mutter/src/backends/native/meta-kms-plane.c

541 lines
15 KiB
C
Raw Normal View History

/*
* Copyright (C) 2013-2019 Red Hat
* Copyright (C) 2018 DisplayLink (UK) Ltd.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
* 02111-1307, USA.
*/
#include "config.h"
#include "backends/native/meta-kms-plane-private.h"
#include <drm_fourcc.h>
#include <stdio.h>
#include "backends/meta-monitor-transform.h"
#include "backends/native/meta-kms-crtc.h"
#include "backends/native/meta-kms-impl-device.h"
backend/native: Add and use transactional KMS API This commit introduces, and makes use of, a transactional API used for setting up KMS state, later to be applied, potentially atomically. From an API point of view, so is always the case, but in the current implementation, it still uses legacy drmMode* API to apply the state non-atomically. The API consists of various buliding blocks: * MetaKmsUpdate - a set of configuration changes, the higher level handle for handing over configuration to the impl backend. It's used to set mode, assign framebuffers to planes, queue page flips and set connector properties. * MetaKmsPlaneAssignment - the assignment of a framebuffer to a plane. Currently used to map a framebuffer to the primary plane of a CRTC. In the legacy KMS implementation, the plane assignment is used to derive the framebuffer used for mode setting and page flipping. This also means various high level changes: State, excluding configuring the cursor plane and creating/destroying DRM framebuffer handles, are applied in the end of a clutter frame, in one go. From an API point of view, this is done atomically, but as mentioned, only the non-atomic implementation exists so far. From MetaRendererNative's point of view, a page flip now initially always succeeds; the handling of EBUSY errors are done asynchronously in the MetaKmsImpl backend (still by retrying at refresh rate, but postponing flip callbacks instead of manipulating the frame clock). Handling of falling back to mode setting instead of page flipping is notified after the fact by a more precise page flip feedback API. EGLStream based page flipping relies on the impl backend not being atomic, as the page flipping is done in the EGLStream backend (e.g. nvidia driver). It uses a 'custom' page flip queueing method, keeping the EGLStream logic inside meta-renderer-native.c. Page flip handling is moved to meta-kms-impl-device.c from meta-gpu-kms.c. It goes via an extra idle callback before reaching meta-renderer-native.c to make sure callbacks are invoked outside of the impl context. While dummy power save page flipping is kept in meta-renderer-native.c, the EBUSY handling is moved to meta-kms-impl-simple.c. Instead of freezing the frame clock, actual page flip callbacks are postponed until all EBUSY retries have either succeeded or failed due to some other error than EBUSY. This effectively inhibits new frames to be drawn, meaning we won't stall waiting on the file descriptor for pending page flips. https://gitlab.gnome.org/GNOME/mutter/issues/548 https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
2019-04-04 20:36:41 +00:00
#include "backends/native/meta-kms-update-private.h"
typedef struct _MetaKmsPlanePropTable
{
MetaKmsProp props[META_KMS_PLANE_N_PROPS];
} MetaKmsPlanePropTable;
struct _MetaKmsPlane
{
GObject parent;
MetaKmsPlaneType type;
gboolean is_fake;
uint32_t id;
uint32_t possible_crtcs;
uint32_t rotation_prop_id;
uint32_t rotation_map[META_MONITOR_N_TRANSFORMS];
uint32_t all_hw_transforms;
/*
* primary plane's supported formats and maybe modifiers
* key: GUINT_TO_POINTER (format)
* value: owned GArray* (uint64_t modifier), or NULL
*/
GHashTable *formats_modifiers;
MetaKmsPlanePropTable prop_table;
MetaKmsDevice *device;
};
G_DEFINE_TYPE (MetaKmsPlane, meta_kms_plane, G_TYPE_OBJECT)
