mutter/cogl/cogl/cogl-pipeline-hash-table.c

232 lines
7.2 KiB
C
Raw Normal View History

/*
* Cogl
*
This re-licenses Cogl 1.18 under the MIT license Since the Cogl 1.18 branch is actively maintained in parallel with the master branch; this is a counter part to commit 1b83ef938fc16b which re-licensed the master branch to use the MIT license. This re-licensing is a follow up to the proposal that was sent to the Cogl mailing list: http://lists.freedesktop.org/archives/cogl/2013-December/001465.html Note: there was a copyright assignment policy in place for Clutter (and therefore Cogl which was part of Clutter at the time) until the 11th of June 2010 and so we only checked the details after that point (commit 0bbf50f905) For each file, authors were identified via this Git command: $ git blame -p -C -C -C20 -M -M10 0bbf50f905..HEAD We received blanket approvals for re-licensing all Red Hat and Collabora contributions which reduced how many people needed to be contacted individually: - http://lists.freedesktop.org/archives/cogl/2013-December/001470.html - http://lists.freedesktop.org/archives/cogl/2014-January/001536.html Individual approval requests were sent to all the other identified authors who all confirmed the re-license on the Cogl mailinglist: http://lists.freedesktop.org/archives/cogl/2014-January As well as updating the copyright header in all sources files, the COPYING file has been updated to reflect the license change and also document the other licenses used in Cogl such as the SGI Free Software License B, version 2.0 and the 3-clause BSD license. This patch was not simply cherry-picked from master; but the same methodology was used to check the source files.
2014-02-21 20:28:54 -05:00
* A Low Level GPU Graphics and Utilities API
*
* Copyright (C) 2013 Intel Corporation.
*
This re-licenses Cogl 1.18 under the MIT license Since the Cogl 1.18 branch is actively maintained in parallel with the master branch; this is a counter part to commit 1b83ef938fc16b which re-licensed the master branch to use the MIT license. This re-licensing is a follow up to the proposal that was sent to the Cogl mailing list: http://lists.freedesktop.org/archives/cogl/2013-December/001465.html Note: there was a copyright assignment policy in place for Clutter (and therefore Cogl which was part of Clutter at the time) until the 11th of June 2010 and so we only checked the details after that point (commit 0bbf50f905) For each file, authors were identified via this Git command: $ git blame -p -C -C -C20 -M -M10 0bbf50f905..HEAD We received blanket approvals for re-licensing all Red Hat and Collabora contributions which reduced how many people needed to be contacted individually: - http://lists.freedesktop.org/archives/cogl/2013-December/001470.html - http://lists.freedesktop.org/archives/cogl/2014-January/001536.html Individual approval requests were sent to all the other identified authors who all confirmed the re-license on the Cogl mailinglist: http://lists.freedesktop.org/archives/cogl/2014-January As well as updating the copyright header in all sources files, the COPYING file has been updated to reflect the license change and also document the other licenses used in Cogl such as the SGI Free Software License B, version 2.0 and the 3-clause BSD license. This patch was not simply cherry-picked from master; but the same methodology was used to check the source files.
2014-02-21 20:28:54 -05:00
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy,
* modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
This re-licenses Cogl 1.18 under the MIT license Since the Cogl 1.18 branch is actively maintained in parallel with the master branch; this is a counter part to commit 1b83ef938fc16b which re-licensed the master branch to use the MIT license. This re-licensing is a follow up to the proposal that was sent to the Cogl mailing list: http://lists.freedesktop.org/archives/cogl/2013-December/001465.html Note: there was a copyright assignment policy in place for Clutter (and therefore Cogl which was part of Clutter at the time) until the 11th of June 2010 and so we only checked the details after that point (commit 0bbf50f905) For each file, authors were identified via this Git command: $ git blame -p -C -C -C20 -M -M10 0bbf50f905..HEAD We received blanket approvals for re-licensing all Red Hat and Collabora contributions which reduced how many people needed to be contacted individually: - http://lists.freedesktop.org/archives/cogl/2013-December/001470.html - http://lists.freedesktop.org/archives/cogl/2014-January/001536.html Individual approval requests were sent to all the other identified authors who all confirmed the re-license on the Cogl mailinglist: http://lists.freedesktop.org/archives/cogl/2014-January As well as updating the copyright header in all sources files, the COPYING file has been updated to reflect the license change and also document the other licenses used in Cogl such as the SGI Free Software License B, version 2.0 and the 3-clause BSD license. This patch was not simply cherry-picked from master; but the same methodology was used to check the source files.
