mutter/src/compositor/cogl-utils.c

115 lines
4.1 KiB
C
Raw Normal View History

/* -*- mode: C; c-file-style: "gnu"; indent-tabs-mode: nil; -*- */
/*
* Utilities for use with Cogl
*
* Copyright 2010 Red Hat, Inc.
* Copyright 2010 Intel Corporation
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include "clutter/clutter.h"
#include "compositor/cogl-utils.h"
/* Based on gnome-shell/src/st/st-private.c:_st_create_texture_material.c */
/**
* meta_create_texture_pipeline:
* @src_texture: (nullable): texture to use initially for the layer
*
* Creates a pipeline with a single layer. Using a common template
* makes it easier for Cogl to share a shader for different uses in
* Mutter.
*
* Return value: (transfer full): a newly created #CoglPipeline
*/
CoglPipeline *
meta_create_texture_pipeline (CoglTexture *src_texture)
{
static CoglPipeline *texture_pipeline_template = NULL;
CoglPipeline *pipeline;
/* The only state used in the pipeline that would affect the shader
generation is the texture type on the layer. Therefore we create
a template pipeline which sets this state and all texture
pipelines are created as a copy of this. That way Cogl can find
the shader state for the pipeline more quickly by looking at the
pipeline ancestry instead of resorting to the shader cache. */
if (G_UNLIKELY (texture_pipeline_template == NULL))
{
CoglContext *ctx =
clutter_backend_get_cogl_context (clutter_get_default_backend ());
texture_pipeline_template = cogl_pipeline_new (ctx);
cogl_pipeline_set_layer_null_texture (texture_pipeline_template, 0);
}
pipeline = cogl_pipeline_copy (texture_pipeline_template);
if (src_texture != NULL)
cogl_pipeline_set_layer_texture (pipeline, 0, src_texture);
return pipeline;
}
/**
* meta_create_texture:
* @width: width of the texture to create
* @height: height of the texture to create
* @components; components to store in the texture (color or alpha)
* @flags: flags that affect the allocation behavior
*
* Creates a texture of the given size with the specified components
* for use as a frame buffer object.
*
* If %META_TEXTURE_ALLOW_SLICING is present in @flags, and the texture
* is larger than the texture size limits of the system, then the texture
* will be created as a sliced texture. This also will cause problems
* with using the texture with GLSL, and is more likely to be an issue
* since all GL implementations have texture size limits, and they can
* be as small as 2048x2048 on reasonably current systems.
*/
CoglTexture *
meta_create_texture (int width,
int height,
CoglTextureComponents components,
MetaTextureFlags flags)
{
ClutterBackend *backend = clutter_get_default_backend ();
CoglContext *ctx = clutter_backend_get_cogl_context (backend);
CoglTexture *texture;
texture = COGL_TEXTURE (cogl_texture_2d_new_with_size (ctx, width, height));
cogl_texture_set_components (texture, components);
if ((flags & META_TEXTURE_ALLOW_SLICING) != 0)
{
/* To find out if we need to slice the texture, we have to go ahead and force storage
* to be allocated
*/
GError *catch_error = NULL;
if (!cogl_texture_allocate (texture, &catch_error))
{
g_error_free (catch_error);
cogl_object_unref (texture);
texture = COGL_TEXTURE (cogl_texture_2d_sliced_new_with_size (ctx, width, height, COGL_TEXTURE_MAX_WASTE));
cogl_texture_set_components (texture, components);
}
}
return texture;
}