backend/native: Add and use transactional KMS API This commit introduces, and makes use of, a transactional API used for setting up KMS state, later to be applied, potentially atomically. From an API point of view, so is always the case, but in the current implementation, it still uses legacy drmMode* API to apply the state non-atomically. The API consists of various buliding blocks: * MetaKmsUpdate - a set of configuration changes, the higher level handle for handing over configuration to the impl backend. It's used to set mode, assign framebuffers to planes, queue page flips and set connector properties. * MetaKmsPlaneAssignment - the assignment of a framebuffer to a plane. Currently used to map a framebuffer to the primary plane of a CRTC. In the legacy KMS implementation, the plane assignment is used to derive the framebuffer used for mode setting and page flipping. This also means various high level changes: State, excluding configuring the cursor plane and creating/destroying DRM framebuffer handles, are applied in the end of a clutter frame, in one go. From an API point of view, this is done atomically, but as mentioned, only the non-atomic implementation exists so far. From MetaRendererNative's point of view, a page flip now initially always succeeds; the handling of EBUSY errors are done asynchronously in the MetaKmsImpl backend (still by retrying at refresh rate, but postponing flip callbacks instead of manipulating the frame clock). Handling of falling back to mode setting instead of page flipping is notified after the fact by a more precise page flip feedback API. EGLStream based page flipping relies on the impl backend not being atomic, as the page flipping is done in the EGLStream backend (e.g. nvidia driver). It uses a 'custom' page flip queueing method, keeping the EGLStream logic inside meta-renderer-native.c. Page flip handling is moved to meta-kms-impl-device.c from meta-gpu-kms.c. It goes via an extra idle callback before reaching meta-renderer-native.c to make sure callbacks are invoked outside of the impl context. While dummy power save page flipping is kept in meta-renderer-native.c, the EBUSY handling is moved to meta-kms-impl-simple.c. Instead of freezing the frame clock, actual page flip callbacks are postponed until all EBUSY retries have either succeeded or failed due to some other error than EBUSY. This effectively inhibits new frames to be drawn, meaning we won't stall waiting on the file descriptor for pending page flips. https://gitlab.gnome.org/GNOME/mutter/issues/548 https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
2019-04-04 20:36:41 +00:00
MetaKmsDevice *
meta_kms_plane_get_device (MetaKmsPlane *plane)
{
return plane->device;
}
uint32_t
meta_kms_plane_get_id (MetaKmsPlane *plane)
{
g_return_val_if_fail (!plane->is_fake, 0);
return plane->id;
}
MetaKmsPlaneType
meta_kms_plane_get_plane_type (MetaKmsPlane *plane)
{
return plane->type;
}
uint32_t
meta_kms_plane_get_prop_id (MetaKmsPlane *plane,
MetaKmsPlaneProp prop)
{
return plane->prop_table.props[prop].prop_id;
}
const char *
meta_kms_plane_get_prop_name (MetaKmsPlane *plane,
MetaKmsPlaneProp prop)
{
return plane->prop_table.props[prop].name;
}
backend/native: Add and use transactional KMS API This commit introduces, and makes use of, a transactional API used for setting up KMS state, later to be applied, potentially atomically. From an API point of view, so is always the case, but in the current implementation, it still uses legacy drmMode* API to apply the state non-atomically. The API consists of various buliding blocks: * MetaKmsUpdate - a set of configuration changes, the higher level handle for handing over configuration to the impl backend. It's used to set mode, assign framebuffers to planes, queue page flips and set connector properties. * MetaKmsPlaneAssignment - the assignment of a framebuffer to a plane. Currently used to map a framebuffer to the primary plane of a CRTC. In the