2014-02-21 20:28:54 -05:00
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
This re-licenses Cogl 1.18 under the MIT license Since the Cogl 1.18 branch is actively maintained in parallel with the master branch; this is a counter part to commit 1b83ef938fc16b which re-licensed the master branch to use the MIT license. This re-licensing is a follow up to the proposal that was sent to the Cogl mailing list: http://lists.freedesktop.org/archives/cogl/2013-December/001465.html Note: there was a copyright assignment policy in place for Clutter (and therefore Cogl which was part of Clutter at the time) until the 11th of June 2010 and so we only checked the details after that point (commit 0bbf50f905) For each file, authors were identified via this Git command: $ git blame -p -C -C -C20 -M -M10 0bbf50f905..HEAD We received blanket approvals for re-licensing all Red Hat and Collabora contributions which reduced how many people needed to be contacted individually: - http://lists.freedesktop.org/archives/cogl/2013-December/001470.html - http://lists.freedesktop.org/archives/cogl/2014-January/001536.html Individual approval requests were sent to all the other identified authors who all confirmed the re-license on the Cogl mailinglist: http://lists.freedesktop.org/archives/cogl/2014-January As well as updating the copyright header in all sources files, the COPYING file has been updated to reflect the license change and also document the other licenses used in Cogl such as the SGI Free Software License B, version 2.0 and the 3-clause BSD license. This patch was not simply cherry-picked from master; but the same methodology was used to check the source files.
2014-02-21 20:28:54 -05:00
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*
* Authors:
* Neil Roberts <neil@linux.intel.com>
* Robert Bragg <robert@linux.intel.com>
*/
#include "cogl-config.h"
#include "cogl-context-private.h"
#include "cogl-pipeline-private.h"
#include "cogl-pipeline-hash-table.h"
pipeline-cache: Prune old unused pipelines when the cache gets too big Previously when a pipeline is added to the cache it would never be removed. If the application is generating a lot of unique pipelines this can end up effectively leaking a large number of resources including the GL program objects. Arguably this isn't really a problem because if the application is generating that many unique pipelines then it is doing something wrong anyway. It also implies that it will be recompiling shaders very often so the cache leaking will likely be the least of the problems. This patch makes it keep track of which pipelines in the cache are in use. The cache now returns a struct representing the entry instead of directly returning the pipeline. This entry contains a usage counter which the pipeline backends can use to mark when there is a pipeline alive that is using the cache entry. When the hash table decides that it's a good time to prune some entries, it will make a list of all of the pipelines that are not in use and then remove the least recently used half of the pipelines. That way it is less likely to remove pipelines that the application is actually regenerating often even if they aren't in use all of the time. When the cache is pruned the hash table makes a note of how small the cache could be if it removed all of the unused pipelines. The hash table starts pruning when there are more entries than twice this minimum expected size. The idea is that if that case it hit then the hash table is more than half full of useless pipelines so the application is generating lots of redundant pipelines and it is a good time to remove them. Reviewed-by: Robert Bragg <robert@linux.intel.com> (cherry picked from commit c21aac22992bb7fef5a8d0913130b8245e67f2eb) Conflicts: cogl/driver/gl/cogl-pipeline-fragend-glsl.c cogl/driver/gl/cogl-pipeline-progend-glsl.c cogl/driver/gl/cogl-pipeline-vertend-glsl.c cogl/driver/gl/gl/cogl-pipeline-fragend-arbfp.c
2013-12-18 10:18:39 -05:00
#include "cogl-pipeline-cache.h"
typedef struct
{
pipeline-cache: Prune old unused pipelines when the cache gets too big Previously when a pipeline is added to the cache it would never be removed. If the application is generating a lot of unique pipelines this can end up effectively leaking a large number of resources including the GL program objects. Arguably this isn't really a problem because if the application is generating that many unique pipelines then it is doing something wrong anyway. It also implies that it will be recompiling shaders very often so the cache leaking will likely be the least of the problems. This patch makes it keep track of which pipelines in the cache are in use. The cache now returns a struct representing the entry instead of directly returning the pipeline. This entry contains a usage counter which the pipeline backends can use to mark when there is a pipeline alive that is using the cache entry. When the hash table decides that it's a good time