mutter/src/backends/meta-screen-cast-stream-src.c

1390 lines
47 KiB
C
Raw Normal View History

Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
/* -*- mode: C; c-file-style: "gnu"; indent-tabs-mode: nil; -*- */
/*
* Copyright (C) 2015-2017 Red Hat Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
* 02111-1307, USA.
*
*/
#include "config.h"
#include "backends/meta-screen-cast-stream-src.h"
#include <errno.h>
#include <fcntl.h>
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
#include <pipewire/pipewire.h>
#include <spa/param/props.h>
#include <spa/param/format-utils.h>
#include <spa/param/video/format-utils.h>
#include <spa/utils/result.h>
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
#include <stdint.h>
#include <sys/mman.h>
#ifdef HAVE_NATIVE_BACKEND
#include <drm_fourcc.h>
#endif
#include "backends/meta-screen-cast-session.h"
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
#include "backends/meta-screen-cast-stream.h"
#include "clutter/clutter-mutter.h"
#include "core/meta-fraction.h"
#include "meta/boxes.h"
#define PRIVATE_OWNER_FROM_FIELD(TypeName, field_ptr, field_name) \
(TypeName *)((guint8 *)(field_ptr) - G_PRIVATE_OFFSET (TypeName, field_name))
#define CURSOR_META_SIZE(width, height) \
(sizeof (struct spa_meta_cursor) + \
sizeof (struct spa_meta_bitmap) + width * height * 4)
#define DEFAULT_SIZE SPA_RECTANGLE (1280, 720)
#define MIN_SIZE SPA_RECTANGLE (1, 1)
#define MAX_SIZE SPA_RECTANGLE (16384, 16386)
#define DEFAULT_FRAME_RATE SPA_FRACTION (60, 1)
#define MIN_FRAME_RATE SPA_FRACTION (1, 1)
#define MAX_FRAME_RATE SPA_FRACTION (1000, 1)
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
enum
{
PROP_0,
PROP_STREAM,
};
enum
{
READY,
CLOSED,
N_SIGNALS
};
static guint signals[N_SIGNALS];
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
typedef struct _MetaPipeWireSource
{
GSource base;
MetaScreenCastStreamSrc *src;
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
struct pw_loop *pipewire_loop;
} MetaPipeWireSource;
typedef struct _MetaScreenCastStreamSrcPrivate
{
MetaScreenCastStream *stream;
struct pw_context *pipewire_context;
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
struct pw_core *pipewire_core;
MetaPipeWireSource *pipewire_source;
struct spa_hook pipewire_core_listener;
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
gboolean is_enabled;
gboolean emit_closed_after_dispatch;
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
struct pw_stream *pipewire_stream;
struct spa_hook pipewire_stream_listener;
uint32_t node_id;
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
struct spa_video_info_raw video_format;
int video_stride;
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
int64_t last_frame_timestamp_us;
guint follow_up_frame_source_id;
GHashTable *dmabuf_handles;
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
} MetaScreenCastStreamSrcPrivate;
static struct spa_pod *
push_format_object (struct spa_pod_builder *pod_builder,
enum spa_video_format format,
uint64_t *modifiers,
int n_modifiers,
...)
