This adds a transparent optimization to cogl_read_pixels for when a
single pixel is being read back and it happens that all the geometry of
the current frame is still available in the framebuffer's associated
journal.
The intention is to indirectly optimize Clutter's render based picking
mechanism in such a way that the 99% of cases where scenes are comprised
of trivial quad primitives that can easily be intersected we can avoid
the latency of kicking a GPU render and blocking for the result when we
know we can calculate the result manually on the CPU probably faster
than we could even kick a render.
A nice property of this solution is that it maintains all the
flexibility of the render based picking provided by Clutter and it can
gracefully fall back to GPU rendering if actors are drawn using anything
more complex than a quad for their geometry.
It seems worth noting that there is a limitation to the extensibility of
this approach in that it can only optimize picking a against geometry
that passes through Cogl's journal which isn't something Clutter
directly controls. For now though this really doesn't matter since
basically all apps should end up hitting this fast-path. The current
idea to address this longer term would be a pick2 vfunc for ClutterActor
that can support geometry and render based input regions of actors and
move this optimization up into Clutter instead.
Note: currently we don't have a primitive count threshold to consider
that there could be scenes with enough geometry for us to compensate for
the cost of kicking a render and determine a result more efficiently by
utilizing the GPU. We don't currently expect this to be common though.
Note: in the future it could still be interesting to revive something
like the wip/async-pbo-picking branch to provide an asynchronous
read-pixels based optimization for Clutter picking in cases where more
complex input regions that necessitate rendering are in use or if we do
add a threshold for rendering as mentioned above.
Both cogl_matrix_transform_points and _project_points take points_in and
points_out arguments and explicitly allow pointing to the same array
(i.e. to transform in-place) The implementation of the various internal
transform functions though were not handling this possability and so it
was possible the reference partially transformed vertex values as if
they were original input values leading to incorrect results. This patch
ensures we take a temporary copy of the current input point when
transforming.
This adds a utility function that can determine if a given point
intersects an arbitrary polygon, by counting how many edges a
"semi-infinite" horizontal ray crosses from that point. The plan is to
use this for a software based read-pixel fast path that avoids using the
GPU to rasterize journaled primitives and can instead intersect a point
being read with quads in the journal to determine the correct color.
This adds a stop-gap mechanism for Cogl to know when the window system
is requested to present the current backbuffer to the frontbuffer by
adding a _cogl_swap_buffers_notify function that backends are now
expected to call right after issuing the equivalent request to OpenGL
vie the platforms OpenGL binding layer. This (blindly) updates all the
backends to call this new function.
For now Cogl doesn't do anything with the notification but the intention
is to use it as part of a planned read-pixel optimization which will
need to reset some state at the start of each new frame.
Instead of having _cogl_get/set_clip stack which reference the global
CoglContext this instead makes those into CoglClipState method functions
named _cogl_clip_state_get/set_stack that take an explicit pointer to a
CoglClipState.
This also adds _cogl_framebuffer_get/set_clip_stack convenience
functions that avoid having to first get the ClipState from a
framebuffer then the stack from that - so we can maintain the
convenience of _cogl_get_clip_stack.
This adds an internal function to be able to query the screen space
bounding box of the current clip entries contained in a given
CoglClipStack.
This bounding box which is cheap to determine can be useful to know the
largest extents that might be updated while drawing with this clip
stack.
For example the plan is to use this as part of an optimized read-pixel
path handled on the CPU which will need to track the currently valid
extents of the last call to cogl_clear()
Instead of having a single journal per context, we now have a
CoglJournal object for each CoglFramebuffer. This means we now don't
have to flush the journal when switching/pushing/popping between
different framebuffers so for example a Clutter scene that involves some
ClutterEffect actors that transiently redirect to an FBO can still be
batched.
This also allows us to track state in the journal that relates to the
current frame of its associated framebuffer which we'll need for our
optimization for using the CPU to handle reading a single pixel back
from a framebuffer when we know the whole scene is currently comprised
of simple rectangles in a journal.
This adds an internal alternative to cogl_object_set_user_data that also
passes an instance pointer to destroy notify callbacks.
When setting private data on a CoglObject it's often desirable to know
the instance being destroyed when we are being notified to free the
private data due to the object being freed. The typical solution to this
is to track a pointer to the instance in the private data itself so it
can be identified but that usually requires an extra micro allocation
for the private data that could have been avoided if only the callback
were given an instance pointer.