to prune some entries, it will make a list of all of the pipelines that are not in use and then remove the least recently used half of the pipelines. That way it is less likely to remove pipelines that the application is actually regenerating often even if they aren't in use all of the time. When the cache is pruned the hash table makes a note of how small the cache could be if it removed all of the unused pipelines. The hash table starts pruning when there are more entries than twice this minimum expected size. The idea is that if that case it hit then the hash table is more than half full of useless pipelines so the application is generating lots of redundant pipelines and it is a good time to remove them. Reviewed-by: Robert Bragg <robert@linux.intel.com> (cherry picked from commit c21aac22992bb7fef5a8d0913130b8245e67f2eb) Conflicts: cogl/driver/gl/cogl-pipeline-fragend-glsl.c cogl/driver/gl/cogl-pipeline-progend-glsl.c cogl/driver/gl/cogl-pipeline-vertend-glsl.c cogl/driver/gl/gl/cogl-pipeline-fragend-arbfp.c
2013-12-18 10:18:39 -05:00
CoglPipelineCacheEntry parent;
/* Calculating the hash is a little bit expensive for pipelines so
* we don't want to do it repeatedly for entries that are already in
* the hash table. Instead we cache the value here and calculate it
* outside of the GHashTable. */
unsigned int hash_value;
/* GHashTable annoyingly doesn't let us pass a user data pointer to
* the hash and equal functions so to work around it we have to
* store the pointer in every hash table entry. We will use this
* entry as both the key and the value */
CoglPipelineHashTable *hash;
pipeline-cache: Prune old unused pipelines when the cache gets too big Previously when a pipeline is added to the cache it would never be removed. If the application is generating a lot of unique pipelines this can end up effectively leaking a large number of resources including the GL program objects. Arguably this isn't really a problem because if the application is generating that many unique pipelines then it is doing something wrong anyway. It also implies that it will be recompiling shaders very often so the cache leaking will likely be the least of the problems. This patch makes it keep track of which pipelines in the cache are in use. The cache now returns a struct representing the entry instead of directly returning the pipeline. This entry contains a usage counter which the pipeline backends can use to mark when there is a pipeline alive that is using the cache entry. When the hash table decides that it's a good time to prune some entries, it will make a list of all of the pipelines that are not in use and then remove the least recently used half of the pipelines. That way it is less likely to remove pipelines that the application is actually regenerating often even if they aren't in use all of the time. When the cache is pruned the hash table makes a note of how small the cache could be if it removed all of the unused pipelines. The hash table starts pruning when there are more entries than twice this minimum expected size. The idea is that if that case it hit then the hash table is more than half full of useless pipelines so the application is generating lots of redundant pipelines and it is a good time to remove them. Reviewed-by: Robert Bragg <robert@linux.intel.com> (cherry picked from commit c21aac22992bb7fef5a8d0913130b8245e67f2eb) Conflicts: cogl/driver/gl/cogl-pipeline-fragend-glsl.c cogl/driver/gl/cogl-pipeline-progend-glsl.c cogl/driver/gl/cogl-pipeline-vertend-glsl.c cogl/driver/gl/gl/cogl-pipeline-fragend-arbfp.c
2013-12-18 10:18:39 -05:00
/* The number of unique pipelines that had been created when this
* pipeline was last accessed */
int age;
} CoglPipelineHashTableEntry;
static void
value_destroy_cb (void *value)
{
CoglPipelineHashTableEntry *entry = value;
pipeline-cache: Prune old unused pipelines when the cache gets too big Previously when a pipeline is added to the cache it would never be removed. If the application is generating a lot of unique pipelines this can end up effectively leaking a large number of resources including the GL program objects. Arguably this isn't really a problem because if the application is generating that many unique pipelines then it is doing something wrong anyway. It also implies that it will be recompiling shaders very often so the cache leaking will likely be the least of the problems. This patch makes it keep track of which pipelines in the cache are in use. The cache now returns a struct representing the entry instead of directly returning the pipeline. This entry contains a usage counter which the pipeline backends can use to mark when there is a pipeline alive that is using the cache entry. When the hash table decides that it's a good time to prune some entries, it will make a list of all of the pipelines that are not in use and then remove the least recently used half of the pipelines. That way it is less likely to remove pipelines that