This new filter allows test cases to manipulate what the kernel reports,
e.g. mark connected connectors as disconnected to emulate monitors
connecting and disconnecting.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2821>
As part of https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/525
(introduction of transactional KMS API), the logic determining whether a
GPU can have outputs was changed from whether any connectors existed to
whether any connected connectors existed. That effectively meant that we
wouldn't attempt to start at all if there were no monitors connected
while starting up.
This was unintentional, so lets revert back the expected behavior.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2821>
In order to make things more and more asynchronus and to each time we
paint be an isolated event, that can be potentially be applied
individually or together with other updates, make it so that each time
we draw, we use the transient MetaFrameNative (ClutterFrame) instance to
carry a KMS update for us.
For this to work, we also need to restructure how we apply mode sets.
Previously we'd amend the same KMS update each frame during mode set,
then after the last CRTC was composited, we'd apply the update that
contained updates for all CRTC.
Now each CRTC has its own KMS update, and instead we put them in a per
device table, and whenever we finished painting, we'll merge the new
update into any existing one, and then finally once all CRTCs have been
composited, we'll apply an update that contains all the mode sets for all
relevant CRTCs on a device.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2855>
MetaRendererViewNative is a MetaRendererView which contains logic
specific to views of the native backend. It will be used by following
commits.
In the future, per-view logic from MetaRendererNative can be moved to
MetaRendererViewNative where it makes more sense to have it.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2855>
Add a tiny library that sabotages errors in drmMode*() API calls. This
will be used to artificially trigger arbitrary errors, e.g. cause the
next commit to fail with EBUSY.
The three mocked methods are added as they will be used in a future
commit.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2854>
Instead of using the "discarded" page flip callback when the
"discarding" happened during actual immediate processing, communicate
the same via the KMS update feedback.
The "discarded" page flip callback is instead used only for when a
posted page flip is discarded. In the atomic backend, this only happens
on shutdown, while in the simple backend, this also happens when a
asynchronous retry sequence eventually is abandoned.
This allows further improvements making KMS handling fully async.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2854>
At first it was called seal(), but then updates could be amended after
being posted, given a flag. That flag has been removed, so we can go
back to sealing, since it's once again acts more as a seal.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2854>
We test direct client buffer scanout using a TEST_ONLY commit on atomic,
and with various conditions in non-atomic, but if we end up failing to
actually commit despite this, handle the fallout asynchronously. What
this means is that we'll reschedule a new frame immediately.
For this to work, the same scanout buffer needs to be avoided for the
same CRTC. This is done by using the newly added signal on the
CoglScanout object to let the MetaWaylandBuffer object mark the current
buffer as non-working for the onsrceen that it failed on. This allows to
re-try buffers on the same onscreen when new ones are attached.
This queues a full damage, since we consumed the qeued redraw rect. The
redraw rect wasn't lost - it was accumulated to make sure the whole
primary plane was redrawed according to the damage region, whenever we
would end up no longer doing direct scanout, but this accumulation only
works when we're not intentionally stopping to scanout. For now, lets
just damage the whole view, it's just an graceful fallback in response
to an unexpected error anyway.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2854>
Stage view users can schedule updates at ease with
clutter_stage_view_schedule_update(), but couldn't schedule update
"now". Make that easy too by adding
clutter_stage_view_schedule_update_now().
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2854>
If we call schedule(), which will schedule an update some time in the
future, and then schedule_now(), we should reschedule the frame clock to
update immediately, and not some time in the future.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2854>
If we get a "ready" page flip feedback, it means the page flip was
symbolic, i.e. not real, e.g. as a result of an update that didn't
change the state of the primary plane. Warn if there is a "next fb"
meaning we expected to have a new buffer that we flipped to.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2854>
This will later be emitted when a scanout failed, e.g. by the not-test commit
failing for some reason, or drmModePageFlip() failing even if the
pre-conditions for scanout in the simple KMS backend passed.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2854>
This is intended to be used only for plane assignment, and CRTC like
changes, so that one can e.g. change a cursor plane on a pending update
that changes the primary plane, before it has been committed to KMS.
The kms-updates test overrides the get-state function MetaKmsCrtc. This
is needd to not have the update mechanism not clamp the gamma size to 0,
as vkms reports the gamma length 0. By pretending it's 3, we can test a
simple and small gamma lut is merged correctly when merging updates.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2854>
This looks like a bug: There's no reason why windows which advertise
min-size hints that are exactly the size of the workarea should not be
allowed to maximize, so change the checks here to allow for that.
The commit message of 7f64d6b9 also makes the point that this was not
intended, as it says "larger than".
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2873>
Surfaces belonging to a screen-casted window should always be considered
visible even if they are not visible on any stage view - be it because
they are on a different workspace, minimized or occluded.
Doing this in an optimal fashion is highly complex right now -
interdependent with (and somewhat similar to) ClutterClones. Thus treat
stream-casted surfaces similar to those with clones, with the small
difference that even a fully invisible surface still gets a primary view
- the fastest one. This ensures that clients never refresh too slow for a
screen-cast, at the cost of sometimes refreshing too fast.
The later only happens on certain multi-monitor setups and should thus be
acceptable.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2789>
There is an increasing number of cases where we want the frame callback
logic to run for a stage-view and the complexity needed to avoid these,
combined with the likelyhood of bugs, arguably does not justify the
benefit any more.
Thus unconditionally schedule updates for all stage-views when frame
callbacks are requested.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2789>
Screen-casted windows need to be considered visible in various situations
but existing APIs such as `clutter_actor_is_effectively_on_stage_view()`
don't do so. Add new API that allows checking if a surface belongs to a
screen-casted window for the respective cases.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2789>
The introduction of the META_GRAB_OP_WINDOW_FLAG_UNCONSTRAINED
flag threw off some checks around keyboard-driven resize. This
was partly because there were some == checks that did not account
for that flag maybe being enabled, but also the handling
of META_GRAB_OP_KEYBOARD_RESIZING_UNKNOWN into a definite
resize direction was maybe unsetting that flag. Fix both things
at the same time.
Fixes: 2d8fa26c8e ("core: Pass "frame action" grab operations as an "unconstrained" grab op")
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2629
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2871>