The new internal _cogl_object_set_user_data passes the instance pointer
as a second argument which means it is ABI compatible for us to layer
the public version on top of this internal function.
This moves the implementation of cogl_clear into cogl-framebuffer.c as
two new internal functions _cogl_framebuffer_clear and
_cogl_framebuffer_clear4f. It's not clear if this is what the API will
look like as we make more of the CoglFramebuffer API public due to the
limitations of using flags to identify buffers when framebuffers may
contain any number of ancillary buffers but conceptually it makes some
sense to tie the operation of clearing a color buffer to a framebuffer.
The short term intention is to enable tracking the current clear color
as a property of the framebuffer as part of an optimization for reading
back single pixels when the geometry is simple enough that we can
compute the result quickly on the CPU. (If the point doesn't intersect
any geometry we'll need to return the last clear color.)
Don't use ugly "#undef CLUTTER_DISABLE_DEPRECATED" inside source code
using deprecated symbols; we have the handy CLUTTER_COMPILATION define
that we can use as part of the "disable deprecated" conditional.
Since 1.4 the ClutterGLXTexturePixmap is just a wrapper around
ClutterX11TexturePixmap, so we can safely deprecate it. All the
functionality it provided is now effectively available from the
superclass or directly from Cogl.
The ClutterGLXTexturePixmap actor is just a wrapper around
ClutterX11TexturePixmap, since the relevant texture-from-pixmap code has
been moved down to Cogl.
The config.h header should be considered a Clutter internal header, and
the test cases (especially the interactive test cases) should strive to
never rely on internal headers.
Clutter has some platform-specific API that is accessible only if the
right backend has been compiled in. Third party applications that wish
to be portable across backends might want to use defines and other
pre-processor tricks to determine header inclusion and API usage.
While Clutter has an internal set of symbols it can use, third party
applications don't have the luxury of being able to access the config.h
generated by Clutter's configure script.
For this reason, Clutter should install a configuration header with a
series of namespaced defines that can be picked up by applications and
other third party code.
Check that the timeline is still playing before executing in
_clutter_timeline_do_tick. This fixes the possibility of receiving a
new-frame signal when stopping a timeline in response to a different
timeline's signal emission.
When drag threshold is not reached, emit_drag_begin() is not called
causing default value of priv->motion_events_enabled (false) to used to
restore motion events enabled state in Clutter. This causes drag action
to indefinitely disable motion events. The current value of motion
events enabled state is now queried on button press which guarantees
that the state will be restored with the correct value in
emit_drag_end()
http://bugzilla.clutter-project.org/show_bug.cgi?id=2522
Previously most of the code for cogl-program and cogl-shader was
ifdef'd out for GLES 1.1 and alternate stub definitions were
defined. This patch removes those and instead puts #ifdef's directly
in the functions that need it. This should make it a little bit easier
to maintain.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2516
When determining whether to hash the combine constant Cogl checks the
arguments to the combine funcs to determine whether the combine
constant is used. However is was using the GLenums GL_CONSTANT_COLOR
and GL_CONSTANT_ALPHA but these are not valid values for the
CoglPipelineCombineSource enum so presumably the constant would never
get hashed. This patch makes it use Cogl's enum of
COGL_PIPELINE_COMBINE_SOURCE_CONSTANT instead.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2516
GLES has an extension called GL_OES_mapbuffer to support mapping
buffer objects but only for writing. Cogl now has two new feature
flags to advertise whether mapping for reading and writing is
supported. Under OpenGL, these features are always set if the VBO
extension is advertised and under GLES only the write flag is set if
the GL_OES_mapbuffer extension is advertised.
In the journal code and when generating the stroke path the vertices
are generated on the fly and stored in a CoglBuffer using
cogl_buffer_map. However cogl_buffer_map is allowed to fail but it
wasn't checking for a NULL return value. In particular on GLES it will
always fail because glMapBuffer is only provided by an extension. This
adds a new pair of internal functions called
_cogl_buffer_{un,}map_for_fill_or_fallback which wrap
cogl_buffer_map. If the map fails then it will instead return a
pointer into a GByteArray attached to the context. When the buffer is
unmapped the array is copied into the buffer using
cogl_buffer_set_data.