the application is actually regenerating often even if they aren't in use all of the time. When the cache is pruned the hash table makes a note of how small the cache could be if it removed all of the unused pipelines. The hash table starts pruning when there are more entries than twice this minimum expected size. The idea is that if that case it hit then the hash table is more than half full of useless pipelines so the application is generating lots of redundant pipelines and it is a good time to remove them. Reviewed-by: Robert Bragg <robert@linux.intel.com> (cherry picked from commit c21aac22992bb7fef5a8d0913130b8245e67f2eb) Conflicts: cogl/driver/gl/cogl-pipeline-fragend-glsl.c cogl/driver/gl/cogl-pipeline-progend-glsl.c cogl/driver/gl/cogl-pipeline-vertend-glsl.c cogl/driver/gl/gl/cogl-pipeline-fragend-arbfp.c
2013-12-18 10:18:39 -05:00
cogl_object_unref (entry->parent.pipeline);
g_slice_free (CoglPipelineHashTableEntry, entry);
}
static unsigned int
entry_hash (const void *data)
{
const CoglPipelineHashTableEntry *entry = data;
return entry->hash_value;
}
static gboolean
entry_equal (const void *a,
const void *b)
{
const CoglPipelineHashTableEntry *entry_a = a;
const CoglPipelineHashTableEntry *entry_b = b;
const CoglPipelineHashTable *hash = entry_a->hash;
pipeline-cache: Prune old unused pipelines when the cache gets too big Previously when a pipeline is added to the cache it would never be removed. If the application is generating a lot of unique pipelines this can end up effectively leaking a large number of resources including the GL program objects. Arguably this isn't really a problem because if the application is generating that many unique pipelines then it is doing something wrong anyway. It also implies that it will be recompiling shaders very often so the cache leaking will likely be the least of the problems. This patch makes it keep track of which pipelines in the cache are in use. The cache now returns a struct representing the entry instead of directly returning the pipeline. This entry contains a usage counter which the pipeline backends can use to mark when there is a pipeline alive that is using the cache entry. When the hash table decides that it's a good time to prune some entries, it will make a list of all of the pipelines that are not in use and then remove the least recently used half of the pipelines. That way it is less likely to remove pipelines that the application is actually regenerating often even if they aren't in use all of the time. When the cache is pruned the hash table makes a note of how small the cache could be if it removed all of the unused pipelines. The hash table starts pruning when there are more entries than twice this minimum expected size. The idea is that if that case it hit then the hash table is more than half full of useless pipelines so the application is generating lots of redundant pipelines and it is a good time to remove them. Reviewed-by: Robert Bragg <robert@linux.intel.com> (cherry picked from commit c21aac22992bb7fef5a8d0913130b8245e67f2eb) Conflicts: cogl/driver/gl/cogl-pipeline-fragend-glsl.c cogl/driver/gl/cogl-pipeline-progend-glsl.c cogl/driver/gl/cogl-pipeline-vertend-glsl.c cogl/driver/gl/gl/cogl-pipeline-fragend-arbfp.c
2013-12-18 10:18:39 -05:00
return _cogl_pipeline_equal (entry_a->parent.pipeline,
entry_b->parent.pipeline,
hash->main_state,
hash->layer_state,
0);
}
void
_cogl_pipeline_hash_table_init (CoglPipelineHashTable *hash,
unsigned int main_state,
unsigned int layer_state,
const char *debug_string)
{
hash->n_unique_pipelines = 0;
hash->debug_string = debug_string;
hash->main_state = main_state;
hash->layer_state = layer_state;
pipeline-cache: Prune old unused pipelines when the cache gets too big Previously when a pipeline is added to the cache it would never be removed. If the application is generating a lot of unique pipelines this can end up effectively leaking a large number of resources including the GL program objects. Arguably this isn't really a problem because if the application is generating that many unique pipelines then it is doing something wrong anyway. It also implies that it will be recompiling shaders very often so the cache leaking will likely be the least of the problems. This patch makes it keep track of which pipelines in the cache are in use. The cache now returns a struct representing the entry instead of directly returning the pipeline. This entry contains a usage counter which the pipeline backends can use to mark when there is a pipeline alive that is using the cache entry. When the hash table decides that it's a good time to prune some entries, it will make a list of all of the pipelines that are not in use and then remove the least recently used half of the pipelines. That way it is less likely to remove pipelines that the application is actually regenerating often even if they aren't in use all of the time. When the cache is pruned the hash table makes a note of how small the cache could be if it removed all of the unused pipelines. The hash table starts pruning when there are more entries than twice this minimum expected size. The idea is that if that case it hit then the hash table is more than half full of useless pipelines so the application is generating lots of redundant pipelines and it is a good time to remove them. Reviewed-by: Robert Bragg <robert@linux.intel.com> (cherry picked from commit c21aac22992bb7fef5a8d0913130b8245e67f2eb) Conflicts: cogl/driver/gl/cogl-pipeline-fragend-glsl.c cogl/driver/gl/cogl-pipeline-progend-glsl.c cogl/driver/gl/cogl-pipeline-vertend-glsl.c cogl/driver/gl/gl/cogl-pipeline-fragend-arbfp.c
