diff --git a/cogl/cogl/cogl-matrix.c b/cogl/cogl/cogl-matrix.c index 225cd82aa..fbfd2a51b 100644 --- a/cogl/cogl/cogl-matrix.c +++ b/cogl/cogl/cogl-matrix.c @@ -405,749 +405,20 @@ cogl_debug_matrix_print (const CoglMatrix *matrix) _cogl_matrix_prefix_print ("", matrix); } -/* - * References an element of 4x4 matrix. - * - * @m matrix array. - * @c column of the desired element. - * @r row of the desired element. - * - * Returns: value of the desired element. - * - * Calculate the linear storage index of the element and references it. - */ -#define MAT(m,r,c) (m)[(c)*4+(r)] - -/* - * Swaps the values of two floating pointer variables. - * - * Used by invert_matrix_general() to swap the row pointers. - */ -#define SWAP_ROWS(a, b) { float *_tmp = a; (a)=(b); (b)=_tmp; } - -/* - * Compute inverse of 4x4 transformation matrix. - * - * @mat pointer to a CoglMatrix structure. The matrix inverse will be - * stored in the CoglMatrix::inv attribute. - * - * Returns: %TRUE for success, %FALSE for failure (\p singular matrix). - * - * \author - * Code contributed by Jacques Leroy jle@star.be - * - * Calculates the inverse matrix by performing the gaussian matrix reduction - * with partial pivoting followed by back/substitution with the loops manually - * unrolled. - */ -static gboolean -invert_matrix_general (CoglMatrix *matrix) -{ - const float *m = (float *)matrix; - float *out = matrix->inv; - float wtmp[4][8]; - float m0, m1, m2, m3, s; - float *r0, *r1, *r2, *r3; - - r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3]; - - r0[0] = MAT (m, 0, 0), r0[1] = MAT (m, 0, 1), - r0[2] = MAT (m, 0, 2), r0[3] = MAT (m, 0, 3), - r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0, - - r1[0] = MAT (m, 1, 0), r1[1] = MAT (m, 1, 1), - r1[2] = MAT (m, 1, 2), r1[3] = MAT (m, 1, 3), - r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0, - - r2[0] = MAT (m, 2, 0), r2[1] = MAT (m, 2, 1), - r2[2] = MAT (m, 2, 2), r2[3] = MAT (m, 2, 3), - r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0, - - r3[0] = MAT (m, 3, 0), r3[1] = MAT (m, 3, 1), - r3[2] = MAT (m, 3, 2), r3[3] = MAT (m, 3, 3), - r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0; - - /* choose pivot - or die */ - if (fabsf (r3[0]) > fabsf (r2[0])) - SWAP_ROWS (r3, r2); - if (fabsf (r2[0]) > fabsf (r1[0])) - SWAP_ROWS (r2, r1); - if (fabsf (r1[0]) > fabsf (r0[0])) - SWAP_ROWS (r1, r0); - if (0.0 == r0[0]) - return FALSE; - - /* eliminate first variable */ - m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0]; - s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s; - s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s; - s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s; - s = r0[4]; - if (s != 0.0) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; } - s = r0[5]; - if (s != 0.0) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; } - s = r0[6]; - if (s != 0.0) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; } - s = r0[7]; - if (s != 0.0) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; } - - /* choose pivot - or die */ - if (fabsf (r3[1]) > fabsf (r2[1])) - SWAP_ROWS (r3, r2); - if (fabsf (r2[1]) > fabsf (r1[1])) - SWAP_ROWS (r2, r1); - if (0.0 == r1[1]) - return FALSE; - - /* eliminate second variable */ - m2 = r2[1] / r1[1]; m3 = r3[1] / r1[1]; - r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2]; - r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3]; - s = r1[4]; if (0.0 != