Many people expect clutter_init to work the same way as gtk_init which
exits the program on init failure. clutter_init however returns a
status code on failure which applications need to handle because if
the init fails then any further Clutter calls are likely to crash. In
Clutter 2.0 we may want to change this to be more like GTK+.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2574
When using a pipeline and the journal to blit images between
framebuffers, it should disable blending. Otherwise it will end up
blending the source texture with uninitialised garbage in the
destination texture.
Converting from Pango units to pixels by using the C conventions might
cause us to lose a pixel; since we're doing the same for the height, we
should use ceilf() to round up the width and the line height.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2573
The ClutterDeformEffect sub-classes are effectively deforming the
texture target of an FBO, not the actor itself. Thus, we need to
use the FBO's size, and not the actor's allocated size, given that
the actor might be transformed prior to applying an effect.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2571
Since the FBO target might have a different size than the mere paint box
of the actor, we need API to get it out of the ClutterOffscreenEffect
private data structure and on to sub-classes.
Since we cannot add new API in a stable cycle, we need a private
function; we'll leave it there even when opening 1.7, since it's useful
for internal purposes.
Once upon a time, the land of Clutter had a stage singleton. It was
created automatically at initialization time and stayed around even
after the main loop was terminated. The singleton was content in
being all there was. There also was a global API to handle the
configuration of the stage singleton that would affect the behaviour
on other classes, signals and properties.
Then, an evil wizard came along and locked the stage singleton in his
black tower, and twisted it until it was possible to create new stages.
These new stages were pesky, and didn't have the same semantics of the
singleton: they didn't stay around when closed, or terminate the main
loop on delete events.
The evil wizard also started moving all the stage-related API from the
global context into class-specific methods.
Finally, the evil wizard cast a spell, and the stage singleton was
demoted to creation on demand - and until somebody called the
clutter_stage_get_default() function, the singleton remained in a limbo
of NULL pointers and undefined memory areas.
There was a last bit - literally - of information still held by the
global API; a tiny, little flag that disabled per-actor motion events.
The evil wizard added private accessors for it, and stored it inside the
stage private structure, in preparation for a deprecation that would
come in a future development cycle.
The evil wizard looked down upon the land of Clutter from the height of
his black tower; the lay of the land had been reshaped into a crucible
of potential, and the last dregs of the original force of creation were
either molted into new, useful shapes, or blasted away by the sheer fury
of his will.
All was good.
The clutter-id-pool.h header is private and not installed; yet, all the
clutter_id_pool_* symbols are public. Let's correct this oversight we've
been stringing along since forever.
Only allow access to the ClutterMainContext through the private
_clutter_context_get_default() function, so we can easily grep
it and remove the unwanted usage of the global context.
The shader stack held by ClutterMainContext should only be accessed
using functions, and not directly.
Since it's a stack, we can use stack-like operations: push, pop and
peek.
The _clutter_do_redraw() function should really be moved inside
ClutterStage, since all it does is calling private stage and
backend functions. This also allows us to change a long-standing
issue with a global fps counter for all stages, instead of a\
per-stage one.
Let's try and start reducing the size of ClutterActorPrivate by moving
some optional, out-of-band data from it to GObject data.
The ShaderData structure is a prime candidate for this migration: it
does not need to be inspected by the actor, and its relationship with an
actor is transient and optional.
By attaching it to the actor's instance through g_object_set_data() we
neatly tie its lifetime to the instance, and we don't have to care
cleaning it up in the finalize()/dispose() implementation of
ClutterActor itself.
If an atlas texture's last reference is held by the journal or by the
last flushed pipeline then if an atlas migration is started it can
cause a crash. This is because the atlas migration will cause a
journal flush and can sometimes change the current pipeline which
means that the texture would be destroyed during migration.
This patch adds an extra 'post_reorganize' callback to the existing
'reorganize' callback (which is now renamed to 'pre_reorganize'). The
pre_reorganize callback is now called before the atlas grabs a list of
the current textures instead of after so that it doesn't matter if the
journal flush destroys some of those textures. The pre_reorganize
callback for CoglAtlasTexture grabs a reference to all of the textures
so that they can not be destroyed when the migration changes the
pipeline. In the post_reorganize callback the reference is removed
again.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2538
In _clutter_actor_queue_redraw_with_clip it has a local variable to
mark when a new paint volume for the clip is created so that it can be
freed when the function returns. However the actual code to free the
paint volume went missing in 3b789490d2 so the variable did
nothing. This patch just adds the free back in.
When Cogl debugging is disabled then the 'waste' variable is not used
so it throws a compiler warning. This patch removes the variable and
the value is calculated directly as the parameter to COGL_NOTE.
