mirror of
https://github.com/brl/mutter.git
synced 2024-11-22 16:10:41 -05:00
368 lines
9.7 KiB
C
368 lines
9.7 KiB
C
|
/*
|
||
|
* Cogl
|
||
|
*
|
||
|
* An object oriented GL/GLES Abstraction/Utility Layer
|
||
|
*
|
||
|
* Copyright (C) 2008,2009,2010 Intel Corporation.
|
||
|
*
|
||
|
* This library is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU Lesser General Public
|
||
|
* License as published by the Free Software Foundation; either
|
||
|
* version 2 of the License, or (at your option) any later version.
|
||
|
*
|
||
|
* This library is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
* Lesser General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU Lesser General Public
|
||
|
* License along with this library; if not, write to the
|
||
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
||
|
* Boston, MA 02111-1307, USA.
|
||
|
*
|
||
|
* Authors:
|
||
|
* Robert Bragg <robert@linux.intel.com>
|
||
|
*/
|
||
|
|
||
|
#if !defined(__COGL_H_INSIDE__) && !defined(CLUTTER_COMPILATION)
|
||
|
#error "Only <cogl/cogl.h> can be included directly."
|
||
|
#endif
|
||
|
|
||
|
#ifndef __COGL_VECTOR_H
|
||
|
#define __COGL_VECTOR_H
|
||
|
|
||
|
#include <glib.h>
|
||
|
|
||
|
G_BEGIN_DECLS
|
||
|
|
||
|
/**
|
||
|
* SECTION:cogl-vector
|
||
|
* @short_description: Functions for handling single precision float
|
||
|
* vectors.
|
||
|
*
|
||
|
* This exposes a utility API that can be used for basic manipulation of 3
|
||
|
* component float vectors.
|
||
|
*/
|
||
|
|
||
|
typedef struct
|
||
|
{
|
||
|
/* FIXME: add sse alignment constraint? */
|
||
|
float x;
|
||
|
float y;
|
||
|
float z;
|
||
|
} CoglVector3;
|
||
|
|
||
|
#if 0
|
||
|
typedef struct
|
||
|
{
|
||
|
/* FIXME: add sse alignment constraint? */
|
||
|
float x;
|
||
|
float y;
|
||
|
float z;
|
||
|
float w;
|
||
|
} CoglVector4;
|
||
|
#endif
|
||
|
|
||
|
/**
|
||
|
* cogl_vector3_init:
|
||
|
* @vector: The CoglVector3 you want to initialize
|
||
|
* @x: The x component
|
||
|
* @y: The y component
|
||
|
* @z: The z component
|
||
|
*
|
||
|
* Initializes a 3 component, single precision float vector which can
|
||
|
* then be manipulated with the cogl_vector convenience APIs. Vectors
|
||
|
* can also be used in places where a "point" is often desired.
|
||
|
*
|
||
|
* Since: 1.4
|
||
|
* Stability: Unstable
|
||
|
*/
|
||
|
void
|
||
|
cogl_vector3_init (CoglVector3 *vector, float x, float y, float z);
|
||
|
|
||
|
/**
|
||
|
* cogl_vector3_init_zero:
|
||
|
* @vector: The CoglVector3 you want to initialize
|
||
|
*
|
||
|
* Initializes a 3 component, single precision float vector with zero
|
||
|
* for each component.
|
||
|
*
|
||
|
* Since: 1.4
|
||
|
* Stability: Unstable
|
||
|
*/
|
||
|
void
|
||
|
cogl_vector3_init_zero (CoglVector3 *vector);
|
||
|
|
||
|
/**
|
||
|
* cogl_vector3_equal:
|
||
|
* @v1: The first CoglVector3 you want to compare
|
||
|
* @v2: The second CoglVector3 you want to compare
|
||
|
*
|
||
|
* Compares the components of two vectors and returns TRUE if they are
|
||
|
* the same.
|
||
|
*
|
||
|
* The comparison of the components is done with the '==' operator
|
||
|
* such that -0 is considered equal to 0, but otherwise there is no
|
||
|
* fuzziness such as an epsilon to consider vectors that are
|
||
|
* essentially identical except for some minor precision error
|
||
|
* differences due to the way they have been manipulated.
|
||
|
*
|
||
|
* Returns: TRUE if the vectors are equal else FALSE.
|
||
|
*
|
||
|
* Since: 1.4
|
||
|
* Stability: Unstable
|
||
|
*/
|
||
|
gboolean
|
||
|
cogl_vector3_equal (gconstpointer v1, gconstpointer v2);
|
||
|
|
||
|
/**
|
||
|
* cogl_vector3_equal_with_epsilon:
|
||
|
* @vector0: The first CoglVector3 you want to compare
|
||
|
* @vector1: The second CoglVector3 you want to compare
|
||
|
* @epsilon: The allowable difference between components to still be
|
||
|
* considered equal
|
||
|
*
|
||
|
* Compares the components of two vectors using the given epsilon and
|
||
|
* returns TRUE if they are the same, using an internal epsilon for
|
||
|
* comparing the floats.
