Check that configurations where monitors are disabled are properly
used. Also test that old configurations with explicitly disabled
outputs are migrated properly.
https://bugzilla.gnome.org/show_bug.cgi?id=787629
When we update state, we might not have set the current config yet (for
example if the Xrandr assignment didn't change), so pass the monitors
config we should derive from instead of fetching it from the monitor
config manager.
https://bugzilla.gnome.org/show_bug.cgi?id=787477
Give clients (such as Xwayland) a chance to bind the wl_output global
before we continue, otherwise there is an significant risk that mutter
won't see the bind request until after the next hot plug which might
have destroyed the global object.
https://bugzilla.gnome.org/show_bug.cgi?id=730551
The foreach CRTC monitor mode helper incorrectly iterated over outputs
without CRTC when non-tiled modes were set on tiled monitors. This was
not expected by callers, so fix the helper to only iterate over active
outputs (that has or should have a CRTC).
The test cases uses the incorrect behaviour of the foreach CRTC helper
to check that the disabled outputs mode are set to NULL, so add a
foreach output helper and change the tests to use that instead.
https://bugzilla.gnome.org/show_bug.cgi?id=730551
When headless, we don't have any logical monitors to derive a screen
size from, but we can't set it to empty as that will cause issues with
the clutter stage, UI widget layout and other things. To avoid such
issues, just fall back to a 640 x 480 screen size when headless.
https://bugzilla.gnome.org/show_bug.cgi?id=730551
When opening a laptop lid, one will likely want to restore the
configuration one had prior to closing it, so when ensuring monitor
configuration, first try to see if the previously set configuration is
both complete (all connected monitors are configured) and applicable
(it is a valid configuration) and only try to generate a new from
scratch if that failed.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
So far some basic testing, including:
* Test that the migrated configuration is applicable
* Test that a monitors.xml with multiple configurations are translated
* Test rotation
* Test tiled monitor discovery (well, test a made up tiled monitor
configuration since I don't have a real one)
https://bugzilla.gnome.org/show_bug.cgi?id=777732
This commit changes the new configuration system to use monitors.xml
instead of monitors-experimental.xml. When starting up and the
monitors.xml file is loaded, if a legacy monitors.xml file is
discovered (it has the version number 1), an attempt is made to migrate
the stored configuration onto the new system.
This is done in two steps:
1) Parsing and translation of the old configuration. This works by
parsing file using the mostly the old parser, but then translating the
resulting configuration structs into the new configuration system. As
the legacy configuration system doesn't carry over some state (such as
tiling and scale used), some things are not available. For tiling, the
migration paths makes an attempt to discover tiled monitors by
comparing EDID data, and guessing what the main tile is. Determination
of the scale of a migrated configuration is postponed until the
configuration is actually applied. This works by flagging the
configuration as 'migrated'.
2) Finishing the migration when applying. When a configuration with the
'migrated' flag is retrieved from the configuration store, the final
step of the migration is taken place. This involves calculating the
preferred scale given the mode configured, while making sure this
doesn't result in any overlapping logical monitor regions etc.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Test that a tiled monitor with tile (0, 0) as the non-main output,
where main output is defined as the output that is active as long as
the monitor is active.
https://bugzilla.gnome.org/show_bug.cgi?id=781723
Differentiate between non-interlaced and interlaced modes. This is done
by appending an "i" after the resolution part of the mode ID, and
adding a 'is-interlaced' (b) property to the mode properties.
https://bugzilla.gnome.org/show_bug.cgi?id=765011
This changes the API to pass supported scales per mode instead of
providing a global list. This allows for more flexible scaling
scenarious, where a scale compatible with one mode can still be made
available even though another mode is incompatible.
https://bugzilla.gnome.org/show_bug.cgi?id=765011
When the logical layout mode is used, allow configuring the scaling to
be non-integer. Supported scales are so far hard coded to include at
most 1, 1.5 and 2, and scales that doesn't result in non-fractional
logical monitor sizes are discarded.
Wayland outputs are set to have scale ceil(actual_scale) meaning well
behaving Wayland clients will provide buffers with buffer scale 2, thus
being scaled down to the fractional scale.
https://bugzilla.gnome.org/show_bug.cgi?id=765011
This commit makes it possible to configure logical monitor scale also
when running on top of an X11 server using Xrandr. An extra property
'requires-globla-scale' is added to the D-Bus API is added to instruct
a configuration application to only allow setting a global logical
monitor scale.
This is needed to let gsd-xsettings use the configured state to set a
XSettings state that respects the explicit monitor configuration.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Introduce MetaSettings and add the settings managed by MetaBackend into
the new object. These settings include: experimental-features and UI
scaling factor.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Test that configuration works as expected when the backend doesn't
support handling the transform and an intermediate offscreen
framebuffer is used.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
In order to test deriving the logical state from the underlying
configuration, as is always done on X11, make the test backend derive
the state when stage views are disabled.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
The CRTC position depends on the transform and how the transform is
implemented. The function calculating the positions still doesn't
support anything but the non-transformed case; this commit is in
preparation of adding support for transforms.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Instead of using a environment variable, add a new 'experimental
feature' gsetting keyword "monitor-config-manager" that enables the use
of the new MetaMonitorConfigManager. This commit also makes it possible
to switch between the two systems without restarting mutter.
The D-Bus API is disabled when the experimental feature is not enabled,
and clients trying to access it will get a access-denied error in
response. A new property 'IsExperimentalApiEnabled' is added to let the
D-Bus client know whether it is possible to use the experimental API or
not.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
This commit adds support for rendering onto enlarged per logical
monitor framebuffers, using the scaled clutter stage views, for HiDPI
enabled logical monitors.
This works by scaling the mode of the monitors in a logical monitors by
the scale, no longer relying on scaling the window actors and window
geometry for making windows have the correct size on HiDPI monitors.
It is disabled by default, as in automatically created configurations
will still use the old mode. This is partly because Xwayland clients
will not yet work good enough to make it feasible.
To enable, add the 'scale-monitor-framebuffer' keyword to the
org.gnome.mutter.experimental-features gsettings array.
It is still possible to specify the mode via the new D-Bus API, which
has been adapted.
The adaptations to the D-Bus API means the caller need to be aware of
how to position logical monitors on the stage grid. This depends on the
'layout-mode' property that is used (see the DisplayConfig D-Bus
documentation).
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Make the concept of maximum screen size optional, as it is not
necessarily a thing on all systems (e.g. when using the native backend
and stage views).
The meta_monitor_monitor_get_limits() function is replaced by a
meta_monitor_manager_get_max_screen_size() which fails when no screen
limit is available. Callers and other users of the previous max screen
size fields are updated to deal with the fact that the limit is
optional.
The new D-Bus API is changed to move it to the properties bag, where
its absence means there is no applicable limit.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Add a new D-Bus API that uses the state from GetCurrentState to
configure high level monitors, instead of low level CRTCs and
connectors. So far persistent configuration is not implemented, as
writing to the configuration store is still not supported.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Logical monitors in a configuration must be adjecent to each other,
meaning there will be at least one pixel long side touching some other
logical monitor.
The exception to this is when there is only one logical monitor, which
cannot be adjecent to any other.
https://bugzilla.gnome.org/show_bug.cgi?id=777732