2013-12-18 10:18:39 -05:00
/* We'll only start pruning once we get to 16 unique pipelines */
hash->expected_min_size = 8;
hash->table = g_hash_table_new_full (entry_hash,
entry_equal,
NULL, /* key destroy */
value_destroy_cb);
}
void
_cogl_pipeline_hash_table_destroy (CoglPipelineHashTable *hash)
{
g_hash_table_destroy (hash->table);
}
pipeline-cache: Prune old unused pipelines when the cache gets too big Previously when a pipeline is added to the cache it would never be removed. If the application is generating a lot of unique pipelines this can end up effectively leaking a large number of resources including the GL program objects. Arguably this isn't really a problem because if the application is generating that many unique pipelines then it is doing something wrong anyway. It also implies that it will be recompiling shaders very often so the cache leaking will likely be the least of the problems. This patch makes it keep track of which pipelines in the cache are in use. The cache now returns a struct representing the entry instead of directly returning the pipeline. This entry contains a usage counter which the pipeline backends can use to mark when there is a pipeline alive that is using the cache entry. When the hash table decides that it's a good time to prune some entries, it will make a list of all of the pipelines that are not in use and then remove the least recently used half of the pipelines. That way it is less likely to remove pipelines that the application is actually regenerating often even if they aren't in use all of the time. When the cache is pruned the hash table makes a note of how small the cache could be if it removed all of the unused pipelines. The hash table starts pruning when there are more entries than twice this minimum expected size. The idea is that if that case it hit then the hash table is more than half full of useless pipelines so the application is generating lots of redundant pipelines and it is a good time to remove them. Reviewed-by: Robert Bragg <robert@linux.intel.com> (cherry picked from commit c21aac22992bb7fef5a8d0913130b8245e67f2eb) Conflicts: cogl/driver/gl/cogl-pipeline-fragend-glsl.c cogl/driver/gl/cogl-pipeline-progend-glsl.c cogl/driver/gl/cogl-pipeline-vertend-glsl.c cogl/driver/gl/gl/cogl-pipeline-fragend-arbfp.c
2013-12-18 10:18:39 -05:00
static void
collect_prunable_entries_cb (void *key,
void *value,
void *user_data)
{
GQueue *entries = user_data;
CoglPipelineCacheEntry *entry = value;
if (entry->usage_count == 0)
g_queue_push_tail (entries, entry);
}
static int
compare_pipeline_age_cb (const void *a,
const void *b)
{
const CoglPipelineHashTableEntry *ae = a;
const CoglPipelineHashTableEntry *be = b;
return be->age - ae->age;
}
static void
prune_old_pipelines (CoglPipelineHashTable *hash)
{
GQueue entries;
GList *l;
int i;
/* Collect all of the prunable entries into a GQueue */
g_queue_init (&entries);
g_hash_table_foreach (hash->table,
collect_prunable_entries_cb,
&entries);
/* Sort the entries by increasing order of age */
entries.head = g_list_sort (entries.head, compare_pipeline_age_cb);
/* The +1 is to include the pipeline that we're about to add */
hash->expected_min_size = (g_hash_table_size (hash->table) -
entries.length +
1);
/* Remove oldest half of the prunable pipelines. We still want to
* keep some of the prunable entries that are recently used because
* it's not unlikely that the application will recreate the same
* pipeline */
for (l = entries.head, i = 0; i < entries.length / 2; l = l->next, i++)
{
CoglPipelineCacheEntry *entry = l->data;
g_hash_table_remove (hash->table, entry);
}
g_list_free (entries.head);
}
CoglPipelineCacheEntry *
_cogl_pipeline_hash_table_get (CoglPipelineHashTable *hash,
CoglPipeline *key_pipeline)
{
CoglPipelineHashTableEntry dummy_entry;
CoglPipelineHashTableEntry *entry;
unsigned int copy_state;
