mutter/cogl/cogl-vector.c

293 lines
6.0 KiB
C
Raw Normal View History

/*
* Cogl
*
* An object oriented GL/GLES Abstraction/Utility Layer
*
* Copyright (C) 2010 Intel Corporation.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*
* Authors:
* Robert Bragg <robert@linux.intel.com>
*/
#include <cogl.h>
#include <cogl-util.h>
#include <cogl-vector.h>
#include <glib.h>
#include <math.h>
#include <string.h>
#define X 0
#define Y 1
#define Z 2
#define W 3
void
cogl_vector3_init (float *vector, float x, float y, float z)
{
vector[X] = x;
vector[Y] = y;
vector[Z] = z;
}
void
cogl_vector3_init_zero (float *vector)
{
memset (vector, 0, sizeof (float) * 3);
}
gboolean
cogl_vector3_equal (gconstpointer v1, gconstpointer v2)
{
float *vector0 = (float *)v1;
float *vector1 = (float *)v2;
_COGL_RETURN_VAL_IF_FAIL (v1 != NULL, FALSE);
_COGL_RETURN_VAL_IF_FAIL (v2 != NULL, FALSE);
/* There's no point picking an arbitrary epsilon that's appropriate
* for comparing the components so we just use == that will at least
* consider -0 and 0 to be equal. */
return
vector0[X] == vector1[X] &&
vector0[Y] == vector1[Y] &&
vector0[Z] == vector1[Z];
}
gboolean
cogl_vector3_equal_with_epsilon (const float *vector0,
const float *vector1,
float epsilon)
{
_COGL_RETURN_VAL_IF_FAIL (vector0 != NULL, FALSE);
_COGL_RETURN_VAL_IF_FAIL (vector1 != NULL, FALSE);
if (fabsf (vector0[X] - vector1[X]) < epsilon &&
fabsf (vector0[Y] - vector1[Y]) < epsilon &&
fabsf (vector0[Z] - vector1[Z]) < epsilon)
return TRUE;
else
return FALSE;
}
float *
cogl_vector3_copy (const float *vector)
{
if (vector)
return g_slice_copy (sizeof (float) * 3, vector);
return NULL;
}
void
cogl_vector3_free (float *vector)
{
g_slice_free1 (sizeof (float) * 3, vector);
}
void
cogl_vector3_invert (float *vector)
{
vector[X] = -vector[X];
vector[Y] = -vector[Y];
vector[Z] = -vector[Z];
}
void
cogl_vector3_add (float *result,
const float *a,
const float *b)
{
result[X] = a[X] + b[X];
result[Y] = a[Y] + b[Y];
result[Z] = a[Z] + b[Z];
}
void
cogl_vector3_subtract (float *result,
const float *a,
const float *b)
{
result[X] = a[X] - b[X];
result[Y] = a[Y] - b[Y];
result[Z] = a[Z] - b[Z];
}
void
cogl_vector3_multiply_scalar (float *vector,
float scalar)
{
vector[X] *= scalar;
vector[Y] *= scalar;
vector[Z] *= scalar;
}
void
cogl_vector3_divide_scalar (float *vector,
float scalar)
{
float one_over_scalar = 1.0f / scalar;
vector[X] *= one_over_scalar;
vector[Y] *= one_over_scalar;
vector[Z] *= one_over_scalar;
}
void
cogl_vector3_normalize (float *vector)
{
float mag_squared =
vector[X] * vector[X] +
vector[Y] * vector[Y] +
vector[Z] * vector[Z];
if (mag_squared > 0.0f)
{
float one_over_mag = 1.0f / sqrtf (mag_squared);
vector[X] *= one_over_mag;
vector[Y] *= one_over_mag;
vector[Z] *= one_over_mag;
}
}
float
cogl_vector3_magnitude (const float *vector)
{
return sqrtf (vector[X] * vector[X] +
vector[Y] * vector[Y] +
vector[Z] * vector[Z]);
}
void
cogl_vector3_cross_product (float *result,
const float *a,
const float *b)
{
float tmp[3];
tmp[X] = a[Y] * b[Z] - a[Z] * b[Y];
tmp[Y] = a[Z] * b[X] - a[X] * b[Z];
tmp[Z] = a[X] * b[Y] - a[Y] * b[X];
result[X] = tmp[X];
result[Y] = tmp[Y];
result[Z] = tmp[Z];
}
float
cogl_vector3_dot_product (const float *a, const float *b)
{
return a[X] * b[X] + a[Y] * b[Y] + a[Z] * b[Z];
}
float
cogl_vector3_distance (const float *a, const float *b)
{
float dx = b[X] - a[X];
float dy = b[Y] - a[Y];
float dz = b[Z] - a[Z];
return sqrtf (dx * dx + dy * dy + dz * dz);
}
#if 0
void
cogl_vector4_init (float *vector, float x, float y, float z)
{
vector[X] = x;
vector[Y] = y;
vector[Z] = z;
vector[W] = w;
}
void
cogl_vector4_init_zero (float *vector)
{
memset (vector, 0, sizeof (CoglVector4));
}
void
cogl_vector4_init_from_vector4 (float *vector, float *src)
{
*vector4 = *src;
}
gboolean
cogl_vector4_equal (gconstpointer *v0, gconstpointer *v1)
{
_COGL_RETURN_VAL_IF_FAIL (v1 != NULL, FALSE);
_COGL_RETURN_VAL_IF_FAIL (v2 != NULL, FALSE);
return memcmp (v1, v2, sizeof (float) * 4) == 0 ? TRUE : FALSE;
}
float *
cogl_vector4_copy (float *vector)
{
if (vector)
return g_slice_dup (CoglVector4, vector);
return NULL;
}
void
cogl_vector4_free (float *vector)
{
g_slice_free (CoglVector4, vector);
}
void
cogl_vector4_invert (float *vector)
{
vector.x = -vector.x;
vector.y = -vector.y;
vector.z = -vector.z;
vector.w = -vector.w;
}
void
cogl_vector4_add (float *result,
float *a,
float *b)
{
result.x = a.x + b.x;
result.y = a.y + b.y;
result.z = a.z + b.z;
result.w = a.w + b.w;
}
void
cogl_vector4_subtract (float *result,
float *a,
float *b)
{
result.x = a.x - b.x;
result.y = a.y - b.y;
result.z = a.z - b.z;
result.w = a.w - b.w;
}
void
cogl_vector4_divide (float *vector,
float scalar)
{
float one_over_scalar = 1.0f / scalar;
result.x *= one_over_scalar;
result.y *= one_over_scalar;
result.z *= one_over_scalar;
result.w *= one_over_scalar;
}
#endif