|
||
|
*
|
||
|
* Each component is compared against the epsilon value in this way:
|
||
|
* |[
|
||
|
* if (fabsf (vector0->x - vector1->x) < epsilon)
|
||
|
* ]|
|
||
|
*
|
||
|
* Returns: TRUE if the vectors are equal else FALSE.
|
||
|
*
|
||
|
* Since: 1.4
|
||
|
* Stability: Unstable
|
||
|
*/
|
||
|
gboolean
|
||
|
cogl_vector3_equal_with_epsilon (const CoglVector3 *vector0,
|
||
|
const CoglVector3 *vector1,
|
||
|
float epsilon);
|
||
|
|
||
|
/**
|
||
|
* cogl_vector3_copy:
|
||
|
* @vector: The CoglVector3 you want to copy
|
||
|
*
|
||
|
* Allocates a new #CoglVector3 structure on the heap initializing the
|
||
|
* components from the given @vector and returns a pointer to the newly
|
||
|
* allocated vector. You should free the memory using
|
||
|
* cogl_vector3_free()
|
||
|
*
|
||
|
* Returns: A newly allocated #CoglVector3.
|
||
|
*
|
||
|
* Since: 1.4
|
||
|
* Stability: Unstable
|
||
|
*/
|
||
|
CoglVector3 *
|
||
|
cogl_vector3_copy (const CoglVector3 *vector);
|
||
|
|
||
|
/**
|
||
|
* cogl_vector3_free:
|
||
|
* @vector: The CoglVector3 you want to free
|
||
|
*
|
||
|
* Frees a #CoglVector3 that was previously allocated with
|
||
|
* cogl_vector_copy()
|
||
|
*
|
||
|
* Since: 1.4
|
||
|
* Stability: Unstable
|
||
|
*/
|
||
|
void
|
||
|
cogl_vector3_free (CoglVector3 *vector);
|
||
|
|
||
|
/**
|
||
|
* cogl_vector3_invert:
|
||
|
* @vector: The CoglVector3 you want to manipulate
|
||
|
*
|
||
|
* Inverts/negates all the components of the given @vector.
|
||
|
*
|
||
|
* Since: 1.4
|
||
|
* Stability: Unstable
|
||
|
*/
|
||
|
void
|
||
|
cogl_vector3_invert (CoglVector3 *vector);
|
||
|
|
||
|
/**
|
||
|
* cogl_vector3_add:
|
||
|
* @result: Where you want the result written
|
||
|
* @a: The first vector operand
|
||
|
* @b: The second vector operand
|
||
|
*
|
||
|
* Adds each of the corresponding components in vectors @a and @b
|
||
|
* storing the results in @result.
|
||
|
*
|
||
|
* Since: 1.4
|
||
|
* Stability: Unstable
|
||
|
*/
|
||
|
void
|
||
|
cogl_vector3_add (CoglVector3 *result,
|
||
|
const CoglVector3 *a,
|
||
|
const CoglVector3 *b);
|
||
|
|
||
|
/**
|
||
|
* cogl_vector3_subtract:
|
||
|
* @result: Where you want the result written
|
||
|
* @a: The first vector operand
|
||
|
* @b: The second vector operand
|
||
|
*
|
||
|
* Subtracts each of the corresponding components in vector @b from
|
||
|
* @a storing the results in @result.
|
||
|
*
|
||
|
* Since: 1.4
|
||
|
* Stability: Unstable
|
||
|
*/
|
||
|
void
|
||
|
cogl_vector3_subtract (CoglVector3 *result,
|
||
|
const CoglVector3 *a,
|
||
|
const CoglVector3 *b);
|
||
|
|
||
|
/**
|
||
|
* cogl_vector3_multiply_scalar:
|
||
|
* @vector: The CoglVector3 you want to manipulate
|
||
|
* @scalar: The scalar you want to multiply the vector components by
|
||
|
*
|
||
|
* Multiplies each of the @vector components by the given scalar.
|
||
|
*
|
||
|
* Since: 1.4
|
||
|
* Stability: Unstable
|
||
|
*/
|
||
|
void
|
||
|
cogl_vector3_multiply_scalar (CoglVector3 *vector,
|
||
|
float scalar);
|
||
|
|
||
|
/**
|
||
|
* cogl_vector3_divide_scalar:
|
||
|
* @vector: The CoglVector3 you want to manipulate
|
||
|
* @scalar: The scalar you want to divide the vector components by
|
||
|
*
|
||
|
* Divides each of the @vector components by the given scalar.
|
||
|
*
|
||
|
* Since: 1.4
|
||
|
* Stability: Unstable
|
||
|
*/
|
||
|
void
|
||
|
cogl_vector3_divide_scalar (CoglVector3 *vector,
|
||
|
float scalar);
|
||
|
|
||
|
/**
|
||
|
* cogl_vector3_normalize:
|
||
|
* @vector: The CoglVector3 you want to manipulate
|
||
|
*
|
||
|
* Updates the vector so it is a "unit vector" such that the
|
||
|
* @vector<!-- -->s magnitude or length is equal to 1.
