MetaOutput::is_presentation set. No other outputs should
have it set.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Add a flag to the test setup creation function enabling the caller to
specify whether a stored config should be used. This is done by
changing the value of the hotplug_mode_update MetaOutput field,
normally used by VMs to do the same.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Both the monitor unit tests and monitor store unit tests will want to
check whether the config manager is used and set custom configuration
files.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
MetaMonitorConfigStore provides an XML storage mechanism for
MetaMonitorConfigManager. It stores configuration files defined in the
same level as the MetaMonitorsConfig format, i.e. refers to high level
"monitors" and "monitor modes" instead of connectors and CRTCs.
Only reading custom files are implemented and so far unused.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Don't let a dummy option context consume the arguments; just let the
GLib test suite do it. It'll handle the basic command line arguments
and allow doing things such as specifying what test to run.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
This tests only the monitor configuration and basic functionality. It
does not test anything related to window management and Wayland client
interaction.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Handle headless setup gracefully by having no logical monitors. This
commit only makes the monitor management code deal with it; other areas
may still not be able to handle it.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Use the g_assert_cmp(int|uint|...) macros when comparing integers and
unsigned integers. This means that the mismatched numbers are printed
in the test report.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Add a meta_monitors_config_new() helper. It's exposed outside of
meta-monitor-config-manager.c already, as it'll be used externally in a
later commit.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Add a test case that checks that configuration works when the lid is
initialy closed then later opened. This test case is disabled when the
legacy configuration is used as it does not handle that situation.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Handle configuring when the laptop lid is closed. This is so far
handled by creating a linear configuration while ignoring the laptop
panel. Changing the current configuration will come later.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Move the UpClients notify::lid-is-closed signal handling into
MetaMonitorManager, and put the getter behind a vfunc. This means
Placing it behind a vfunc allows custom backends to implement it
differently; for example the test backend can mock the state.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Adds an API to get the position suggested by the backend. This
translates to position advertised by some VM:s, used to hint at a
position making the position more natural (i.e. placed similarly to how
it may be placed on the host desktop).
https://bugzilla.gnome.org/show_bug.cgi?id=777732
The new monitor configuration system (MetaMonitorConfigManager) aims to
replace the current MetaMonitorConfig. The main difference between the
two is that MetaMonitorConfigManager works with higher level input
(MetaMonitor, MetaMonitorMode) instead of directly looking at the CRTC
and connector state. It still produces CRTC and connector configuration
later applied by the respective backends.
Other difference the new system aims to introduce is that the
configuration system doesn't manipulate the monitor manager state; that
responsibility is left for the monitor manager to handle (it only
manages configuration and creates CRTC/connector assignments, it
doesn't apply anything).
The new configuration system allows backends to not rely on deriving the
current configuration from the CRTC/connector state, as this may no longer be
possible (i.e. when using KMS and multiple framebuffers).
The MetaMonitorConfigManager system is so far disabled by default, as
it does not yet have all the features of the old system, but eventually
it will replace MetaMonitorConfig which will at that point be removed.
This will make it possible to remove old hacks introduced due to
limitations in the old system.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Operate on MetaMonitor's instead of MetaOutput's, as the latter may be
only a subset of an actual "monitor" when referring to the physical
computer equipment.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
When a logical monitor constains monitors with different subpixel
ordering, make the wl_output have the subpixel order 'unknown' so that
clients don't make assumptions given only a subset of the monitors of
the given region.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Sometimes we hit a race on hot-plug where we try to read the KMS
resources and the EDID blob is not yet ready. This would normally
result in a ENOENT when retrieving the blob. Handle this by retrying
after 50 milliseconds after a hot-plug event. Do this up to 10 times,
and after that give up trying to get the EDID blob and continue with
best effort.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
The function meta_monitor_manager_read_current_config() was renamed to
meta_monitor_manager_read_current_state() as it does not read any
configuration, but reads the current state as described by the backend.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
In preparation of replacing the configuration system with one working
with high level monitors instead of low level outputs etc, move
configuarion handling code into obviously named function (containing
the word 'legacy'.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
A monitor spec object is meant to be used to identify a certain monitor
on a certain output. The spec is unique per actual monitor and connector,
meaning that a monitor that changes from one connector from another
(e.g. HDMI1 to HDMI2) will not be identified as the same. It is meant
to associate for example a configuration entry with an actual monitor.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Add a "mode spec" concept, meaning to be used as a identifier for an
actual monitor mode. It consists of details making a mode unique, i.e.
the total resolution and refresh rate. This will later be used to get
the actual monitor mode (set of one or more CRTC modes).