pipeline-cache: Prune old unused pipelines when the cache gets too big Previously when a pipeline is added to the cache it would never be removed. If the application is generating a lot of unique pipelines this can end up effectively leaking a large number of resources including the GL program objects. Arguably this isn't really a problem because if the application is generating that many unique pipelines then it is doing something wrong anyway. It also implies that it will be recompiling shaders very often so the cache leaking will likely be the least of the problems. This patch makes it keep track of which pipelines in the cache are in use. The cache now returns a struct representing the entry instead of directly returning the pipeline. This entry contains a usage counter which the pipeline backends can use to mark when there is a pipeline alive that is using the cache entry. When the hash table decides that it's a good time to prune some entries, it will make a list of all of the pipelines that are not in use and then remove the least recently used half of the pipelines. That way it is less likely to remove pipelines that the application is actually regenerating often even if they aren't in use all of the time. When the cache is pruned the hash table makes a note of how small the cache could be if it removed all of the unused pipelines. The hash table starts pruning when there are more entries than twice this minimum expected size. The idea is that if that case it hit then the hash table is more than half full of useless pipelines so the application is generating lots of redundant pipelines and it is a good time to remove them. Reviewed-by: Robert Bragg <robert@linux.intel.com> (cherry picked from commit c21aac22992bb7fef5a8d0913130b8245e67f2eb) Conflicts: cogl/driver/gl/cogl-pipeline-fragend-glsl.c cogl/driver/gl/cogl-pipeline-progend-glsl.c cogl/driver/gl/cogl-pipeline-vertend-glsl.c cogl/driver/gl/gl/cogl-pipeline-fragend-arbfp.c
2013-12-18 10:18:39 -05:00
dummy_entry.parent.pipeline = key_pipeline;
dummy_entry.hash = hash;
dummy_entry.hash_value = _cogl_pipeline_hash (key_pipeline,
hash->main_state,
hash->layer_state,
0);
entry = g_hash_table_lookup (hash->table, &dummy_entry);
if (entry)
pipeline-cache: Prune old unused pipelines when the cache gets too big Previously when a pipeline is added to the cache it would never be removed. If the application is generating a lot of unique pipelines this can end up effectively leaking a large number of resources including the GL program objects. Arguably this isn't really a problem because if the application is generating that many unique pipelines then it is doing something wrong anyway. It also implies that it will be recompiling shaders very often so the cache leaking will likely be the least of the problems. This patch makes it keep track of which pipelines in the cache are in use. The cache now returns a struct representing the entry instead of directly returning the pipeline. This entry contains a usage counter which the pipeline backends can use to mark when there is a pipeline alive that is using the cache entry. When the hash table decides that it's a good time to prune some entries, it will make a list of all of the pipelines that are not in use and then remove the least recently used half of the pipelines. That way it is less likely to remove pipelines that the application is actually regenerating often even if they aren't in use all of the time. When the cache is pruned the hash table makes a note of how small the cache could be if it removed all of the unused pipelines. The hash table starts pruning when there are more entries than twice this minimum expected size. The idea is that if that case it hit then the hash table is more than half full of useless pipelines so the application is generating lots of redundant pipelines and it is a good time to remove them. Reviewed-by: Robert Bragg <robert@linux.intel.com> (cherry picked from commit c21aac22992bb7fef5a8d0913130b8245e67f2eb) Conflicts: cogl/driver/gl/cogl-pipeline-fragend-glsl.c cogl/driver/gl/cogl-pipeline-progend-glsl.c cogl/driver/gl/cogl-pipeline-vertend-glsl.c cogl/driver/gl/gl/cogl-pipeline-fragend-arbfp.c
2013-12-18 10:18:39 -05:00
{
entry->age = hash->n_unique_pipelines;
return &entry->parent;
}
if (hash->n_unique_pipelines == 50)
g_warning ("Over 50 separate %s have been generated which is very "
"unusual, so something is probably wrong!\n",
hash->debug_string);
pipeline-cache: Prune old unused pipelines when the cache gets too big Previously when a pipeline is added to the cache it would never be removed. If the application is generating a lot of unique pipelines this can end up effectively leaking a large number of resources including the GL program objects. Arguably this isn't really a problem because if the application is generating that many unique pipelines then it is doing something wrong anyway. It also implies that it will be recompiling shaders very often so the cache leaking will likely be the least of the problems. This patch makes it keep track of which pipelines in the cache are in use. The cache now returns a struct representing the entry instead of directly returning the pipeline. This entry contains a usage counter which the pipeline backends can use to mark when there is a pipeline alive that is using the cache entry. When the hash table decides that it's a good