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; } - s = r1[5]; if (0.0 != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; } - s = r1[6]; if (0.0 != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; } - s = r1[7]; if (0.0 != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; } - - /* choose pivot - or die */ - if (fabsf (r3[2]) > fabsf (r2[2])) - SWAP_ROWS (r3, r2); - if (0.0 == r2[2]) - return FALSE; - - /* eliminate third variable */ - m3 = r3[2] / r2[2]; - r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4], - r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6], - r3[7] -= m3 * r2[7]; - - /* last check */ - if (0.0 == r3[3]) - return FALSE; - - s = 1.0f / r3[3]; /* now back substitute row 3 */ - r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s; - - m2 = r2[3]; /* now back substitute row 2 */ - s = 1.0f / r2[2]; - r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2), - r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2); - m1 = r1[3]; - r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1, - r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1; - m0 = r0[3]; - r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0, - r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0; - - m1 = r1[2]; /* now back substitute row 1 */ - s = 1.0f / r1[1]; - r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1), - r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1); - m0 = r0[2]; - r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0, - r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0; - - m0 = r0[1]; /* now back substitute row 0 */ - s = 1.0f / r0[0]; - r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0), - r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0); - - MAT (out, 0, 0) = r0[4]; MAT (out, 0, 1) = r0[5], - MAT (out, 0, 2) = r0[6]; MAT (out, 0, 3) = r0[7], - MAT (out, 1, 0) = r1[4]; MAT (out, 1, 1) = r1[5], - MAT (out, 1, 2) = r1[6]; MAT (out, 1, 3) = r1[7], - MAT (out, 2, 0) = r2[4]; MAT (out, 2, 1) = r2[5], - MAT (out, 2, 2) = r2[6]; MAT (out, 2, 3) = r2[7], - MAT (out, 3, 0) = r3[4]; MAT (out, 3, 1) = r3[5], - MAT (out, 3, 2) = r3[6]; MAT (out, 3, 3) = r3[7]; - - return TRUE; -} -#undef SWAP_ROWS - -/* - * Compute inverse of a general 3d transformation matrix. - * - * @mat pointer to a CoglMatrix structure. The matrix inverse will be - * stored in the CoglMatrix::inv attribute. - * - * Returns: %TRUE for success, %FALSE for failure (\p singular matrix). - * - * \author Adapted from graphics gems II. - * - * Calculates the inverse of the upper left by first calculating its - * determinant and multiplying it to the symmetric adjust matrix of each - * element. Finally deals with the translation part by transforming the - * original translation vector using by the calculated submatrix inverse. - */ -static gboolean -invert_matrix_3d_general (CoglMatrix *matrix) -{ - const float *in = (float *)matrix; - float *out = matrix->inv; - float pos, neg, t; - float det; - - /* Calculate the determinant of upper left 3x3 submatrix and - * determine if the matrix is singular. - */ - pos = neg = 0.0; - t = MAT (in,0,0) * MAT (in,1,1) * MAT (in,2,2); - if (t >= 0.0) pos += t; else neg += t; - - t = MAT (in,1,0) * MAT (in,2,1) * MAT (in,0,2); - if (t >= 0.0) pos += t; else neg += t; - - t = MAT (in,2,0) * MAT (in,0,1) * MAT (in,1,2); - if (t >= 0.0) pos += t; else neg += t; - - t = -MAT (in,2,0) * MAT (in,1,1) * MAT (in,0,2); - if (t >= 0.0) pos += t; else neg += t; - - t = -MAT (in,1,0) * MAT (in,0,1) * MAT (in,2,2); - if (t >= 0.0) pos += t; else neg += t; - - t = -MAT (in,0,0) * MAT (in,2,1) * MAT (in,1,2); - if (t >= 0.0) pos += t; else neg += t; - - det = pos + neg; - - if (det*det < 1e-25) - return FALSE; - - det = 1.0f / det; - MAT (out,0,0) = - ( (MAT (in, 1, 1)*MAT (in, 2, 2) - MAT (in, 2, 1)*MAT (in, 1, 2) )*det); - MAT (out,0,1) = - (- (MAT (in, 0, 1)*MAT (in, 2, 2) - MAT (in, 2, 1)*MAT (in, 0, 2) )*det); - MAT (out,0,2) = - ( (MAT (in, 0, 1)*MAT (in, 1, 2) - MAT (in, 1, 1)*MAT (in, 0, 2) )*det); - MAT (out,1,0) = - (- (MAT (in,1,0)*MAT (in,2,2) - MAT (in,2,0)*MAT (in,1,2) )*det); - MAT (out,1,1) = - ( (MAT (in,0,0)*MAT (in,2,2) - MAT (in,2,0)*MAT (in,0,2) )*det); - MAT (out,1,2) = - (- (MAT (in,0,0)*MAT (in,1,2) - MAT (in,1,0)*MAT (in,0,2) )*det); - MAT (out,2,0) = - ( (MAT (in,1,0)*MAT (in,2,1) - MAT (in,2,0)*MAT (in,1,1) )*det); - MAT (out,2,1) = - (- (MAT (in,0,0)*MAT (in,2,1) - MAT (in,2,0)*MAT (in,0,1) )*det); - MAT (out,2,2) = - ( (MAT (in,0,0)*MAT (in,1,1) - MAT (in,1,0)*MAT (in,0,1) )*det); - - /* Do the translation part */ - MAT (out,0,3) = - (MAT (in, 0, 3) * MAT (out, 0, 0) + - MAT (in, 1, 3) * MAT (out, 0, 1) + - MAT (in, 2, 3) * MAT (out, 0, 2) ); - MAT (out,1,3) = - (MAT (in, 0, 3) * MAT (out, 1, 0) + - MAT (in, 1, 3) * MAT (out, 1, 1) + - MAT (in, 2, 3) * MAT (out, 1, 2) ); - MAT (out,2,3) = - (MAT (in, 0, 3) * MAT (out, 2 ,0) + - MAT (in, 1, 3) * MAT (out, 2, 1) + - MAT (in, 2, 3) * MAT (out, 2, 2) ); - - return TRUE; -} - -/* - * Compute inverse of a 3d transformation matrix. - * - * @mat pointer to a CoglMatrix structure. The matrix inverse will be - * stored in the CoglMatrix::inv attribute. - * - * Returns: %TRUE for success, %FALSE for failure (\p singular matrix). - * - * If the matrix is not an angle preserving matrix then calls - * invert_matrix_3d_general for the actual calculation. Otherwise calculates - * the inverse matrix analyzing and inverting each of the scaling, rotation and - * translation parts. - */ -static gboolean -invert_matrix_3d (CoglMatrix *matrix) -{ - const float *in = (float *)matrix; - float *out = matrix->inv; - - memcpy (out, identity, 16 * sizeof (float)); - - if (!TEST_MAT_FLAGS(matrix, MAT_FLAGS_ANGLE_PRESERVING)) - return invert_matrix_3d_general (matrix); - - if (matrix->flags & MAT_FLAG_UNIFORM_SCALE) - { - float scale = (MAT (in, 0, 0) * MAT (in, 0, 0) + - MAT (in, 0, 1) * MAT (in, 0, 1) + - MAT (in, 0, 2) * MAT (in, 0, 2)); - - if (scale == 0.0) - return FALSE; - - scale = 1.0f / scale; - - /* Transpose and scale the 3 by 3 upper-left submatrix. */ - MAT (out, 0, 0) = scale * MAT (in, 0, 0); - MAT (out, 1, 0) = scale * MAT (in, 0, 1); - MAT (out, 2, 0) = scale * MAT (in, 0, 2); - MAT (out, 0, 1) = scale * MAT (in, 1, 0); - MAT (out, 1, 1) = scale * MAT (in, 1, 1); - MAT (out, 2, 1) = scale * MAT (in, 1, 2); - MAT (out, 0, 2) = scale * MAT (in, 2, 0); - MAT (out, 1, 2) = scale * MAT (in, 2, 1); - MAT (out, 2, 2) = scale * MAT (in, 2, 2); - } - else if (matrix->flags & MAT_FLAG_ROTATION) - { - /* Transpose the 3 by 3 upper-left submatrix. */ - MAT (out, 0, 0) = MAT (in, 0, 0); - MAT (out, 1, 0) = MAT (in, 0, 1); - MAT (out, 