|
||
|
*
|
||
|
* Since: 1.4
|
||
|
* Stability: Unstable
|
||
|
*/
|
||
|
void
|
||
|
cogl_vector3_normalize (CoglVector3 *vector);
|
||
|
|
||
|
/**
|
||
|
* cogl_vector3_magnitude:
|
||
|
* @vector: The CoglVector3 you want the magnitude for
|
||
|
*
|
||
|
* Calculates the scalar magnitude or length of @vector.
|
||
|
*
|
||
|
* Returns: The magnitude of @vector.
|
||
|
*
|
||
|
* Since: 1.4
|
||
|
* Stability: Unstable
|
||
|
*/
|
||
|
float
|
||
|
cogl_vector3_magnitude (const CoglVector3 *vector);
|
||
|
|
||
|
/**
|
||
|
* cogl_vector3_cross_product:
|
||
|
* @result: Where you want the result written
|
||
|
* @u: Your first CoglVector3
|
||
|
* @v: Your second CoglVector3
|
||
|
*
|
||
|
* Calculates the cross product between the two vectors @u and @v.
|
||
|
*
|
||
|
* The cross product is a vector perpendicular to both @u and @v. This
|
||
|
* can be useful for calculating the normal of a polygon by creating
|
||
|
* two vectors in its plane using the polygons vertices and taking
|
||
|
* their cross product.
|
||
|
*
|
||
|
* If the two vectors are parallel then the cross product is 0.
|
||
|
*
|
||
|
* You can use a right hand rule to determine which direction the
|
||
|
* perpendicular vector will point: If you place the two vectors tail,
|
||
|
* to tail and imagine grabbing the perpendicular line that extends
|
||
|
* through the common tail with your right hand such that you fingers
|
||
|
* rotate in the direction from @u to @v then the resulting vector
|
||
|
* points along your extended thumb.
|
||
|
*
|
||
|
* Returns: The cross product between two vectors @u and @v.
|
||
|
*
|
||
|
* Since: 1.4
|
||
|
* Stability: Unstable
|
||
|
*/
|
||
|
void
|
||
|
cogl_vector3_cross_product (CoglVector3 *result,
|
||
|
const CoglVector3 *u,
|
||
|
const CoglVector3 *v);
|
||
|
|
||
|
/**
|
||
|
* cogl_vector3_dot_product:
|
||
|
* @a: Your first CoglVector3
|
||
|
* @b: Your second CoglVector3
|
||
|
*
|
||
|
* Calculates the dot product of the two #CoglVector3<!-- -->s. This
|
||
|
* can be used to determine the magnitude of one vector projected onto
|
||
|
* another. (for example a surface normal)
|
||
|
*
|
||
|
* For example if you have a polygon with a given normal vector and
|
||
|
* some other point for which you want to calculate its distance from
|
||
|
* the polygon, you can create a vector between one of the polygon
|
||
|
* vertices and that point and use the dot product to calculate the
|
||
|
* magnitude for that vector but projected onto the normal of the
|
||
|
* polygon. This way you don't just get the distance from the point to
|
||
|
* the edge of the polygon you get the distance from the point to the
|
||
|
* nearest part of the polygon.
|
||
|
*
|
||
|
* <note>If you don't use a unit length normal in the above example
|
||
|
* then you would then also have to divide the result by the magnitude
|
||
|
* of the normal</note>
|
||
|
*
|
||
|
* The dot product is calculated as:
|
||
|
* |[
|
||
|
* (a->x * b->x + a->y * b->y + a->z * b->z)
|
||
|
* ]|
|
||
|
*
|
||
|
* For reference, the dot product can also be calculated from the
|
||
|
* angle between two vectors as:
|
||
|
* |[
|
||
|
* |a||b|cos𝜃
|
||
|
* ]|
|
||
|
*
|
||
|
* Returns: The dot product of two vectors.
|
||
|
*
|
||
|
* Since: 1.4
|
||
|
* Stability: Unstable
|
||
|
*/
|
||
|
float
|
||
|
cogl_vector3_dot_product (const CoglVector3 *a, const CoglVector3 *b);
|
||
|
|
||
|
/**
|
||
|
* cogl_vector3_distance:
|
||
|
* @a: The first point
|
||
|
* @b: The second point
|
||
|
*
|
||
|
* If you consider the two given vectors as (x,y,z) points instead
|
||
|
* then this will compute the distance between those two points.
|
||
|
*
|
||
|
* Returns: The distance between two points given as @CoglVector3<!-- -->s
|
||
|
*
|
||
|
* Since: 1.4
|
||
|
* Stability: Unstable
|
||
|
*/
|
||
|
float
|
||
|
cogl_vector3_distance (const CoglVector3 *a, const CoglVector3 *b);
|
||
|
|
||
|
G_END_DECLS
|
||
|
|
||
|
#endif /* __COGL_VECTOR_H */
|
||
|
|