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Add "monitor modes" abstracting the modes set on a monitor. On normal
monitors, this directly maps to the CRTC modes, but on tiled monitors,
a monitor mode can consist modes per tiled output.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Don't try to mirror the physical dimension, since that's a property of
one of the monitors, not of the logical monitor. Callers are changed to
deal with choosing the monitor to represent the logical monitor.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Don't deal with adding/removing tiled Xrandr monitors in the generic
backend, but leave it to the Xrandr backend. The tiled monitor will
itself notify the backend when such a monitor is added and removed.
Tiled Xrandr monitors are now based no MetaMonitor instead of
MetaLogicalMonitor. This means that mirrored tiled monitors will now be
represented correctly.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Instead of using crtcs and outputs to generate logical monitors, use
the ready made monitor abstraction that hides irrelevant things such as
monitor tiling etc.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Generate a set of "monitors" abstracting the physical concepts. Each
monitor is built up of one or more outputs; multiple outputs being
tiled monitors. Logical monitors will later be built from these.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
The MetaMonitorMode referred to the mode of a CRTC, and with the future
introduction of a MetaMonitor, theh old name would be confusing.
Instead call it what it is.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Set up the expected result in a declarative way in the same place as
the test case setup is declared. This way we have a completely
declarative way to create test cases.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Add private API for overriding the compositor configuration, i.e. the
compositor type (X11 WM or Wayland compositor) and backend type. This
will make it possible to add a special test backend used by src/tests/.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Put the monitor xinerama index in a separate struct that is attached to
the logical monitor using g_object_set/get_qdata(). Eventually this
should be moved to some "X11 window manager" object, but lets keep it
in MetaScreen until we have such a thing.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Don't store logical monitor specific state in an array where the index
from the monitor manager is used as index locally. Instead just use
table associating a logical monitor with a monitor specific state
holder, and store the state in there. This way we don't have the
workspace implementation relying on implementation details of other
units.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Instead of storing the logical monitors in an array and having users
either look up them in the array given an index or iterate using
indices, put it in a GList, and use GList iterators when iterating and
alternative API where array indices were previously used.
This allows for more liberty regarding the type of the logical monitor.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Refactor the tiled monitor assembly code (that constructs a logical
monitor out of tiling information. Part of the reason is to move away
from array based storage, part is to make the code easier to follow,
and part is to separate logical monitor construction from list
manipulation.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Rewrite check_fullscreen_func to not use indexes (and
offset-index-as-pointer) tricks. This also removes the usage of an API
constructing temporary logical monitor arrays carrying indices.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Change meta_monitor_manager_get_logical_monitor_at() to use floats,
replace users of meta_monitor_manager_get_monitor_at_point() to use the
API that returns a logical monitor and remove the now unused function.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Move the last piece of monitor grid getter API to the monitor manager
away from MetaScreen. The public facing API are still there, but are
thin wrappers around the MetaMonitorManager API.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
The method used for getting the current logical monitor (the monitor
where the pointer cursor is currently at) depends on the backend type,
so move that logic to the corresponding backends.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Turning a rectangle into a logical monitor also has nothing to do with
the screen (MetaScreen) so move it to MetaMonitorManager which has that
information.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Let the backend initialize the cursor tracker, and change all call
sites to get the cursor tracker from the backend instead of from the
screen. It wasn't associated with the screen anyway, so the API was
missleading.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Instead of keeping around array indexes, keep track of them by storing
a pointer instead. This also changes from using an array (imitating the
X11 behaviour) to more explicit storing.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
To complement the current API which takes an index referencing a
logical monitor in the logical monitor array, add API that takes a
direct reference to the logical monitor itself. The intention is to
replace the usage of the index based API with one that doesn't rely on
internal implementation details.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
This is the current equivalent of looking up the logical monitor in the
logical monitor array using the number, but eventually that will be
deprecated, and before that done differently, so add a temporary helper
for the places that has not been ported yet.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
It was just pointer to the actual list; having to synchronize a list of
logical monitors with the actual monitors managed by the backend is
unnecessary.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
The fullscreen monitors state is set given a set of xinerama monitor
identification numbers. When the monitor configuration changes (e.g. by
a hotplug event) these are no longer valid, and may point to
uninitialized or unallocated data. Avoid accessing
uninitialized/unallocated memory by clearing the fullscreen monitor
state when the monitor configuration changes.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
It checks whether a surface is on a given "logical monitor", not
output. Output here is the Wayland name for the same thing, but should
not be confused with MetaOutput.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
In preparation for further refactorizations, rename the MetaMonitorInfo
struct to MetaLogicalMonitor. Eventually, part of MetaLogicalMonitor
will be split into a MetaMonitor type.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
src/backends/meta-egl.c: In function ‘set_egl_error’:
src/backends/meta-egl.c:144:16: error: format not a string literal and no format arguments [-Werror=format-security]
error_str);
^~~~~~~~~
https://bugzilla.gnome.org/show_bug.cgi?id=777389
Use the proposed EGL_WL_wayland_eglstream EGL extension instead of the
file descriptor hack that was used as a temporary solution.