time to prune some entries, it will make a list of all of the pipelines that are not in use and then remove the least recently used half of the pipelines. That way it is less likely to remove pipelines that the application is actually regenerating often even if they aren't in use all of the time. When the cache is pruned the hash table makes a note of how small the cache could be if it removed all of the unused pipelines. The hash table starts pruning when there are more entries than twice this minimum expected size. The idea is that if that case it hit then the hash table is more than half full of useless pipelines so the application is generating lots of redundant pipelines and it is a good time to remove them. Reviewed-by: Robert Bragg <robert@linux.intel.com> (cherry picked from commit c21aac22992bb7fef5a8d0913130b8245e67f2eb) Conflicts: cogl/driver/gl/cogl-pipeline-fragend-glsl.c cogl/driver/gl/cogl-pipeline-progend-glsl.c cogl/driver/gl/cogl-pipeline-vertend-glsl.c cogl/driver/gl/gl/cogl-pipeline-fragend-arbfp.c
2013-12-18 10:18:39 -05:00
/* If we are going to have more than twice the expected minimum
* number of pipelines in the hash then we'll try pruning and update
* the minimum */
if (g_hash_table_size (hash->table) >= hash->expected_min_size * 2)
prune_old_pipelines (hash);
entry = g_slice_new (CoglPipelineHashTableEntry);
pipeline-cache: Prune old unused pipelines when the cache gets too big Previously when a pipeline is added to the cache it would never be removed. If the application is generating a lot of unique pipelines this can end up effectively leaking a large number of resources including the GL program objects. Arguably this isn't really a problem because if the application is generating that many unique pipelines then it is doing something wrong anyway. It also implies that it will be recompiling shaders very often so the cache leaking will likely be the least of the problems. This patch makes it keep track of which pipelines in the cache are in use. The cache now returns a struct representing the entry instead of directly returning the pipeline. This entry contains a usage counter which the pipeline backends can use to mark when there is a pipeline alive that is using the cache entry. When the hash table decides that it's a good time to prune some entries, it will make a list of all of the pipelines that are not in use and then remove the least recently used half of the pipelines. That way it is less likely to remove pipelines that the application is actually regenerating often even if they aren't in use all of the time. When the cache is pruned the hash table makes a note of how small the cache could be if it removed all of the unused pipelines. The hash table starts pruning when there are more entries than twice this minimum expected size. The idea is that if that case it hit then the hash table is more than half full of useless pipelines so the application is generating lots of redundant pipelines and it is a good time to remove them. Reviewed-by: Robert Bragg <robert@linux.intel.com> (cherry picked from commit c21aac22992bb7fef5a8d0913130b8245e67f2eb) Conflicts: cogl/driver/gl/cogl-pipeline-fragend-glsl.c cogl/driver/gl/cogl-pipeline-progend-glsl.c cogl/driver/gl/cogl-pipeline-vertend-glsl.c cogl/driver/gl/gl/cogl-pipeline-fragend-arbfp.c
2013-12-18 10:18:39 -05:00
entry->parent.usage_count = 0;
entry->hash = hash;
entry->hash_value = dummy_entry.hash_value;
pipeline-cache: Prune old unused pipelines when the cache gets too big Previously when a pipeline is added to the cache it would never be removed. If the application is generating a lot of unique pipelines this can end up effectively leaking a large number of resources including the GL program objects. Arguably this isn't really a problem because if the application is generating that many unique pipelines then it is doing something wrong anyway. It also implies that it will be recompiling shaders very often so the cache leaking will likely be the least of the problems. This patch makes it keep track of which pipelines in the cache are in use. The cache now returns a struct representing the entry instead of directly returning the pipeline. This entry contains a usage counter which the pipeline backends can use to mark when there is a pipeline alive that is using the cache entry. When the hash table decides that it's a good time to prune some entries, it will make a list of all of the pipelines that are not in use and then remove the least recently used half of the pipelines. That way it is less likely to remove pipelines that the application is actually regenerating often even if they aren't in use all of the time. When the cache is pruned the hash table makes a note of how small the cache could be if it removed all of the unused pipelines. The hash table starts pruning when there are more entries than twice this minimum expected size. The idea is that if that case it hit then the hash table is more than half full of useless pipelines so the application is generating lots of redundant pipelines and it is a good time to remove them. Reviewed-by: Robert Bragg <robert@linux.intel.com> (cherry picked from commit c21aac22992bb7fef5a8d0913130b8245e67f2eb) Conflicts: cogl/driver/gl/cogl-pipeline-fragend-glsl.c cogl/driver/gl/cogl-pipeline-progend-glsl.c cogl/driver/gl/cogl-pipeline-vertend-glsl.c cogl/driver/gl/gl/cogl-pipeline-fragend-arbfp.c
