The debug controller can optionally, when passing --debug-control,
enable manipulating debug state, so far enabling/disabling HDR, via
D-Bus.
It's always created, in order to have a place to store debug state and
emit signals etc when it changes, but so far, it doesn't have its own
state it tracks, it just mirrors that of the monitor manager.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3432>
Given destruction order, the display goes away before the stage, so
this lingering signal connection may trigger unintended crashes.
Fixes: 05eeb684d1 ("window: Postpone focusing until grab ended if uninteractable")
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3422>
In profilers with a timeline or flame graph views it is a very common
scenario that a span name must be displayed in an area too short to fit
it. In this case, profilers may implement automatic shortening to show
the most important part of the span name in the available area. This
makes it easier to tell what's going on without having to zoom all the
way in.
The current trace span names in Mutter don't really follow any system
and cannot really be shortened automatically.
The Tracy profiler shortens with C++ in mind. Consider an example C++
name:
SomeNamespace::SomeClass::some_method(args)
The method name is the most important part, and the arguments with the
class name will be cut if necessary in the order of importance.
This logic makes sence for other languages too, like Rust. I can see it
being implemented in other profilers like Sysprof, since it's generally
useful.
Hence, this commit adjusts our trace names to look like C++ and arrange
the parts of the name in the respective order of importance.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3402>
Scoped traces are less error prone, and they can still be ended
prematurely if needed (this commit makes that work). The only case this
doesn't support is starting a trace inside a scope but ending outside,
but this is pretty unusual, plus we have anchored traces for a limited
variation of that.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3396>
Take a reference to the window to make sure the MetaFocusData->window
pointer is not pointing to a freed object.
Also make sure that the window that we want to focus is not currently
unmanaging.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3258>
On X meta_window_handle_enter was called when the desktop window was
entered. On wayland the "desktop" is no window anymore. We still want to
inform the core that the desktop is focused, so it can unfocus windows
if focus-mode is mouse.
This commit prepares the core for handling a NULL windows to mean the
desktop.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3258>
The following commits will make it possible to pass a NULL window to
display_handle_window_enter/leave to represent the cursor entering the
desktop. This means it can't be a method of the window class anymore.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3258>
If we have an existing focused window that may have focus, default focus
will leave the focus there. An unmanaging window for example must not
have focus and default focus will continue to select another window in
this case.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3258>
meta_display_ping_window() does nothing when check-alive-timeout is set
to 0, but meta_window_check_alive_on_event() was relying on it to reset
the events_during_ping. Without this events_during_ping was just
counting up until the threshold was reached and the window was marked as
not alive, preventing further pointer events from being sent to the
window.
Fix this by not doing anything in meta_window_check_alive_on_event() if
check-alive-timeout is 0, similar to meta_display_ping_window().
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/3142
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3367>
Locked modifiers should probably not have an effect on keybindings
while toggled. this is most relevant for modifiers that can be
either/both pressed or locked (e.g. Caps Lock key), if used in
keybindings.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3369>
The shell might raise and make windows recent for another workspace when
an app gets activated on another workspace. Making the windows only
recent on the current workspace thus results in inconsistent focus when
another window of the same app is closed.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3315>
Assigning the corresponding stack layer of DESKTOP windows is
currently X11 specific, because there is no way for wayland
clients to set the DESKTOP window type.
This is about to change, so move the code to the generic layer
handling.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3305>
Focus follows mouse is meant to avoid focusing windows that happened
to pop up under the pointer, e.g. due to mapping, workspace changes,
etc... On X11, this has been done since ancient times through a
moderately complex synchronization mechanism, so mutter would know
to ignore crossing events caused on those situations.
This mechanism is much prior to XInput 2 though, where we may know
this in a more straightforward way: If the sourceid of the crossing
event is a logical pointer (i.e. equals deviceid), the crossing event
was triggered logically, and not through user input.
Perform this simpler check, and drop the existing mechanism to
ignore logically induced crossing events.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3267>
After an event has been handled such that it bypasses both Clutter and
Wayland, e.g. when handling a keybinding, bypass_clutter would get
unset in the presence of a wayland grab. This means that the event is
handled both as a keybinding and by Clutter.
In the case of switcher popups in gnome-shell in the presence of a gtk4
autohide popover this meant that instead of selecting the next element,
it would select the one after that. If there are only two elements, as
is common with input sources, this would mean going back to the current
one, preventing switching them with a single press of the keybinding.
Closes: https://gitlab.gnome.org/GNOME/gnome-shell/-/issues/6738
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3054>
Commit 3bfcb6d1 fixed the check for tiling via keybindings, but
ignored a subtle edge case when tiling with the pointer: The
monitor used for tiling is the monitor with the pointer, which
is not necessarily the one that contains the largest part of the
window.
That is, the correct monitor to check against depends on the
context where the function is called. We can either figure
it out automatically via the current window drag, or make it
a parameter.
The latter is clearer, because the callers already decide which
monitor to use for tiling anyway.
Fixes: 3bfcb6d1b9 ("window: Fix portrait orientation check for tiling")
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3248>
Use work area from the monitor that the window is currently on to
determine if tiling should be allowed.
Window tiling is disabled for monitors with portrait orientation, but
the work area we use to detect portrait orientation is taken from the
monitor that currently has the mouse pointer.