{
struct spa_pod_frame pod_frames[2];
va_list args;
spa_pod_builder_push_object (pod_builder, &pod_frames[0],
SPA_TYPE_OBJECT_Format, SPA_PARAM_EnumFormat);
spa_pod_builder_add (pod_builder,
SPA_FORMAT_mediaType,
SPA_POD_Id (SPA_MEDIA_TYPE_video),
0);
spa_pod_builder_add (pod_builder,
SPA_FORMAT_mediaSubtype,
SPA_POD_Id (SPA_MEDIA_SUBTYPE_raw),
0);
spa_pod_builder_add (pod_builder,
SPA_FORMAT_VIDEO_format, SPA_POD_Id (format),
0);
#ifdef HAVE_NATIVE_BACKEND
if (n_modifiers == 1 && modifiers[0] == DRM_FORMAT_MOD_INVALID)
{
spa_pod_builder_prop (pod_builder,
SPA_FORMAT_VIDEO_modifier,
SPA_POD_PROP_FLAG_MANDATORY);
spa_pod_builder_long (pod_builder, modifiers[0]);
}
else if (n_modifiers > 0)
{
int i;
spa_pod_builder_prop (pod_builder,
SPA_FORMAT_VIDEO_modifier,
(SPA_POD_PROP_FLAG_MANDATORY |
SPA_POD_PROP_FLAG_DONT_FIXATE));
spa_pod_builder_push_choice (pod_builder, &pod_frames[1],
SPA_CHOICE_Enum,
0);
spa_pod_builder_long (pod_builder, modifiers[0]);
for (i = 0; i < n_modifiers; i++)
spa_pod_builder_long (pod_builder, modifiers[i]);
spa_pod_builder_pop (pod_builder, &pod_frames[1]);
}
#endif /* HAVE_NATIVE_BACKEND */
va_start (args, n_modifiers);
spa_pod_builder_addv (pod_builder, args);
va_end (args);
return spa_pod_builder_pop (pod_builder, &pod_frames[0]);
}
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
static void
meta_screen_cast_stream_src_init_initable_iface (GInitableIface *iface);
G_DEFINE_TYPE_WITH_CODE (MetaScreenCastStreamSrc,
meta_screen_cast_stream_src,
G_TYPE_OBJECT,
G_IMPLEMENT_INTERFACE (G_TYPE_INITABLE,
meta_screen_cast_stream_src_init_initable_iface)
G_ADD_PRIVATE (MetaScreenCastStreamSrc))
static gboolean
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
meta_screen_cast_stream_src_get_specs (MetaScreenCastStreamSrc *src,
int *width,
int *height,
float *frame_rate)
{
MetaScreenCastStreamSrcClass *klass =
META_SCREEN_CAST_STREAM_SRC_GET_CLASS (src);
return klass->get_specs (src, width, height, frame_rate);
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
}
static gboolean
meta_screen_cast_stream_src_get_videocrop (MetaScreenCastStreamSrc *src,
MetaRectangle *crop_rect)
{
MetaScreenCastStreamSrcClass *klass =
META_SCREEN_CAST_STREAM_SRC_GET_CLASS (src);
if (klass->get_videocrop)
return klass->get_videocrop (src, crop_rect);
return FALSE;
}
static gboolean
meta_screen_cast_stream_src_record_to_buffer (MetaScreenCastStreamSrc *src,
int width,
int height,
int stride,
uint8_t *data,
GError **error)
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
{
MetaScreenCastStreamSrcClass *klass =
META_SCREEN_CAST_STREAM_SRC_GET_CLASS (src);
return klass->record_to_buffer (src, width, height, stride, data, error);
}
static gboolean
meta_screen_cast_stream_src_record_to_framebuffer (MetaScreenCastStreamSrc *src,
CoglFramebuffer *framebuffer,
GError **error)
{
MetaScreenCastStreamSrcClass *klass =
META_SCREEN_CAST_STREAM_SRC_GET_CLASS (src);
return klass->record_to_framebuffer (src, framebuffer, error);
}
static void
meta_screen_cast_stream_src_record_follow_up (MetaScreenCastStreamSrc *src)
{
MetaScreenCastStreamSrcClass *klass =
META_SCREEN_CAST_STREAM_SRC_GET_CLASS (src);
klass->record_follow_up (src);
}
static void
meta_screen_cast_stream_src_set_cursor_metadata (MetaScreenCastStreamSrc *src,
struct spa_meta_cursor *spa_meta_cursor)
{
MetaScreenCastStreamSrcClass *klass =
META_SCREEN_CAST_STREAM_SRC_GET_CLASS (src);
if (klass->set_cursor_metadata)
klass->set_cursor_metadata (src, spa_meta_cursor);
}
static gboolean
draw_cursor_sprite_via_offscreen (MetaScreenCastStreamSrc *src,
CoglTexture *cursor_texture,
int bitmap_width,
int bitmap_height,
uint8_t *bitmap_data,
