In order to run gnome-shell as part of the CI pipeline, we need
an additional runtime dependency plus python3 modules to mock
required system services and run gnome-shell-perf-tool.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1401
While we don't have an high number of tests, we still have some code
coverage and so we can track this via gitlab CI, given that it supports it
natively.
So add gcovr to the DockerFile dependency, build with -Db_coverage=true
meson native parameter, and add another manual job to make ninja to generate
the coverage reports on requests or in any master or tag ref.
Keep the artifacts around to be able to browse the generated HTML files and
eventually print the text reports so that they can be parsed by gitlab.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1236
We have branched now, time for a shiny new CI image.
Update the Dockerfile to:
- switch to F32
- use a single shared copr
- drop dependencies that are now covered by builddep
- do not include weak deps
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1176
Podman can also be used to create the image. The only thing to keep in
mind with podman is to add --format docker, so that the image will be
compatible with all CI runners.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/966
Since 3.34, the gnome-shell package was cleaned up to only depend
on gnome-control-center-filesystem at build-time. However one of
the gnome-shell tests needs the gettext ITS file for keybindings
provided by the main gnome-control-center package (in fact, the
COPR package is stripped down to just that file), so install that
explicitly.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/901
Graphene is a small library with data types and APIs
specially crafted to computer graphics. It contains
performant implementations of matrices, vectors, points
and rotation tools. It is performance because, among
other reasons, it uses vectorized processor commands
to compute various operations.
Add Graphene dependency to Mutter.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/458
This applies 'egl/x11: calloc dri2_surf so it's properly zeroed' to
mesa-19.0.7, as it fixes a crash introduced by 'egl/dri: flesh out and
use dri2_create_drawable()' included in 19.0.6.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/648
Instead of either figuring out themself, or looking at the commit that
added the file, just make life easier by providing the commands for
rebuilding and pushing as a comment in the Dockerfile itself.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/648
The currently used package links are outdated. Instead of updating them
to the current release number, rely on copr repos having a higher priority
than system repos and simply specify the package name.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/644
This commit is a bit deceitful: The main change in the image is *not* the
more recent Fedora base, but an updated (and not backward-compatible)
evolution-data-server package from the fmuellner/gnome-shell-ci copr.
https://gitlab.gnome.org/GNOME/gnome-shell/merge_requests/501 ports
gnome-shell to the new API, so to keep mutter and gnome-shell CI
working after that change, we need to build against the correct
EDS version.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/582
cogl-path uses types from glu.h, but to avoid a build dependency on glu,
it kept a minified copy of glu.h in tree. Drop this file and just use
the actual glu.h. To avoid linking to libGLU.so, just use the
includepath, instead of actually adding glu as a real dependency.
This means we can remove an includepath meant to make it possible to
include <GL/glu.h>.
The 'cursor-mode', which currently is limited to RecordMonitor(), allows
the user to either do screen casts where the cursor is hidden, embedded
in the framebuffer, or sent as PipeWire stream metadata.
The latter allows the user to get cursor updates sent, including the
cursor sprite, without requiring a stage paint each frame. Currently
this is done by using the cursor sprite texture, and either reading
directly from, or drawing to an offscreen framebuffer which is read from
instead, in case the texture is scaled.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/357
The test stage runs the whole meson test suite inside Xvfb inside a dbus
session. Running inside Xvfb is required as the cogl, clutter and mutter
tests require to run on top of X11; the dbus session is required to make
mutter succeed in owning names on the bus.
This also updates the Dockerfile to include packages needed for running
tests.
https://gitlab.gnome.org/GNOME/mutter/issues/193
This adds compilation testing using meson on the gitlab instance. It
uses a prebuild image built, described in .gitlab-ci/Dockerfile, based
on Fedora 29.
The image is build and published by running:
cd .gitlab-ci/
docker build -t registry.gitlab.gnome.org/gnome/mutter/master:v1 .
docker push registry.gitlab.gnome.org/gnome/mutter/master:v1
Resolves: https://gitlab.gnome.org/GNOME/mutter/merge_requests/132