legacy KMS implementation, the plane assignment is used to derive the framebuffer used for mode setting and page flipping. This also means various high level changes: State, excluding configuring the cursor plane and creating/destroying DRM framebuffer handles, are applied in the end of a clutter frame, in one go. From an API point of view, this is done atomically, but as mentioned, only the non-atomic implementation exists so far. From MetaRendererNative's point of view, a page flip now initially always succeeds; the handling of EBUSY errors are done asynchronously in the MetaKmsImpl backend (still by retrying at refresh rate, but postponing flip callbacks instead of manipulating the frame clock). Handling of falling back to mode setting instead of page flipping is notified after the fact by a more precise page flip feedback API. EGLStream based page flipping relies on the impl backend not being atomic, as the page flipping is done in the EGLStream backend (e.g. nvidia driver). It uses a 'custom' page flip queueing method, keeping the EGLStream logic inside meta-renderer-native.c. Page flip handling is moved to meta-kms-impl-device.c from meta-gpu-kms.c. It goes via an extra idle callback before reaching meta-renderer-native.c to make sure callbacks are invoked outside of the impl context. While dummy power save page flipping is kept in meta-renderer-native.c, the EBUSY handling is moved to meta-kms-impl-simple.c. Instead of freezing the frame clock, actual page flip callbacks are postponed until all EBUSY retries have either succeeded or failed due to some other error than EBUSY. This effectively inhibits new frames to be drawn, meaning we won't stall waiting on the file descriptor for pending page flips. https://gitlab.gnome.org/GNOME/mutter/issues/548 https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
2019-04-04 20:36:41 +00:00
void
meta_kms_plane_update_set_rotation (MetaKmsPlane *plane,
MetaKmsPlaneAssignment *plane_assignment,
MetaMonitorTransform transform)
{
g_return_if_fail (meta_kms_plane_is_transform_handled (plane, transform));
meta_kms_plane_assignment_set_plane_property (plane_assignment,
plane->rotation_prop_id,
plane->rotation_map[transform]);
}
gboolean
meta_kms_plane_is_transform_handled (MetaKmsPlane *plane,
MetaMonitorTransform transform)
{
switch (transform)
{
case META_MONITOR_TRANSFORM_NORMAL:
case META_MONITOR_TRANSFORM_180:
case META_MONITOR_TRANSFORM_FLIPPED:
case META_MONITOR_TRANSFORM_FLIPPED_180:
break;
case META_MONITOR_TRANSFORM_90:
case META_MONITOR_TRANSFORM_270:
case META_MONITOR_TRANSFORM_FLIPPED_90:
case META_MONITOR_TRANSFORM_FLIPPED_270:
/*
* Blacklist these transforms as testing shows that they don't work
* anyway, e.g. due to the wrong buffer modifiers. They might as well be
* less optimal due to the complexity dealing with rotation at scan-out,
* potentially resulting in higher power consumption.
*/
return FALSE;
}
return plane->all_hw_transforms & (1 << transform);
}
GArray *
meta_kms_plane_get_modifiers_for_format (MetaKmsPlane *plane,
uint32_t format)
{
return g_hash_table_lookup (plane->formats_modifiers,
GUINT_TO_POINTER (format));
}
GArray *
meta_kms_plane_copy_drm_format_list (MetaKmsPlane *plane)
{
GArray *formats;
GHashTableIter it;
gpointer key;
unsigned int n_formats_modifiers;
n_formats_modifiers = g_hash_table_size (plane->formats_modifiers);
formats = g_array_sized_new (FALSE, FALSE,
sizeof (uint32_t),
n_formats_modifiers);
g_hash_table_iter_init (&it, plane->formats_modifiers);
while (g_hash_table_iter_next (&it, &key, NULL))
{
uint32_t drm_format = GPOINTER_TO_UINT (key);
g_array_append_val (formats, drm_format);
}
return formats;
}
gboolean
meta_kms_plane_is_format_supported (MetaKmsPlane *plane,
uint32_t drm_format)
{
return g_hash_table_lookup_extended (plane->formats_modifiers,
GUINT_TO_POINTER (drm_format),
NULL, NULL);
}
gboolean