Note that this results in EGL clients will no longer work if they are
running on a Nvidia driver with a version older than 370.
https://bugzilla.gnome.org/show_bug.cgi?id=773629
Instead of having a way to determine the type of a buffer, add a
realization step that implicitly detects the buffer type. This makes it
possible to both realize (i.e. creating needed objects from the buffer)
and determine the type at the same time, which may be the only possible
way (for example, the only way to know whether a buffer is a EGLStream
is to create the EGLStream from it).
https://bugzilla.gnome.org/show_bug.cgi?id=773629
When the monitor the surface is on has a scale other than 1, the
coordinate of the window menu popup position needs to be scaled, as it
is reported in logical pixels, while the stage is still in physical
pixels.
https://bugzilla.gnome.org/show_bug.cgi?id=776055
A window manager must select the SubstructureRedirect mask on the root
window to receive the MapRequest from the X11 clients and manage the
windows. Without this event mask set, a window manager won't be able to
map any new window.
The Wayland selection code in mutter can change/clear the event mask on
the requestor window from a XSelectionRequest event when the window is
not managed by mutter/gnome-shell.
A rogue or simply buggy X11 client may send a XConvertSelection() on the
root window and mutter will happily change/clear its own event mask on
the root window, effectively turning itself into a regular X11 client
unable to map any new X11 window from the other X11 clients.
To avoid this, simply check that the requestor window is not the root
window prior to change/clear the event mask on that window.
https://bugzilla.gnome.org/show_bug.cgi?id=776128
Commit 5eb5f72 - wayland: Check surface outputs after mapped state
changes connected the ::mapped signal handler, we need to disconnect it
on destroy to avoid a possible assertion failure in
update_surface_output_state()
https://bugzilla.gnome.org/show_bug.cgi?id=776036
Commit 4295fdb892 made us skip focusing
all xdg_popups instead of just non-grabbing ones as intended. This
means that when unmanaging a window we might select a xdg_popup window
to focus (in meta_stack_get_default_focus_window() ) but then since we
don't actually focus it we go on unmanaging the focused window which
triggers an assertion, as it should.
To avoid this and still fixing bug 771694 we can make use of the
MetaWindow->input property for non-grabbing xdg_popup windows since
their semantics, in this regard, are the same as no input X11 windows.
This way, when unmanaging a focused window while a xdg_popup is up,
we'll either give focus to the xdg_popup or not select the popup at
all to be focused if it's non-grabbing.
https://bugzilla.gnome.org/show_bug.cgi?id=775986
We need to do swap notifications asynchronously from flip events since
these might be processed during swap buffers if we are waiting for the
previous frame's flip to continue with the current.
This means that we might have more than one swap notification queued
to be delivered when the idle handler runs. In that case we must
deliver all notifications for which we've already seen a flip event.
Failing to do so means that if a new frame, that only swaps buffers on
such a swap notification backlogged Onscreen, is started, when later
we get its flip event, we'd notify only an old frame which would hit
this MetaStageNative's frame_cb() early exit:
if (global_frame_counter <= presented_frame_counter)
return;
and we'd never finish the new frame and thus clutter's master clock
would be waiting forever stuck.
https://bugzilla.gnome.org/show_bug.cgi?id=774557
We currently only focus unfocused windows on button press if no
modifiers (or just ignored modifiers) are in effect. This behavior
seems surprising and counter-intuitive so let's do it for any modifier
combination instead.
https://bugzilla.gnome.org/show_bug.cgi?id=746642
There's no reason to keep this ~15 year old piece of code around as
well as the preference handling that would only make sense if this
hunk was actually enabled.