GError **error)
{
MetaScreenCastStream *stream = meta_screen_cast_stream_src_get_stream (src);
MetaScreenCastSession *session = meta_screen_cast_stream_get_session (stream);
MetaScreenCast *screen_cast =
meta_screen_cast_session_get_screen_cast (session);
MetaBackend *backend = meta_screen_cast_get_backend (screen_cast);
ClutterBackend *clutter_backend = meta_backend_get_clutter_backend (backend);
CoglContext *cogl_context =
clutter_backend_get_cogl_context (clutter_backend);
CoglTexture2D *bitmap_texture;
CoglOffscreen *offscreen;
CoglFramebuffer *fb;
CoglPipeline *pipeline;
CoglColor clear_color;
bitmap_texture = cogl_texture_2d_new_with_size (cogl_context,
bitmap_width, bitmap_height);
cogl_primitive_texture_set_auto_mipmap (COGL_PRIMITIVE_TEXTURE (bitmap_texture),
FALSE);
if (!cogl_texture_allocate (COGL_TEXTURE (bitmap_texture), error))
{
cogl_object_unref (bitmap_texture);
return FALSE;
}
offscreen = cogl_offscreen_new_with_texture (COGL_TEXTURE (bitmap_texture));
fb = COGL_FRAMEBUFFER (offscreen);
cogl_object_unref (bitmap_texture);
if (!cogl_framebuffer_allocate (fb, error))
{
g_object_unref (fb);
return FALSE;
}
pipeline = cogl_pipeline_new (cogl_context);
cogl_pipeline_set_layer_texture (pipeline, 0, cursor_texture);
cogl_pipeline_set_layer_filters (pipeline, 0,
COGL_PIPELINE_FILTER_LINEAR,
COGL_PIPELINE_FILTER_LINEAR);
cogl_color_init_from_4ub (&clear_color, 0, 0, 0, 0);
cogl_framebuffer_clear (fb, COGL_BUFFER_BIT_COLOR, &clear_color);
cogl_framebuffer_draw_rectangle (fb, pipeline,
-1, 1, 1, -1);
cogl_object_unref (pipeline);
cogl_framebuffer_read_pixels (fb,
0, 0,
bitmap_width, bitmap_height,
COGL_PIXEL_FORMAT_RGBA_8888_PRE,
bitmap_data);
g_object_unref (fb);
return TRUE;
}
gboolean
meta_screen_cast_stream_src_draw_cursor_into (MetaScreenCastStreamSrc *src,
CoglTexture *cursor_texture,
float scale,
uint8_t *data,
GError **error)
{
int texture_width, texture_height;
int width, height;
texture_width = cogl_texture_get_width (cursor_texture);
texture_height = cogl_texture_get_height (cursor_texture);
width = texture_width * scale;
height = texture_height * scale;
if (texture_width == width &&
texture_height == height)
{
cogl_texture_get_data (cursor_texture,
COGL_PIXEL_FORMAT_RGBA_8888_PRE,
texture_width * 4,
data);
}
else
{
if (!draw_cursor_sprite_via_offscreen (src,
cursor_texture,
width,
height,
data,
error))
return FALSE;
}
return TRUE;
}
void
meta_screen_cast_stream_src_unset_cursor_metadata (MetaScreenCastStreamSrc *src,
struct spa_meta_cursor *spa_meta_cursor)
{
spa_meta_cursor->id = 0;
}
void
meta_screen_cast_stream_src_set_cursor_position_metadata (MetaScreenCastStreamSrc *src,
struct spa_meta_cursor *spa_meta_cursor,
int x,
int y)
{
spa_meta_cursor->id = 1;
spa_meta_cursor->position.x = x;
spa_meta_cursor->position.y = y;
spa_meta_cursor->hotspot.x = 0;
spa_meta_cursor->hotspot.y = 0;
spa_meta_cursor->bitmap_offset = 0;
}
void
meta_screen_cast_stream_src_set_empty_cursor_sprite_metadata (MetaScreenCastStreamSrc *src,
struct spa_meta_cursor *spa_meta_cursor,
int x,
int y)
{
struct spa_meta_bitmap *spa_meta_bitmap;
spa_meta_cursor->id = 1;
spa_meta_cursor->position.x = x;
spa_meta_cursor->position.y = y;
spa_meta_cursor->bitmap_offset = sizeof (struct spa_meta_cursor);
spa_meta_bitmap = SPA_MEMBER (spa_meta_cursor,
spa_meta_cursor->bitmap_offset,
struct spa_meta_bitmap);
spa_meta_bitmap->format = SPA_VIDEO_FORMAT_RGBA;
spa_meta_bitmap->offset = sizeof (struct spa_meta_bitmap);
spa_meta_cursor->hotspot.x = 0;
spa_meta_cursor->hotspot.y = 0;
*spa_meta_bitmap = (struct spa_meta_bitmap) { 0 };
}
void
meta_screen_cast_stream_src_set_cursor_sprite_metadata (MetaScreenCastStreamSrc *src,
