Before this commit, sudo x11-app, e.g. sudo gvim /etc/some-file, fails
when running a Wayland session. Where as doing this under a "GNOME on Xorg"
session works fine. For a user switching from the Xorg session to the
Wayland session, this is regression, which we want to avoid.
This commit fixes this by creating and passing an xauth file to Xwayland when
mutter starts it. Just like gdm or startx pass a xauth file to Xorg when they
start Xorg.
Fixes#643https://gitlab.gnome.org/GNOME/mutter/issues/643
It is now separated into meta_xwayland_start(), which picks an unused
display and sets up the sockets, and meta_xwayland_init_xserver(), which
does the actual exec of Xwayland and MetaX11Display initialization.
This differentiation will be useful when Mutter is able to launch Xwayland
lazily, currently the former calls into the latter.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/420
The order and way include macros were structured was chaotic, with no
real common thread between files. Try to tidy up the mess with some
common scheme, to make things look less messy.
The string used to point to memory owned by libwayland-server, but
with the ability to override the display name, we took over ownership
by copying the string as necessary.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/176
Instead of scheduling a meta_later, keep track of the unassociated
windows, and look for matches as soon as the MetaWaylandSurface is
created on our side.
This will ensure the surface is given the Xwayland role before receiving
the first wl_surface.commit.
This struct keeps the server side information for the wl_tablet_manager
global resource. It keeps the clients requesting this interface, and
does keep track of the plugged tablet devices, so
wl_tablet_manager.device_added is emitted on the expected clients.
The global wl_pointer_gestures object is now created, effectively
bridging pinch/swipe gestures with clients, so they're now
accessible to clients implementing the protocol.
This piece of code hooks in both wl_data_device and the relevant X
selection events, an X11 Window is set up so it can act as the clipboard
owner when any wayland client owns the selection, reacting to
SelectionRequest events, and returning the data from the wayland client
FD to any X11 requestor through X properties.
In the opposite direction, SelectionNotify messages are received,
which results in the property contents being converted then written
into the wayland requestor's FD.
This code also takes care of the handling incremental transfers through
the INCR property type, reading/writing data chunk by chunk.
https://bugzilla.gnome.org/show_bug.cgi?id=738312
MetaWaylandFrameCallback has been added a surface field, which is then
checked when destroying the surfaces. This prevents unintended callbacks
to run after a surface has been destroyed.
https://bugzilla.gnome.org/show_bug.cgi?id=745163
This reverts commit ebe6e3180e.
This is wrong, as mutter's controlling TTY may not be the same
as the active VT, and in fact won't be in the case of systemd
spawning us.
The "correct" API for this is to use David Herrmann's
"Session Positions" system to switch to another VT:
http://lists.freedesktop.org/archives/systemd-devel/2013-December/014956.html
As logind can give us a new FD at any time when it resumes. Theoretically,
this is still technically wrong, as the MetaCursorTracker holds onto it.
We'll fix this after we port to logind.
Using the new Cogl API to actually modeset (because we can't
use the DRM API directly without controlling buffer swap), we
can finally have a KMS monitor backend, which means full display
configuration when running on bare metal.
https://bugzilla.gnome.org/show_bug.cgi?id=706308
The protocol specification says that opaque / input regions should be
considered pending state and should only be actually swapped out when
the surface is committed, so it can be set atomically.
We need to track the full xkb_state to have the necessary information
to send to the clients, otherwise they may get confused and lock
or invert the modifiers. In the evdev backend, we just retrieve the
same state object that clutter is using, while in the other backends
we fake the state using what clutter is providing (which is a subset
of what X11 provides, which would be necessary to have full state)
https://bugzilla.gnome.org/show_bug.cgi?id=705862
Now that we have a setuid launcher binary, we can make use of
using a private protocol through the socket we're passed at startup.
We also use the new hook in clutter-evdev to ask mutter-launch for
the FDs of the input devices we need, and we emulate the old X
DRM lock with a nested GMainContext without sources.
In the future, mutter-launch will be replaced with the new logind
API currently in development.
https://bugzilla.gnome.org/show_bug.cgi?id=705861
We need to track the full xkb_state to have the necessary information
to send to the clients, otherwise they may get confused and lock
or invert the modifiers. In the evdev backend, we just retrieve the
same state object that clutter is using, while in the other backends
we fake the state using what clutter is providing (which is a subset
of what X11 provides, which would be necessary to have full state)
https://bugzilla.gnome.org/show_bug.cgi?id=705862