Some code was doing pointer arithmetic on the return value from
cogl_buffer_map which is void* pointer. This is a GCC extension so we
should try to avoid it. This patch adds casts to guint8* where
appropriate.
Based on a patch by Fan, Chun-wei.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2561
About other assorted boneheadedness, the GType for GParamSpec is
called 'GParam'. Why? Who knows. I assume alcohol was involved,
but I honestly don't want to know.
This removes the last g-ir-scanner warning in Clutter.
This time, in Clutter core.
The ObjC standard library provides a type called 'id', which obviously
requires any library to either drop the useful shadowed variable warning
or stop using 'id' as a variable name.
Yes, it's almost unbearably stupid. Well, at least it's not 'index' in
string.h, or 'y2' in math.h.
Instead of directly banging GL to migrate textures the atlas now uses
the CoglFramebuffer API. It will use one of four approaches; it can
set up two FBOs and use _cogl_blit_framebuffer to copy between them;
it can use a single target fbo and then render the source texture to
the FBO using a Cogl draw call; it can use a single FBO and call
glCopyTexSubImage2D; or it can fallback to reading all of the texture
data back to system memory and uploading it again with a sub texture
update.
Previously GL calls were used directly because Cogl wasn't able to
create a framebuffer without a stencil and depth buffer. However there
is now an internal version of cogl_offscreen_new_to_texture which
takes a set of flags to disable the two buffers.
The code for blitting has now been moved into a separate file called
cogl-blit.c because it has become quite long and it may be useful
outside of the atlas at some point.
The 4 different methods have a fixed order of preference which is:
* Texture render between two FBOs
* glBlitFramebuffer
* glCopyTexSubImage2D
* glGetTexImage + glTexSubImage2D
Once a method is succesfully used it is tried first for all subsequent
blits. The default default can be overridden by setting the
environment variable COGL_ATLAS_DEFAULT_BLIT_MODE to one of the
following values:
* texture-render
* framebuffer
* copy-tex-sub-image
* get-tex-data
This adds a declaration for _cogl_is_texture_2d to the private header
so that it can be used in cogl-blit.c to determine if the target
texture is a simple 2D texture.
This adds a function called _cogl_texture_2d_copy_from_framebuffer
which is a simple wrapper around glCopyTexSubImage2D. It is currently
specific to the texture 2D backend.
This adds the _cogl_blit_framebuffer internal function which is a
wrapper around glBlitFramebuffer. The API is changed from the GL
version of the function to reflect the limitations provided by the
GL_ANGLE_framebuffer_blit extension (eg, no scaling or mirroring).
This extension is the GLES equivalent of the GL_EXT_framebuffer_blit
extension except that it has some extra restrictions. We need to check
for some extension that provides glBlitFramebuffer so that we can
unconditionally use ctx->drv.pf_glBlitFramebuffer in both GL and GLES
code. Even with the restrictions, the extension provides enough
features for what Cogl needs.
Previously when _cogl_atlas_texture_migrate_out_of_atlas is called it
would unreference the atlas texture's sub-texture before calling
_cogl_atlas_copy_rectangle. This would leave the atlas texture in an
inconsistent state during the copy. This doesn't normally matter but
if the copy ends up doing a render then the atlas texture may end up
being referenced. In particular it would cause problems if the texture
is left in a texture unit because then Cogl may try to call
get_gl_texture even though the texture isn't actually being used for
rendering. To fix this the sub texture is now unrefed after the copy
call instead.
The current framebuffer is now internally separated so that there can
be a different draw and read buffer. This is required to use the
GL_EXT_framebuffer_blit extension. The current draw and read buffers
are stored as a pair in a single stack so that pushing the draw and
read buffer is done simultaneously with the new
_cogl_push_framebuffers internal function. Calling
cogl_pop_framebuffer will restore both the draw and read buffer to the
previous state. The public cogl_push_framebuffer function is layered
on top of the new function so that it just pushes the same buffer for
both drawing and reading.
When flushing the framebuffer state, the cogl_framebuffer_flush_state
function now tackes a pointer to both the draw and the read
buffer. Anywhere that was just flushing the state for the current
framebuffer with _cogl_get_framebuffer now needs to call both
_cogl_get_draw_buffer and _cogl_get_read_buffer.
As noted in commit ce3f55292a an explict glFlush is needed for
both glBlitFramebuffer and glXCopySubBuffer.
_clutter_backend_glx_blit_sub_buffer was already doing an explicit
flush when using glBlitFramebuffer, so just do it unconditonally
and remove the call from clutter_stage_glx_redraw.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2558