struct spa_meta_cursor *spa_meta_cursor,
MetaCursorSprite *cursor_sprite,
int x,
int y,
float scale)
{
CoglTexture *cursor_texture;
struct spa_meta_bitmap *spa_meta_bitmap;
int hotspot_x, hotspot_y;
int texture_width, texture_height;
int bitmap_width, bitmap_height;
uint8_t *bitmap_data;
GError *error = NULL;
cursor_texture = meta_cursor_sprite_get_cogl_texture (cursor_sprite);
if (!cursor_texture)
{
meta_screen_cast_stream_src_set_empty_cursor_sprite_metadata (src,
spa_meta_cursor,
x, y);
return;
}
spa_meta_cursor->id = 1;
spa_meta_cursor->position.x = x;
spa_meta_cursor->position.y = y;
spa_meta_cursor->bitmap_offset = sizeof (struct spa_meta_cursor);
spa_meta_bitmap = SPA_MEMBER (spa_meta_cursor,
spa_meta_cursor->bitmap_offset,
struct spa_meta_bitmap);
spa_meta_bitmap->format = SPA_VIDEO_FORMAT_RGBA;
spa_meta_bitmap->offset = sizeof (struct spa_meta_bitmap);
meta_cursor_sprite_get_hotspot (cursor_sprite, &hotspot_x, &hotspot_y);
spa_meta_cursor->hotspot.x = (int32_t) roundf (hotspot_x * scale);
spa_meta_cursor->hotspot.y = (int32_t) roundf (hotspot_y * scale);
texture_width = cogl_texture_get_width (cursor_texture);
texture_height = cogl_texture_get_height (cursor_texture);
bitmap_width = texture_width * scale;
bitmap_height = texture_height * scale;
spa_meta_bitmap->size.width = bitmap_width;
spa_meta_bitmap->size.height = bitmap_height;
spa_meta_bitmap->stride = bitmap_width * 4;
bitmap_data = SPA_MEMBER (spa_meta_bitmap,
spa_meta_bitmap->offset,
uint8_t);
if (!meta_screen_cast_stream_src_draw_cursor_into (src,
cursor_texture,
scale,
bitmap_data,
&error))
{
g_warning ("Failed to draw cursor: %s", error->message);
g_error_free (error);
spa_meta_cursor->id = 0;
}
}
static void
add_cursor_metadata (MetaScreenCastStreamSrc *src,
struct spa_buffer *spa_buffer)
{
struct spa_meta_cursor *spa_meta_cursor;
spa_meta_cursor = spa_buffer_find_meta_data (spa_buffer, SPA_META_Cursor,
sizeof (*spa_meta_cursor));
if (spa_meta_cursor)
meta_screen_cast_stream_src_set_cursor_metadata (src, spa_meta_cursor);
}
static void
maybe_record_cursor (MetaScreenCastStreamSrc *src,
struct spa_buffer *spa_buffer)
{
MetaScreenCastStream *stream = meta_screen_cast_stream_src_get_stream (src);
switch (meta_screen_cast_stream_get_cursor_mode (stream))
{
case META_SCREEN_CAST_CURSOR_MODE_HIDDEN:
case META_SCREEN_CAST_CURSOR_MODE_EMBEDDED:
return;
case META_SCREEN_CAST_CURSOR_MODE_METADATA:
add_cursor_metadata (src, spa_buffer);
return;
}
g_assert_not_reached ();
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
}
static gboolean
do_record_frame (MetaScreenCastStreamSrc *src,
MetaScreenCastRecordFlag flags,
struct spa_buffer *spa_buffer,
uint8_t *data,
GError **error)
{
MetaScreenCastStreamSrcPrivate *priv =
meta_screen_cast_stream_src_get_instance_private (src);
gboolean dmabuf_only;
dmabuf_only = flags & META_SCREEN_CAST_RECORD_FLAG_DMABUF_ONLY;
if (!dmabuf_only &&
(spa_buffer->datas[0].data ||
spa_buffer->datas[0].type == SPA_DATA_MemFd))
{
int width = priv->video_format.size.width;
int height = priv->video_format.size.height;
int stride = priv->video_stride;
return meta_screen_cast_stream_src_record_to_buffer (src,
width,
height,
stride,
data,
error);
}
else if (spa_buffer->datas[0].type == SPA_DATA_DmaBuf)
{
CoglDmaBufHandle *dmabuf_handle =
g_hash_table_lookup (priv->dmabuf_handles,
GINT_TO_POINTER (spa_buffer->datas[0].fd));
CoglFramebuffer *dmabuf_fbo =
cogl_dma_buf_handle_get_framebuffer (dmabuf_handle);
return meta_screen_cast_stream_src_record_to_framebuffer (src,
dmabuf_fbo,
error);
}
g_set_error (error, G_IO_ERROR, G_IO_ERROR_FAILED,
"Unknown SPA buffer type %u", spa_buffer->datas[0].type);