This works fine for edge tiling using the mouse, but this is broken when
using keybindings for window tiling because your mouse pointer could be
on a different monitor that has horizontal orientation.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3199>
This removes the implicit dependency on `display->stack_tracker`
existing and being valid in `on_stack_changed()` because
now it is the stack-tracker's responsibility to subscribe
to the "changed" signal of the stack and handle the changes.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3202>
Under strange timings, the GTK frames client may implicitly queue
relayouts that end up disagreeing with the latest frame size as
given by Mutter, this results in GTK calling XResizeWindow, and
Mutter plain out ignoring the resulting XConfigureRequestEvent
received.
This however makes GTK think there's pending resize operations,
so at the next resize it will freeze the window, until enough
resizes happened to thaw it again. This is seen as temporary
loss of frame-sync ness (e.g. frozen frame, and other weird
behavior).
In order to make GTK happy and balanced, reply to this
XConfigureRequest, even if just to ignore it in a more polite
way (we simply re-apply the size Mutter thinks the frame should
have, not GTK), this results in the right amount of
ConfigureNotify received on the frames client side, and the
surface to be thawed more timely, while enforcing the size as
managed by Mutter.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2837
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3189>
Dropped obsolete Free Software Foundation address pointing
to the FSF website instead as suggested by
https://www.gnu.org/licenses/gpl-howto.html
keeping intact the important part of the historical notice
as requested by the license.
Resolving rpmlint reported issue E: incorrect-fsf-address.
Signed-off-by: Sandro Bonazzola <sbonazzo@redhat.com>
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3155>
The 'suspend state' is meant to track whether a window is likely to be
visible any time soon. The hueristics for this are as follows:
* If a window is hidden, it will enter the 'hidden' state.
* If a window is visible, and unobscured, it will enter the 'active'
state.
* If a window is visible, but obscured by another window, it will enter
the 'hidden' state.
* If there is a mapped clone of a window, it will enter the 'active'
state.
* If the window has been in the 'hidden' state for 3 seconds, it will
enter the 'suspended' state.
This will eventually be communicated to Wayland clients so that they can
change their behaviour to e.g. save power.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3019>
Freeing the window opaque region rather than the frame one when was
leaking the frame opaque region and wrongly setting the window opaque
region to NULL.
Fixes: 82b2b7688 ("core: Add infrastructure to keep window frames' opaque regions")
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3188>
This is something the compositor could now track by itself, instead of
being pushed through events. It also makes more sense to do this directly
when the grabbing conditions change, as opposed to the next event.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3185>
These "features" are somewhat less featured, it's becoming too ugly
to handle all of them with a single API call. The clear outlier are
buttons, so move them to a separate function.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3005>
This adds the actual input capturing rerouting that takes events and
first hands them to the input capture session, would it be active.
Events are right now not actually processed in any way, but will
eventually be passed to a libei client using libeis.
A key binding for allowing cancelling the capture session is added
(defaults to <Super><Shift>Escape) to avoid getting stuck in case the client
doesn't even terminate the session.
The added test case makes sure that the pointer moves again after
pressing the keybinding.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2628>
With window_is_terminal gone, "strict" and "smart" focus mode have no
behavioural difference. Let's broaden the scope of strict focus mode,
such that windows never automatically focus unless they are an ancestor
to the transient.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3063>
As noted in the comments of window_is_terminal, this is a hack. This
code has not been touched for the better part of a decade. App res_class
tends to differ between Wayland and X11, so it is likely that none of
these apps have been recognised as terminals under Wayland ever. Also,
there are reports that strict focus mode also does not work under X11,
likely due to changes in these terminal apps over the years resulting
in different res_class than those manually specified in here. Let's remove
this hack and change strict focus mode accordingly.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3063>
Current behavior pushes a window which receives focus to the start of
the MRU list on every workspace it is on. By focusing a sticky window
the default focus on all other workspaces changes as well. This is fine
for sticky windows explicitly marked as sticky by the user but if a
window is on a secondary output and workspaces are only on the primary
output the behavior is unexpected. Instead we want the window to be the
default focus only on the current workspace but also keep those windows
in a relative MRU order to each other on all workspaces.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2681
Fixes: 058981dc1 ("workspace: Focus the default window only if no window is focused")
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2909>
This avoids use-after-free when handle_start() is called following
handle_stop() during the lifetime of the MetaProfiler. This happens
on repeated profiling sessions using Sysprof.
Fixes: e16d68372 ("profiler: Add API to register profiler threads")
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3076>
We need to juggle with some things here to keep key event ordering
and accounting consistent.
The keyboard internal state changes (and maybe modifier event emission)
happening through meta_wayland_seat_update() should ideally happen
from the same key events that reach the client through wl_keyboard.key,
so that wl_keyboard.modifier events are emitted in the right relative
order to other key events.
In order to fix this, we need to decide at an earlier point whether
the event will get processed through IM (and maybe be reinjected),
thus ignored in wait of IM-postprocessed events.
This means we pay less attention to whether events are first-hand
hardware events for some things and go with the event that does
eventually reach to us (hardware or IM).
Closes: https://gitlab.gnome.org/GNOME/gnome-shell/-/issues/5890
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3044>
Don't try to handle things by threads enabling/disabling the main trace
context on-demand, just have a clear start/stop API. For the D-Bus API,
it becomes more straight forward, and for the persistent variant too, as
it avoids having to pass garbage input when it's known that arguments
will be discarded.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2998>