12 Commits

Author SHA1 Message Date
Tomeu Vizoso
93d0de1d9a Mass rename CLUTTER_COMPILATION to COGL_COMPILATION
Reviewed-by: Neil Roberts <neil@linux.intel.com>

(cherry picked from commit a99512e5798e48ffa3a9a1a7eb98bc55647ee1b6)
2012-08-06 14:27:45 +01:00
Robert Bragg
54735dec84 Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.

Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.

Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.

So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.

Instead of gsize we now use size_t

For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.

Reviewed-by: Neil Roberts <neil@linux.intel.com>

(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-08-06 14:27:39 +01:00
Robert Bragg
680f63a48c Remove all internal includes of cogl.h
The cogl.h header is meant to be the public header for including the 1.x
api used by Clutter so we should stop using that as a convenient way to
include all likely prototypes and typedefs. Actually we already do a
good job of listing the specific headers we depend on in each of the .c
files we have so mostly this patch just strip out the redundant
includes for cogl.h with a few fixups where that broke the build.

Reviewed-by: Neil Roberts <neil@linux.intel.com>
2012-02-20 23:12:45 +00:00
Robert Bragg
54b1fb0b5e renderer: Remove _EXP symbol mangling and add gtk-doc
We are in the process of removing all _EXP suffix mangling for
experimental APIs (Ref: c6528c4b6c3c34) and adding missing gtk-doc
comments so that we can instead rely on the "Stability: unstable"
markers in the gtk-doc comments. This patch tackles the cogl-pipeline
symbols.
2012-01-16 18:27:20 +00:00
Neil Roberts
5f0a57ffdb snippet: Add some more documentation
This adds a documentation section for CoglSnippet which gives an
overview of how to use them. It also fixes some syntax errors in the
existing documentation and adds the missing pipeline functions for
adding snippets to the documentation sections file.

Reviewed-by: Robert Bragg <robert@linux.intel.com>
2011-12-07 14:52:48 +00:00
Neil Roberts
09c2e4abe7 snippet: Move the hook to be a property of the snippet
Instead of specifying the hook point when adding to the pipeline using
a separate function for each hook, the hook is now a property of the
snippet. The hook is set on construction and is then read-only.

Reviewed-by: Robert Bragg <robert@linux.intel.com>
2011-12-06 19:02:06 +00:00
Neil Roberts
717e96b304 snippet: Add a 'replace' string
If present, the 'replace' string will be used instead of whatever code
would normally be invoked for that hook point. It will also replace
any previous snippets.

Reviewed-by: Robert Bragg <robert@linux.intel.com>
2011-12-06 19:02:05 +00:00
Neil Roberts
d38ae0284b cogl-pipeline: Add two hook points for adding shader snippets
This adds two new public experimental functions for attaching
CoglSnippets to two hook points on a CoglPipeline:

void cogl_pipeline_add_vertex_hook (CoglPipeline *, CoglSnippet *)
void cogl_pipeline_add_fragment_hook (CoglPipeline *, CoglSnippet *)

The hooks are intended to be around the entire vertex or fragment
processing. That means the pre string in the snippet will be inserted
at the very top of the main function and the post function will be
inserted at the very end. The declarations get inserted in the global
scope.

The snippets are stored in two separate linked lists with a structure
containing an enum representing the hook point and a pointer to the
snippet. The lists are meant to be for hooks that affect the vertex
shader and fragment shader respectively. Although there are currently
only two hooks and the names match these two lists, the intention is
*not* that each new hook will be in a separate list. The separation of
the lists is just to make it easier to determine which shader needs to
be regenerated when a new snippet is added.

When a pipeline becomes the authority for either the vertex or
fragment snipper state, it simply copies the entire list from the
previous authority (although of course the shader snippet objects are
referenced instead of copied so it doesn't duplicate the source
strings).

Each string is inserted into its own block in the shader. This means
that each string has its own scope so it doesn't need to worry about
name collisions with variables in other snippets. However it does mean
that the pre and post strings can't share variables. It could be
possible to wrap both parts in one block and then wrap the actual
inner hook code in another block, however this would mean that any
further snippets within the outer snippet would be able to see those
variables. Perhaps something to consider would be to put each snippet
into its own function which calls another function between the pre and
post strings to do further processing.