2, 0) = MAT (in, 0, 2); - MAT (out, 0, 1) = MAT (in, 1, 0); - MAT (out, 1, 1) = MAT (in, 1, 1); - MAT (out, 2, 1) = MAT (in, 1, 2); - MAT (out, 0, 2) = MAT (in, 2, 0); - MAT (out, 1, 2) = MAT (in, 2, 1); - MAT (out, 2, 2) = MAT (in, 2, 2); - } - else - { - /* pure translation */ - memcpy (out, identity, 16 * sizeof (float)); - MAT (out, 0, 3) = - MAT (in, 0, 3); - MAT (out, 1, 3) = - MAT (in, 1, 3); - MAT (out, 2, 3) = - MAT (in, 2, 3); - return TRUE; - } - - if (matrix->flags & MAT_FLAG_TRANSLATION) - { - /* Do the translation part */ - MAT (out,0,3) = - (MAT (in, 0, 3) * MAT (out, 0, 0) + - MAT (in, 1, 3) * MAT (out, 0, 1) + - MAT (in, 2, 3) * MAT (out, 0, 2) ); - MAT (out,1,3) = - (MAT (in, 0, 3) * MAT (out, 1, 0) + - MAT (in, 1, 3) * MAT (out, 1, 1) + - MAT (in, 2, 3) * MAT (out, 1, 2) ); - MAT (out,2,3) = - (MAT (in, 0, 3) * MAT (out, 2, 0) + - MAT (in, 1, 3) * MAT (out, 2, 1) + - MAT (in, 2, 3) * MAT (out, 2, 2) ); - } - else - MAT (out, 0, 3) = MAT (out, 1, 3) = MAT (out, 2, 3) = 0.0; - - return TRUE; -} - -/* - * Compute inverse of an identity transformation matrix. - * - * @mat pointer to a CoglMatrix structure. The matrix inverse will be - * stored in the CoglMatrix::inv attribute. - * - * Returns: always %TRUE. - * - * Simply copies identity into CoglMatrix::inv. - */ -static gboolean -invert_matrix_identity (CoglMatrix *matrix) -{ - memcpy (matrix->inv, identity, 16 * sizeof (float)); - return TRUE; -} - -/* - * Compute inverse of a no-rotation 3d transformation matrix. - * - * @mat pointer to a CoglMatrix structure. The matrix inverse will be - * stored in the CoglMatrix::inv attribute. - * - * Returns: %TRUE for success, %FALSE for failure (\p singular matrix). - * - * Calculates the - */ -static gboolean -invert_matrix_3d_no_rotation (CoglMatrix *matrix) -{ - const float *in = (float *)matrix; - float *out = matrix->inv; - - if (MAT (in,0,0) == 0 || MAT (in,1,1) == 0 || MAT (in,2,2) == 0) - return FALSE; - - memcpy (out, identity, 16 * sizeof (float)); - MAT (out,0,0) = 1.0f / MAT (in,0,0); - MAT (out,1,1) = 1.0f / MAT (in,1,1); - MAT (out,2,2) = 1.0f / MAT (in,2,2); - - if (matrix->flags & MAT_FLAG_TRANSLATION) - { - MAT (out,0,3) = - (MAT (in,0,3) * MAT (out,0,0)); - MAT (out,1,3) = - (MAT (in,1,3) * MAT (out,1,1)); - MAT (out,2,3) = - (MAT (in,2,3) * MAT (out,2,2)); - } - - return TRUE; -} - -/* - * Compute inverse of a no-rotation 2d transformation matrix. - * - * @mat pointer to a CoglMatrix structure. The matrix inverse will be - * stored in the CoglMatrix::inv attribute. - * - * Returns: %TRUE for success, %FALSE for failure (\p singular matrix). - * - * Calculates the inverse matrix by applying the inverse scaling and - * translation to the identity matrix. - */ -static gboolean -invert_matrix_2d_no_rotation (CoglMatrix *matrix) -{ - const float *in = (float *)matrix; - float *out = matrix->inv; - - if (MAT (in, 0, 0) == 0 || MAT (in, 1, 1) == 0) - return FALSE; - - memcpy (out, identity, 16 * sizeof (float)); - MAT (out, 0, 0) = 1.0f / MAT (in, 0, 0); - MAT (out, 1, 1) = 1.0f / MAT (in, 1, 1); - - if (matrix->flags & MAT_FLAG_TRANSLATION) - { - MAT (out, 0, 3) = - (MAT (in, 0, 3) * MAT (out, 0, 0)); - MAT (out, 1, 3) = - (MAT (in, 1, 3) * MAT (out, 1, 1)); - } - - return TRUE; -} - -#if 0 -/* broken */ -static gboolean -invert_matrix_perspective (CoglMatrix *matrix) -{ - const float *in = matrix; - float *out = matrix->inv; - - if (MAT (in,2,3) == 0) - return FALSE; - - memcpy( out, identity, 16 * sizeof(float) ); - - MAT (out, 0, 0) = 1.0f / MAT (in, 0, 0); - MAT (out, 1, 1) = 1.0f / MAT (in, 1, 1); - - MAT (out, 0, 3) = MAT (in, 0, 2); - MAT (out, 1, 3) = MAT (in, 1, 2); - - MAT (out,2,2) = 0; - MAT (out,2,3) = -1; - - MAT (out,3,2) = 1.0f / MAT (in,2,3); - MAT (out,3,3) = MAT (in,2,2) * MAT (out,3,2); - - return TRUE; -} -#endif - -/* - * Matrix inversion function pointer type. - */ -typedef gboolean (*inv_mat_func)(CoglMatrix *matrix); - -/* - * Table of the matrix inversion functions according to the matrix type. - */ -static inv_mat_func inv_mat_tab[7] = { - invert_matrix_general, - invert_matrix_identity, - invert_matrix_3d_no_rotation, -#if 0 - /* Don't use this function for now - it fails when the projection matrix - * is premultiplied by a translation (ala Chromium's tilesort SPU). - */ - invert_matrix_perspective, -#else - invert_matrix_general, -#endif - invert_matrix_3d, /* lazy! */ - invert_matrix_2d_no_rotation, - invert_matrix_3d -}; - -#define ZERO(x) (1<flags &= ~MAT_FLAGS_GEOMETRY; - - /* Check for translation - no-one really cares - */ - if ((mask & MASK_NO_TRX) != MASK_NO_TRX) - matrix->flags |= MAT_FLAG_TRANSLATION; - - /* Do the real work - */ - if (mask == (unsigned int) MASK_IDENTITY) - matrix->type = COGL_MATRIX_TYPE_IDENTITY; - else if ((mask & MASK_2D_NO_ROT) == (unsigned int) MASK_2D_NO_ROT) - { - matrix->type = COGL_MATRIX_TYPE_2D_NO_ROT; - - if ((mask & MASK_NO_2D_SCALE) != MASK_NO_2D_SCALE) - matrix->flags |= MAT_FLAG_GENERAL_SCALE; - } - else if ((mask & MASK_2D) == (unsigned int) MASK_2D) - { - float mm = DOT2 (m, m); - float m4m4 = DOT2 (m+4,m+4); - float mm4 = DOT2 (m,m+4); - - matrix->type = COGL_MATRIX_TYPE_2D; - - /* Check for scale */ - if (SQ (mm-1) > SQ (1e-6) || - SQ (m4m4-1) > SQ (1e-6)) - matrix->flags |= MAT_FLAG_GENERAL_SCALE; - - /* Check for rotation */ - if (SQ (mm4) > SQ (1e-6)) - matrix->flags |= MAT_FLAG_GENERAL_3D; - else - matrix->flags |= MAT_FLAG_ROTATION; - - } - else if ((mask & MASK_3D_NO_ROT) == (unsigned int) MASK_3D_NO_ROT) - { - matrix->type = COGL_MATRIX_TYPE_3D_NO_ROT; - - /* Check for scale */ - if (SQ (m[0]-m[5]) < SQ (1e-6) && - SQ (m[0]-m[10]) < SQ (1e-6)) - { - if (SQ (m[0]-1.0) > SQ (1e-6)) - matrix->flags |= MAT_FLAG_UNIFORM_SCALE; - } - else - matrix->flags |= MAT_FLAG_GENERAL_SCALE; - } - else if ((mask & MASK_3D) == (unsigned int) MASK_3D) - { - float c1 = DOT3 (m,m); - float c2 = DOT3 (m+4,m+4); - float c3 = DOT3 (m+8,m+8); - float d1 = DOT3 (m, m+4); - float cp[3]; - - matrix->type = COGL_MATRIX_TYPE_3D; - - /* Check for scale */ - if (SQ (c1-c2) < SQ (1e-6) && SQ (c1-c3) < SQ (1e-6)) - { - if (SQ (c1-1.0) > SQ (1e-6)) - matrix->flags |= MAT_FLAG_UNIFORM_SCALE; - /* else no scale at all */ - } - else - matrix->flags |= MAT_FLAG_GENERAL_SCALE; - - /* Check for rotation */ - if (SQ (d1) < SQ (1e-6)) - { - CROSS3 ( cp, m, m+4); - SUB_3V ( cp, cp, (m+8)); - if (LEN_SQUARED_3FV(cp) < SQ(1e-6)) - matrix->flags |= MAT_FLAG_ROTATION; - else - matrix->flags |= MAT_FLAG_GENERAL_3D; - } - else - matrix->flags |= MAT_FLAG_GENERAL_3D; /* shear, etc */ - } - else if ((mask & MASK_PERSPECTIVE) == MASK_PERSPECTIVE && m[11]==-1.0f) - { - matrix->type = COGL_MATRIX_TYPE_PERSPECTIVE; - matrix->flags |= MAT_FLAG_GENERAL; - } - else - { - matrix->type = COGL_MATRIX_TYPE_GENERAL; - matrix->flags |= MAT_FLAG_GENERAL; - } -} - -/* - * Analyze a matrix given that its flags are accurate. - * - * This is the more common operation, hopefully. - */ -static void -analyse_from_flags (CoglMatrix *matrix) -{ - const float *m = (float *)matrix; - - if (TEST_MAT_FLAGS(matrix, 0)) - matrix->type = COGL_MATRIX_TYPE_IDENTITY; - else if (TEST_MAT_FLAGS(matrix, (MAT_FLAG_TRANSLATION | - MAT_FLAG_UNIFORM_SCALE | - MAT_FLAG_GENERAL_SCALE))) - { - if ( m[10] == 1.0f && m[14] == 0.0f ) - matrix->type = COGL_MATRIX_TYPE_2D_NO_ROT; - else - matrix->type = COGL_MATRIX_TYPE_3D_NO_ROT; - } - else if (TEST_MAT_FLAGS (matrix, MAT_FLAGS_3D)) - { - if ( m[ 8]==0.0f - && m[ 9]==0.0f - && m[2]==0.0f && m[6]==0.0f && m[10]==1.0f && m[14]==0.0f) - { - matrix->type = COGL_MATRIX_TYPE_2D; - } - else - matrix->type = COGL_MATRIX_TYPE_3D; - } - else if ( m[4]==0.0f && m[12]==0.0f - && m[1]==0.0f && m[13]==0.0f - && m[2]==0.0f && m[6]==0.0f - && m[3]==0.0f && m[7]==0.0f && m[11]==-1.0f && m[15]==0.0f) - { - matrix->type = COGL_MATRIX_TYPE_PERSPECTIVE; - } - else - matrix->type = COGL_MATRIX_TYPE_GENERAL; -} - -/* - * Analyze and update the type and flags of a matrix. - * - * If the matrix type is dirty then calls either analyse_from_scratch() or - * analyse_from_flags() to determine its type, according to whether the flags - * are dirty or not, respectively. If the matrix has an inverse and it's dirty - * then calls matrix_invert(). Finally clears the dirty flags. - */ -static void -_cogl_matrix_update_type_and_flags (CoglMatrix *matrix) -{ - if (matrix->flags & MAT_DIRTY_TYPE) - { - if (matrix->flags & MAT_DIRTY_FLAGS) - analyse_from_scratch (matrix); - else - analyse_from_flags (matrix); - } - - matrix->flags &= ~(MAT_DIRTY_FLAGS | MAT_DIRTY_TYPE); -} - -/* - * Compute inverse of a transformation matrix. - * - * @mat pointer to a CoglMatrix structure. The matrix inverse will be - * stored in the CoglMatrix::inv attribute. - * - * Returns: %TRUE for success, %FALSE for failure (\p singular matrix). - * - * Calls the matrix inversion function in inv_mat_tab corresponding to the - * given matrix type. In case of failure, updates the MAT_FLAG_SINGULAR flag, - * and copies the identity matrix into CoglMatrix::inv. - */ -static gboolean -_cogl_matrix_update_inverse (CoglMatrix *matrix) -{ - if (matrix->flags & MAT_DIRTY_FLAGS || - matrix->flags & MAT_DIRTY_INVERSE) - { - _cogl_matrix_update_type_and_flags (matrix); - - if (inv_mat_tab[matrix->type](matrix)) - matrix->flags &= ~MAT_FLAG_SINGULAR; - else - { - matrix->flags |= MAT_FLAG_SINGULAR; - memcpy (matrix->inv, identity, 16 * sizeof (float)); - } - - matrix->flags &= ~MAT_DIRTY_INVERSE; - } - - if (matrix->flags & MAT_FLAG_SINGULAR) - return FALSE; - else - return TRUE; -} - gboolean cogl_matrix_get_inverse (const CoglMatrix *matrix, CoglMatrix *inverse) { - if (_cogl_matrix_update_inverse ((CoglMatrix *)matrix)) - { - cogl_matrix_init_from_array (inverse, matrix->inv); - return TRUE; - } - else - { - cogl_matrix_init_identity (inverse); - return FALSE; - } + graphene_matrix_t m; + gboolean success; + + cogl_matrix_to_graphene_matrix (matrix, &m); + success = graphene_matrix_inverse (&m, &m); + + if (!success) + graphene_matrix_init_identity (&m); + + graphene_matrix_to_cogl_matrix (&m, inverse); + return success; } /*