return FALSE;
}
gboolean
meta_screen_cast_stream_src_pending_follow_up_frame (MetaScreenCastStreamSrc *src)
{
MetaScreenCastStreamSrcPrivate *priv =
meta_screen_cast_stream_src_get_instance_private (src);
return priv->follow_up_frame_source_id != 0;
}
static gboolean
follow_up_frame_cb (gpointer user_data)
{
MetaScreenCastStreamSrc *src = user_data;
MetaScreenCastStreamSrcPrivate *priv =
meta_screen_cast_stream_src_get_instance_private (src);
priv->follow_up_frame_source_id = 0;
meta_screen_cast_stream_src_record_follow_up (src);
return G_SOURCE_REMOVE;
}
static void
maybe_schedule_follow_up_frame (MetaScreenCastStreamSrc *src,
int64_t timeout_us)
{
MetaScreenCastStreamSrcPrivate *priv =
meta_screen_cast_stream_src_get_instance_private (src);
if (priv->follow_up_frame_source_id)
return;
priv->follow_up_frame_source_id = g_timeout_add (us2ms (timeout_us),
follow_up_frame_cb,
src);
}
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
void
meta_screen_cast_stream_src_maybe_record_frame (MetaScreenCastStreamSrc *src,
MetaScreenCastRecordFlag flags)
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
{
MetaScreenCastStreamSrcPrivate *priv =
meta_screen_cast_stream_src_get_instance_private (src);
MetaRectangle crop_rect;
struct pw_buffer *buffer;
struct spa_buffer *spa_buffer;
uint8_t *data = NULL;
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
uint64_t now_us;
g_autoptr (GError) error = NULL;
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
now_us = g_get_monotonic_time ();
if (priv->video_format.max_framerate.num > 0 &&
priv->last_frame_timestamp_us != 0)
{
int64_t min_interval_us;
int64_t time_since_last_frame_us;
min_interval_us =
((G_USEC_PER_SEC * priv->video_format.max_framerate.denom) /
priv->video_format.max_framerate.num);
time_since_last_frame_us = now_us - priv->last_frame_timestamp_us;
if (time_since_last_frame_us < min_interval_us)
{
int64_t timeout_us;
timeout_us = min_interval_us - time_since_last_frame_us;
maybe_schedule_follow_up_frame (src, timeout_us);
return;
}
}
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
if (!priv->pipewire_stream)
return;
buffer = pw_stream_dequeue_buffer (priv->pipewire_stream);
if (!buffer)
{
meta_topic (META_DEBUG_SCREEN_CAST,
"Couldn't dequeue a buffer from pipewire stream (node id %u), "
"maybe your encoding is too slow?",
pw_stream_get_node_id (priv->pipewire_stream));
return;
}
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
spa_buffer = buffer->buffer;
data = spa_buffer->datas[0].data;
if (spa_buffer->datas[0].type != SPA_DATA_DmaBuf && !data)
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
{
g_critical ("Invalid buffer data");
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
return;
}
if (!(flags & META_SCREEN_CAST_RECORD_FLAG_CURSOR_ONLY))
{
g_clear_handle_id (&priv->follow_up_frame_source_id, g_source_remove);
if (do_record_frame (src, flags, spa_buffer, data, &error))
{
struct spa_meta_region *spa_meta_video_crop;
spa_buffer->datas[0].chunk->size = spa_buffer->datas[0].maxsize;
spa_buffer->datas[0].chunk->stride = priv->video_stride;
/* Update VideoCrop if needed */
spa_meta_video_crop =
spa_buffer_find_meta_data (spa_buffer, SPA_META_VideoCrop,
sizeof (*spa_meta_video_crop));
if (spa_meta_video_crop)
{
if (meta_screen_cast_stream_src_get_videocrop (src, &crop_rect))
{
spa_meta_video_crop->region.position.x = crop_rect.x;
spa_meta_video_crop->region.position.y = crop_rect.y;
spa_meta_video_crop->region.size.width = crop_rect.width;
spa_meta_video_crop->region.size.height = crop_rect.height;
}
else
{
spa_meta_video_crop->region.position.x = 0;
spa_meta_video_crop->region.position.y = 0;