The pipeline cache for generated programs was previously shared with
the fragment shader cache because the state that affects vertex
shaders was a subset of the state that affects fragment shaders. This
is no longer the case because there is a separate state mask for
vertex snippets so the program cache now has its own hash table.

Reviewed-by: Robert Bragg <robert@linux.intel.com>
2011-12-06 19:02:05 +00:00
Robert Bragg
aa59dc5e8d docs: Fix a s/called/culled/ typo
The documentation for CoglPipelineCullFaceMode had a repeated typo with
"called" being used instead of "culled" which this fixes.

Reviewed-by: Neil Roberts <neil@linux.intel.com>
2011-12-06 18:51:56 +00:00
Neil Roberts
4553ca0695 cogl-pipeline: Add support for setting uniform values
This adds the following new public experimental functions to set
uniform values on a CoglPipeline:

void
cogl_pipeline_set_uniform_1f (CoglPipeline *pipeline,
                              int uniform_location,
                              float value);
void
cogl_pipeline_set_uniform_1i (CoglPipeline *pipeline,
                              int uniform_location,
                              int value);
void
cogl_pipeline_set_uniform_float (CoglPipeline *pipeline,
                                 int uniform_location,
                                 int n_components,
                                 int count,
                                 const float *value);
void
cogl_pipeline_set_uniform_int (CoglPipeline *pipeline,
                               int uniform_location,
                               int n_components,
                               int count,
                               const int *value);
void
cogl_pipeline_set_uniform_matrix (CoglPipeline *pipeline,
                                  int uniform_location,
                                  int dimensions,
                                  int count,
                                  gboolean transpose,
                                  const float *value);

These are similar to the old functions used to set uniforms on a
CoglProgram. To get a value to pass in as the uniform_location there
is also:

int
cogl_pipeline_get_uniform_location (CoglPipeline *pipeline,
                                    const char *uniform_name);

Conceptually the uniform locations are tied to the pipeline so that
whenever setting a value for a new pipeline the application is
expected to call this function. However in practice the uniform
locations are global to the CoglContext. The names are stored in a
linked list where the position in the list is the uniform location.

The global indices are used so that each pipeline can store a mask of
which uniforms it overrides. That way it is quicker to detect which
uniforms are different from the last pipeline that used the same
CoglProgramState so it can avoid flushing uniforms that haven't
changed. Currently the values are not actually compared which means
that it will only avoid flushing a uniform if there is a common
ancestor that sets the value (or if the same pipeline is being flushed
again - in which case the pipeline and its common ancestor are the
same thing).

The uniform values are stored in the big state of the pipeline as a
sparse linked list. A bitmask stores which values have been overridden
and only overridden values are stored in the linked list.

Reviewed-by: Robert Bragg <robert@linux.intel.com>
2011-11-16 16:32:11 +00:00
Neil Roberts
5369b3c601 pipeline: Make the backface culling experimental public
This adds two new experimental public functions to replace the old
internal _cogl_pipeline_set_cull_face_state function:

void
cogl_pipeline_set_cull_face_mode (CoglPipeline *pipeline,
                                  CoglPipelineCullFaceMode cull_face_mode);

void
cogl_pipeline_set_front_face_winding (CoglPipeline *pipeline,
                                      CoglWinding front_winding);

There are also the corresponding getters.

https://bugzilla.gnome.org/show_bug.cgi?id=663628

Reviewed-by: Robert Bragg <robert@linux.intel.com>
2011-11-14 18:40:27 +00:00
Robert Bragg
9b58b6f472 pipeline: split out all core state apis
Since cogl-pipeline.c has become very unwieldy this make a start at
trying to shape this code back into a manageable state. This patche
moves all the API relating to core pipeline state into
cogl-pipeline-state.c. This doesn't move code relating to layer state
out nor does it move any of the code supporting the core design
of CoglPipeline itself.

This change alone factors out 2k lines of code from cogl-pipeline.c
which is obviously a good start. The next step will be to factor
out the layer state and then probably look at breaking all of this
state code down into state-groups.

Reviewed-by: Neil Roberts <neil@linux.intel.com>
2011-09-19 16:35:59 +01:00