meta_kms_plane_is_usable_with (MetaKmsPlane *plane,
MetaKmsCrtc *crtc)
{
return !!(plane->possible_crtcs & (1 << meta_kms_crtc_get_idx (crtc)));
}
static void
parse_rotations (MetaKmsPlane *plane,
MetaKmsImplDevice *impl_device,
drmModePropertyPtr prop)
{
int i;
for (i = 0; i < prop->count_enums; i++)
{
MetaMonitorTransform transform = -1;
if (strcmp (prop->enums[i].name, "rotate-0") == 0)
transform = META_MONITOR_TRANSFORM_NORMAL;
else if (strcmp (prop->enums[i].name, "rotate-90") == 0)
transform = META_MONITOR_TRANSFORM_90;
else if (strcmp (prop->enums[i].name, "rotate-180") == 0)
transform = META_MONITOR_TRANSFORM_180;
else if (strcmp (prop->enums[i].name, "rotate-270") == 0)
transform = META_MONITOR_TRANSFORM_270;
if (transform != -1)
{
plane->all_hw_transforms |= 1 << transform;
plane->rotation_map[transform] = 1 << prop->enums[i].value;
}
}
}
static void
init_rotations (MetaKmsPlane *plane,
MetaKmsImplDevice *impl_device,
drmModeObjectProperties *drm_plane_props)
{
drmModePropertyPtr prop;
int idx;
prop = meta_kms_impl_device_find_property (impl_device, drm_plane_props,
"rotation", &idx);
if (prop)
{
plane->rotation_prop_id = drm_plane_props->props[idx];
parse_rotations (plane, impl_device, prop);
drmModeFreeProperty (prop);
}
}
static inline uint32_t *
drm_formats_ptr (struct drm_format_modifier_blob *blob)
{
return (uint32_t *) (((char *) blob) + blob->formats_offset);
}
static inline struct drm_format_modifier *
drm_modifiers_ptr (struct drm_format_modifier_blob *blob)
{
return (struct drm_format_modifier *) (((char *) blob) +
blob->modifiers_offset);
}
static void
free_modifier_array (GArray *array)
{
if (!array)
return;
g_array_free (array, TRUE);
}
static void
parse_formats (MetaKmsPlane *plane,
MetaKmsImplDevice *impl_device,
uint32_t blob_id)
{
int fd;
drmModePropertyBlobPtr blob;
struct drm_format_modifier_blob *blob_fmt;
uint32_t *formats;
struct drm_format_modifier *drm_modifiers;
unsigned int fmt_i, mod_i;
g_return_if_fail (g_hash_table_size (plane->formats_modifiers) == 0);
if (blob_id == 0)
return;
fd = meta_kms_impl_device_get_fd (impl_device);
blob = drmModeGetPropertyBlob (fd, blob_id);
if (!blob)
return;
if (blob->length < sizeof (struct drm_format_modifier_blob))
{
drmModeFreePropertyBlob (blob);
return;
}
blob_fmt = blob->data;
formats = drm_formats_ptr (blob_fmt);
drm_modifiers = drm_modifiers_ptr (blob_fmt);
for (fmt_i = 0; fmt_i < blob_fmt->count_formats; fmt_i++)
{
GArray *modifiers = g_array_new (FALSE, FALSE, sizeof (uint64_t));
for (mod_i = 0; mod_i < blob_fmt->count_modifiers; mod_i++)
{
struct drm_format_modifier *drm_modifier = &drm_modifiers[mod_i];
/*
* The modifier advertisement blob is partitioned into groups of
* 64 formats.
*/
if (fmt_i < drm_modifier->offset || fmt_i > drm_modifier->offset + 63)
continue;
if (!(drm_modifier->formats & (1 << (fmt_i - drm_modifier->offset))))
continue;
g_array_append_val (modifiers, drm_modifier->modifier);
}
if (modifiers->len == 0)
{
free_modifier_array (modifiers);
modifiers = NULL;
}
g_hash_table_insert (plane->formats_modifiers,
GUINT_TO_POINTER (formats[fmt_i]),
modifiers);
}
drmModeFreePropertyBlob (blob);
}
static void
set_formats_from_array (MetaKmsPlane *plane,
const uint32_t *formats,
size_t n_formats)
{
size_t i;
for (i = 0; i < n_formats; i++)
{
g_hash_table_insert (plane->formats_modifiers,
GUINT_TO_POINTER (formats[i]), NULL);
}
}
/*
* In case the DRM driver does not expose a format list for the
* primary plane (does not support universal planes nor
* IN_FORMATS property), hardcode something that is probably supported.
*/
static const uint32_t drm_default_formats[] =
{
/* The format everything should always support by convention */
DRM_FORMAT_XRGB8888,
#if G_BYTE_ORDER == G_LITTLE_ENDIAN
/* OpenGL GL_RGBA, GL_UNSIGNED_BYTE format, hopefully supported */
DRM_FORMAT_XBGR8888
#endif
};
static void
init_formats (MetaKmsPlane *plane,
