All 2D coordinate spaces in Cogl have their origin at the top-left so we
shouldn't be flipping the coordinates we pass to
cogl_framebuffer_swap_region to be relative to the bottom of the
framebuffer.
This bumps the Cogl version requirement to 1.7.5 since we've had to fix
a bug in the semantics of cogl_framebuffer_swap_region.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
https://bugzilla.gnome.org/show_bug.cgi?id=654656
Clutter may be used together with GTK+, which indirectly may use
XInput2 too, so the cookie data must persist when both are handling
events.
What happens now in a nutshell is, Clutter is only guaranteed to allocate
the cookie itself after XNextEvent(), and only frees the cookie if its
XGetEventData() call allocated the cookie data.
The X[Get|Free]EventData() calls happen now in clutter-event-x11.c as
hypothetically different event translators could also handle other set
of X Generic Events, or other libraries handling events for that matter.
If we're building on/for Windows, set 'win32' as the default flavour; if
we're building on OS X, set 'osx' as the default flavour. For everything
else, use 'glx'.
If we're building on/for Windows, set 'win32' as the default flavour; if
we're building on OS X, set 'osx' as the default flavour. For everything
else, use 'glx'.
Since some experimental API in Cogl that Clutter uses has changed this
bumps our dependency up to 1.7.3 before landing the corresponding build
fixes for clutter to bring it in line with the Cogl changes.
This adds a performance tracking framework that can run a set of tests over
specified git revisions. The ruby script for generating the reports comes from
similar performance tracking in GEGL. The framework permits evaluating new
tests against older version of clutter.
The tests themselves go through a few hoops for disabling framerate limiting in
both mesa and clutter.
When running make check the tests will be run and lines of the form:
@ test-state: 40.51 fps
will be left in the output, a script can scrape these lines out of a build log
on a buildbot to in other ways track performance.
Since GLX and EGL are abstracted by Cogl the two backends are both
implementing everything using the Cogl API and they are almost
identical.
This updates the egl backend to support everything that the glx backend
supports. Now that EGL and GLX are abstracted by Cogl, the plan is that
we will squash the clutter-egl/glx backends into one. Since the EGL
backend in clutter can conditionally not depend on X11 we will use the
EGL backend as the starting point of our common backend.
https://bugzilla.gnome.org/show_bug.cgi?id=649826
In test-pixmap.c instead of using the GdkPixbuf API to load the
redhand.png image we now use the cairo API to load the png into a xlib
surface which wraps our Pixmap.
This test was the last thing that depended on the gdk API and since
it's more concise to use Cairo here which is a hard dependency for
Clutter this change means we avoid depending on GdkPixbuf directly.
Cogl has now been split out into a standalone project with a separate
repository at git://git.gnome.org/cogl. From now on the Clutter build
will now simply look for a cogl-1.0 pkg-config file to find a suitable
Cogl library to link against at build time.
We want to be able to split Cogl out as a standalone project but there
are still some window systems that aren't natively supported by Cogl.
This allows Clutter to support those window systems directly but still
work with a standalone Cogl library.
This also ensures we set the SUPPORT_STUB conditional in clutter's
configure.ac when building for win32/osx and wayland.
This adds a simple standalone Cogl application that can be used to
smoke test a standalone build of Cogl without Clutter.
This also adds an x11-foreign app that shows how a toolkit can ask Cogl
to draw to an X Window that it owns instead of Cogl being responsible
for automatically creating and mapping an X Window for CoglOnscreen.
This allows more detailed control over the driver and winsys features
that Cogl should have. Cogl is designed so it can support multiple
window systems simultaneously so we have enable/disable options for
the drivers (gl vs gles1 vs gles2) and options for the individual window
systems; currently glx and egl. Egl is broken down into an option
for each platform.
The GDL API is used for example on intel ce4100 (aka Sodaville) based
systems as a way to allocate memory that can be composited using the
platforms overlay hardware. This updates the Cogl EGL winsys and the
support in Clutter so we can continue to support these platforms.
As was recently done for the GLX window system code, this commit moves
the EGL window system code down from the Clutter backend code into a
Cogl winsys.
Note: currently the cogl/configure.ac is hard coded to only build the GLX
winsys so currently this is only available when building Cogl as part
of Clutter.
The "DRM_SURFACELESS" EGL platform was invented when we were adding the
wayland backend to Clutter but in the end we added a dedicated backend
instead of extending the EGL backend so actually the platform name isn't
used.
This backend hasn't been used for years now and so because it is
untested code and almost certainly doesn't work any more it would be a
burdon to continue trying to maintain it. Considering that we are now
looking at moving OpenGL window system integration code down from
Clutter backends into Cogl that will be easier if we don't have to
consider this backend.