On GLES2 there's no builtin mechanism to replace texture coordinates
with point sprite coordinates so calling glEnable(GL_POINT_SPRITE)
isn't valid. Instead the point sprite coords are implemented by using
a special builtin varying variable in GLSL.
There are several places where we need to compare the texture state of a
pipeline and sometimes we need to take into consideration if the
underlying texture has changed but other times we may only care to know
if the texture target has changed.
For example the fragends typically generate programs that they want to
share with all pipelines with equivalent fragment processing state, and
in this case when comparing pipelines we only care about the texture
targets since changes to the underlying texture won't affect the
programs generated.
Prior to this we had tried to handle this by passing around some special
flags to various functions that evaluate pipeline state to say when we
do/don't care about the texture data, but this wasn't working in all
cases and was more awkward to manage than the new approach.
Now we simply have two state bits:
COGL_PIPELINE_LAYER_STATE_TEXTURE_TARGET and
COGL_PIPELINE_LAYER_STATE_TEXTURE_DATA and CoglPipelineLayer has an
additional target member. Since all the appropriate code takes masks of
these state bits to determine what to evaluate we don't need any extra
magic flags.
When notifying that a pipeline property is going to change, then at
times a pipeline will take over being the authority of the corresponding
state group. Some state groups can contain multiple properties and so to
maintain the integrity of all of the properties we have to initialize
all the property values in the new authority. For state groups with only
one property we don't have to initialize anything during the
pre_change_notify() because we can assume the value will be initialized
as part of the change being notified.
This patch optimizes how we handle this initialization of state groups
in a couple of ways; firstly we no longer do anything to initialize
state-groups with only one property, secondly we no longer use
_cogl_pipeline_copy_differences - (we have a new
_cogl_pipeline_init_multi_property_sparse_state() func) so we can avoid
lots calls to handle_automatic_blend_enable() which is sometimes seen
high in sysprof profiles.
Atlasing needs to be disabled for the hand texture so that it can work
out the step value needed to fetch a neighbouring pixel in the blur
shader. If the texture ends up in the atlas then the test can't know
the actual size of the texture so it looks wrong.
Previously atlasing would be disabled if the GL driver does not
support reading back texture data. This meant that atlasing would not
happen on GLES. However we also require that the driver support FBOs
and the texture data is only read back as a fallback if the FBO
fails. Therefore the atlas should be ok on GLES 2 which has FBO
support in core.
We try and bail out of flushing pipeline state asap if we can see the
pipeline has already been flushed and hasn't changed but we weren't
checking to see if the skip_gl_color flag is the same as when it was
last flush too and so we'd sometimes bail out without updating the
glColor correctly.
When an item is added to the journal the current pipeline immediately
gets the legacy state applied to it and the modified pipeline is
logged instead of the original. However the actual drawing from the
journal is done using the vertex attribute API which was also applying
the legacy state. This meant that the legacy state used would be a
combination of the state set when the journal entry was added as well
as the state set when the journal is flushed. To fix this there is now
an extra CoglDrawFlag to avoid applying the legacy state when setting
up the GL state for the vertex attributes. The journal uses this flag
when flushing.
clutter_shader_finalize() was calling clutter_shader_release() which in
turn notifies "compiled". GObject was complaining that we were trying to
_ref() an object that was in _finalize().
#0 g_log (log_domain=0x3e15c4 "GLib-GObject", log_level=G_LOG_LEVEL_CRITICAL,
format=0x76c938 "%s: assertion `%s' failed") at gmessages.h:97
#1 0x0070777d in g_return_if_fail_warning (
log_domain=0x3e15c4 "GLib-GObject",
pretty_function=0x3e37a4 "g_object_ref",
expression=0x3e2a00 "object->ref_count > 0") at gmessages.c:586
#2 0x003b862b in g_object_ref (_object=0x8567af0) at gobject.c:2615
#3 0x003bd238 in g_object_notify_by_pspec (object=0x8567af0, pspec=0x87ea2f0)
at gobject.c:1075
#4 0x00b6500b in clutter_shader_release (shader=0x8567af0)
at ./clutter-shader.c:612
#5 0x00b659b9 in clutter_shader_finalize (object=0x8567af0)
at ./clutter-shader.c:107
Then, let's split release in two, with an _internal() version that does
not notify "compiled" and use it from dispose (as the object is still
usable after a call to release_internal().
http://bugzilla.clutter-project.org/show_bug.cgi?id=2512