https://bugzilla.gnome.org/show_bug.cgi?id=746642
When flush-swap-notify is already queued, we might end up trying to
requeue it, for example when handling flip callbacks inside
swap-buffers. Actually queuing it there is harmless, since old frames
will be discarded anyway.
https://bugzilla.gnome.org/show_bug.cgi?id=774923
We might still end up in swap-buffer without the previous flip callback
having been invoked. This can happen if there are two monitors, and we
manage to draw before having all monitor flip callbacks invoked.
https://bugzilla.gnome.org/show_bug.cgi?id=774923
A window's unconstrained_rect is essentially just the target rectangle
we hand to meta_window_move_resize_internal() except it's not updated
until the window actually moves or resizes.
As such, for wayland client resizes, since they're async, using
window->unconstrained_rect right after calling move_resize_internal()
to update the grab anchor position on unmaximize doesn't work as it
does for X clients.
To fix this, we can just use the target rectangle for the grab
anchor. Note that comment here was already wrong since it says we
should be taking constraints into account and yet the code used the
unconstrained rect anyway.
https://bugzilla.gnome.org/show_bug.cgi?id=770345
This reverts commit 989ec7fc60.
We now rely on accurately knowing if a window moved and/or resized in
meta_window_move_resize_internal() so the wayland implementation can't
lie any longer.
https://bugzilla.gnome.org/show_bug.cgi?id=770345
In order for the compositor plugin to be able to animate window size
changes properly we need to let it know of the starting and final
window sizes.
For X clients this can be done synchronously and thus with a single
call into the compositor plugin since it's us (the window manager)
who's in charge of the final window size.
Wayland clients though, have the final say over their window size
since it's determined from the client allocated buffer.
This patch moves the meta_compositor_size_change_window() calls before
move_resize_internal() which lets the compositor plugin know the old
window size and freezes the MetaWindowActor.
Then we get rid of the META_MOVE_RESIZE_DONT_SYNC_COMPOSITOR flag
since it's not needed anymore as the window actor is frozen and that
means we can use meta_compositor_sync_window_geometry() as the point
where we inform the compositor plugin of the final window size.
https://bugzilla.gnome.org/show_bug.cgi?id=770345
This will be used to let plugins know when a previous size change
actually becomes effective. This is needed to handle wayland client
resizing properly since, unlike X, it's async.
https://bugzilla.gnome.org/show_bug.cgi?id=770345
Normally textures in OpenGL are inverted on the Y axis, and we only
apply our rotation transform when it is not. To make the common case
work as normal, default to assuming textures are Y inverted.
https://bugzilla.gnome.org/show_bug.cgi?id=773629
This commit adds for a new type of buffer being attached to a Wayland
surface: buffers from an EGLStream. These buffers behave very
differently from regular Wayland buffers; instead of each buffer
reperesenting an actual frame, the same buffer is attached over and
over again, and EGL API is used to switch the content of the OpenGL
texture associated with the buffer attached. It more or less
side-tracks the Wayland buffer handling.
It is implemented by creating a MetaWaylandEglStream object, dealing
with the EGLStream state. The lifetime of the MetaWaylandEglStream is
tied to the texture object (CoglTexture), which is referenced-counted
and owned by both the actors and the MetaWaylandBuffer.
When the buffer is reattached and committed, the EGLStream is triggered
to switch the content of the associated texture to the new content.
This means that one cannot keep old texture content around without
copying, so any feature relying on that will effectively be broken.
https://bugzilla.gnome.org/show_bug.cgi?id=773629
Add support for inverted Y Wayland buffers. OpenGL textures are by
default inverted, so adding support for EGL_WAYLAND_Y_INVERTED_WL
effectively means adding support for non-inverted, which makes the
MetaShapedTexture apply a transformation when drawing only when querying
EGL_WAYLAND_Y_INVERTED_WL resulted in the response "EGL_FALSE".
https://bugzilla.gnome.org/show_bug.cgi?id=773629
Don't rely on the Cogl layer having Wayland specific paths by
determining the buffer type and creating the EGLImage ourself, while
using the newly exposed CoglTexture from EGLImage API. This changes the
API used by MetaWaylandSurface to make the MetaWaylandBuffer API be
aware when the buffer is being attached. For SHM and EGL buffers, only
the first time it is attached will result in a new texture being
allocated, but later for EGLStream's, more logic on every attach is
needed.
https://bugzilla.gnome.org/show_bug.cgi?id=773629