MetaKmsImplDevice *impl_device,
drmModePlane *drm_plane,
drmModeObjectProperties *drm_plane_props)
{
drmModePropertyPtr prop;
int idx;
prop = meta_kms_impl_device_find_property (impl_device, drm_plane_props,
"IN_FORMATS", &idx);
if (prop)
{
uint32_t blob_id;
blob_id = drm_plane_props->prop_values[idx];
parse_formats (plane, impl_device, blob_id);
drmModeFreeProperty (prop);
}
if (g_hash_table_size (plane->formats_modifiers) == 0)
{
set_formats_from_array (plane,
drm_plane->formats,
drm_plane->count_formats);
}
/* final formats fallback to something hardcoded */
if (g_hash_table_size (plane->formats_modifiers) == 0)
{
set_formats_from_array (plane,
drm_default_formats,
G_N_ELEMENTS (drm_default_formats));
}
}
static void
init_properties (MetaKmsPlane *plane,
MetaKmsImplDevice *impl_device,
drmModePlane *drm_plane,
drmModeObjectProperties *drm_plane_props)
{
MetaKmsPlanePropTable *prop_table = &plane->prop_table;
*prop_table = (MetaKmsPlanePropTable) {
.props = {
[META_KMS_PLANE_PROP_TYPE] =
{
.name = "type",
.type = DRM_MODE_PROP_ENUM,
},
[META_KMS_PLANE_PROP_SRC_X] =
{
.name = "SRC_X",
.type = DRM_MODE_PROP_RANGE,
},
[META_KMS_PLANE_PROP_SRC_Y] =
{
.name = "SRC_Y",
.type = DRM_MODE_PROP_RANGE,
},
[META_KMS_PLANE_PROP_SRC_W] =
{
.name = "SRC_W",
.type = DRM_MODE_PROP_RANGE,
},
[META_KMS_PLANE_PROP_SRC_H] =
{
.name = "SRC_H",
.type = DRM_MODE_PROP_RANGE,
},
[META_KMS_PLANE_PROP_CRTC_X] =
{
.name = "CRTC_X",
.type = DRM_MODE_PROP_SIGNED_RANGE,
},
[META_KMS_PLANE_PROP_CRTC_Y] =
{
.name = "CRTC_Y",
.type = DRM_MODE_PROP_SIGNED_RANGE,
},
[META_KMS_PLANE_PROP_CRTC_W] =
{
.name = "CRTC_W",
.type = DRM_MODE_PROP_RANGE,
},
[META_KMS_PLANE_PROP_CRTC_H] =
{
.name = "CRTC_H",
.type = DRM_MODE_PROP_RANGE,
},
[META_KMS_PLANE_PROP_FB_ID] =
{
.name = "FB_ID",
.type = DRM_MODE_PROP_OBJECT,
},
[META_KMS_PLANE_PROP_CRTC_ID] =
{
.name = "CRTC_ID",
.type = DRM_MODE_PROP_OBJECT,
},
}
};
meta_kms_impl_device_init_prop_table (impl_device,
drm_plane_props->props,
drm_plane_props->count_props,
plane->prop_table.props,
META_KMS_PLANE_N_PROPS);
}
MetaKmsPlane *
meta_kms_plane_new (MetaKmsPlaneType type,
MetaKmsImplDevice *impl_device,
drmModePlane *drm_plane,
drmModeObjectProperties *drm_plane_props)
{
MetaKmsPlane *plane;
plane = g_object_new (META_TYPE_KMS_PLANE, NULL);
plane->type = type;
plane->id = drm_plane->plane_id;
plane->possible_crtcs = drm_plane->possible_crtcs;
plane->device = meta_kms_impl_device_get_device (impl_device);
init_rotations (plane, impl_device, drm_plane_props);
init_formats (plane, impl_device, drm_plane, drm_plane_props);
init_properties (plane, impl_device, drm_plane, drm_plane_props);
return plane;
}
MetaKmsPlane *
meta_kms_plane_new_fake (MetaKmsPlaneType type,
MetaKmsCrtc *crtc)
{
MetaKmsPlane *plane;
static const uint32_t fake_plane_drm_formats[] =
{
DRM_FORMAT_XRGB8888,
DRM_FORMAT_ARGB8888,
#if G_BYTE_ORDER == G_LITTLE_ENDIAN
/* OpenGL GL_RGBA, GL_UNSIGNED_BYTE format, hopefully supported */
DRM_FORMAT_XBGR8888,
DRM_FORMAT_ABGR8888
#endif
};
plane = g_object_new (META_TYPE_KMS_PLANE, NULL);
plane->type = type;
plane->is_fake = TRUE;
plane->possible_crtcs = 1 << meta_kms_crtc_get_idx (crtc);
plane->device = meta_kms_crtc_get_device (crtc);
set_formats_from_array (plane,
fake_plane_drm_formats,
G_N_ELEMENTS (fake_plane_drm_formats));
return plane;
}
static void
meta_kms_plane_finalize (GObject *object)
{
MetaKmsPlane *plane = META_KMS_PLANE (object);
g_hash_table_destroy (plane->formats_modifiers);
G_OBJECT_CLASS (meta_kms_plane_parent_class)->finalize (object);
}
static void
meta_kms_plane_init (MetaKmsPlane *plane)
{
plane->formats_modifiers =
g_hash_table_new_full (g_direct_hash,
g_direct_equal,
NULL,
(GDestroyNotify) free_modifier_array);
}
static void
meta_kms_plane_class_init (MetaKmsPlaneClass *klass)
{
GObjectClass *object_class = G_OBJECT_CLASS (klass);
object_class->finalize = meta_kms_plane_finalize;
}