2013-12-18 10:18:39 -05:00
entry->age = hash->n_unique_pipelines;
copy_state = hash->main_state;
if (hash->layer_state)
copy_state |= COGL_PIPELINE_STATE_LAYERS;
/* Create a new pipeline that is a child of the root pipeline
* instead of a normal copy so that the template pipeline won't hold
* a reference to the original pipeline */
pipeline-cache: Prune old unused pipelines when the cache gets too big Previously when a pipeline is added to the cache it would never be removed. If the application is generating a lot of unique pipelines this can end up effectively leaking a large number of resources including the GL program objects. Arguably this isn't really a problem because if the application is generating that many unique pipelines then it is doing something wrong anyway. It also implies that it will be recompiling shaders very often so the cache leaking will likely be the least of the problems. This patch makes it keep track of which pipelines in the cache are in use. The cache now returns a struct representing the entry instead of directly returning the pipeline. This entry contains a usage counter which the pipeline backends can use to mark when there is a pipeline alive that is using the cache entry. When the hash table decides that it's a good time to prune some entries, it will make a list of all of the pipelines that are not in use and then remove the least recently used half of the pipelines. That way it is less likely to remove pipelines that the application is actually regenerating often even if they aren't in use all of the time. When the cache is pruned the hash table makes a note of how small the cache could be if it removed all of the unused pipelines. The hash table starts pruning when there are more entries than twice this minimum expected size. The idea is that if that case it hit then the hash table is more than half full of useless pipelines so the application is generating lots of redundant pipelines and it is a good time to remove them. Reviewed-by: Robert Bragg <robert@linux.intel.com> (cherry picked from commit c21aac22992bb7fef5a8d0913130b8245e67f2eb) Conflicts: cogl/driver/gl/cogl-pipeline-fragend-glsl.c cogl/driver/gl/cogl-pipeline-progend-glsl.c cogl/driver/gl/cogl-pipeline-vertend-glsl.c cogl/driver/gl/gl/cogl-pipeline-fragend-arbfp.c
2013-12-18 10:18:39 -05:00
entry->parent.pipeline = _cogl_pipeline_deep_copy (key_pipeline,
copy_state,
hash->layer_state);
g_hash_table_insert (hash->table, entry, entry);
hash->n_unique_pipelines++;
pipeline-cache: Prune old unused pipelines when the cache gets too big Previously when a pipeline is added to the cache it would never be removed. If the application is generating a lot of unique pipelines this can end up effectively leaking a large number of resources including the GL program objects. Arguably this isn't really a problem because if the application is generating that many unique pipelines then it is doing something wrong anyway. It also implies that it will be recompiling shaders very often so the cache leaking will likely be the least of the problems. This patch makes it keep track of which pipelines in the cache are in use. The cache now returns a struct representing the entry instead of directly returning the pipeline. This entry contains a usage counter which the pipeline backends can use to mark when there is a pipeline alive that is using the cache entry. When the hash table decides that it's a good time to prune some entries, it will make a list of all of the pipelines that are not in use and then remove the least recently used half of the pipelines. That way it is less likely to remove pipelines that the application is actually regenerating often even if they aren't in use all of the time. When the cache is pruned the hash table makes a note of how small the cache could be if it removed all of the unused pipelines. The hash table starts pruning when there are more entries than twice this minimum expected size. The idea is that if that case it hit then the hash table is more than half full of useless pipelines so the application is generating lots of redundant pipelines and it is a good time to remove them. Reviewed-by: Robert Bragg <robert@linux.intel.com> (cherry picked from commit c21aac22992bb7fef5a8d0913130b8245e67f2eb) Conflicts: cogl/driver/gl/cogl-pipeline-fragend-glsl.c cogl/driver/gl/cogl-pipeline-progend-glsl.c cogl/driver/gl/cogl-pipeline-vertend-glsl.c cogl/driver/gl/gl/cogl-pipeline-fragend-arbfp.c
2013-12-18 10:18:39 -05:00
return &entry->parent;
}