spa_meta_video_crop->region.size.width =
priv->video_format.size.width;
spa_meta_video_crop->region.size.height =
priv->video_format.size.height;
}
}
}
else
{
g_warning ("Failed to record screen cast frame: %s", error->message);
spa_buffer->datas[0].chunk->size = 0;
}
}
else
{
spa_buffer->datas[0].chunk->size = 0;
}
maybe_record_cursor (src, spa_buffer);
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
priv->last_frame_timestamp_us = now_us;
pw_stream_queue_buffer (priv->pipewire_stream, buffer);
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
}
static gboolean
meta_screen_cast_stream_src_is_enabled (MetaScreenCastStreamSrc *src)
{
MetaScreenCastStreamSrcPrivate *priv =
meta_screen_cast_stream_src_get_instance_private (src);
return priv->is_enabled;
}
static void
meta_screen_cast_stream_src_enable (MetaScreenCastStreamSrc *src)
{
MetaScreenCastStreamSrcPrivate *priv =
meta_screen_cast_stream_src_get_instance_private (src);
META_SCREEN_CAST_STREAM_SRC_GET_CLASS (src)->enable (src);
priv->is_enabled = TRUE;
}
static void
meta_screen_cast_stream_src_disable (MetaScreenCastStreamSrc *src)
{
MetaScreenCastStreamSrcPrivate *priv =
meta_screen_cast_stream_src_get_instance_private (src);
META_SCREEN_CAST_STREAM_SRC_GET_CLASS (src)->disable (src);
g_clear_handle_id (&priv->follow_up_frame_source_id, g_source_remove);
priv->is_enabled = FALSE;
}
void
meta_screen_cast_stream_src_close (MetaScreenCastStreamSrc *src)
{
MetaScreenCastStreamSrcPrivate *priv =
meta_screen_cast_stream_src_get_instance_private (src);
if (meta_screen_cast_stream_src_is_enabled (src))
meta_screen_cast_stream_src_disable (src);
priv->emit_closed_after_dispatch = TRUE;
}
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
static void
on_stream_state_changed (void *data,
enum pw_stream_state old,
enum pw_stream_state state,
const char *error_message)
{
MetaScreenCastStreamSrc *src = data;
MetaScreenCastStreamSrcPrivate *priv =
meta_screen_cast_stream_src_get_instance_private (src);
switch (state)
{
case PW_STREAM_STATE_ERROR:
g_warning ("pipewire stream error: %s", error_message);
meta_screen_cast_stream_src_close (src);
break;
case PW_STREAM_STATE_PAUSED:
if (priv->node_id == SPA_ID_INVALID && priv->pipewire_stream)
{
priv->node_id = pw_stream_get_node_id (priv->pipewire_stream);
g_signal_emit (src, signals[READY], 0, (unsigned int) priv->node_id);
}
if (meta_screen_cast_stream_src_is_enabled (src))
meta_screen_cast_stream_src_disable (src);
break;
case PW_STREAM_STATE_STREAMING:
if (!meta_screen_cast_stream_src_is_enabled (src))
meta_screen_cast_stream_src_enable (src);
break;
case PW_STREAM_STATE_UNCONNECTED:
case PW_STREAM_STATE_CONNECTING:
break;
}
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
}
static void
on_stream_param_changed (void *data,
uint32_t id,
const struct spa_pod *format)
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
{
MetaScreenCastStreamSrc *src = data;
MetaScreenCastStreamSrcPrivate *priv =
meta_screen_cast_stream_src_get_instance_private (src);
MetaScreenCastStreamSrcClass *klass =
META_SCREEN_CAST_STREAM_SRC_GET_CLASS (src);
uint8_t params_buffer[1024];
int32_t width, height, stride, size;
struct spa_pod_builder pod_builder;
const struct spa_pod *params[3];
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
const int bpp = 4;
int buffer_types;
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
if (!format || id != SPA_PARAM_Format)
return;
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
spa_format_video_raw_parse (format,
&priv->video_format);
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
width = priv->video_format.size.width;
height = priv->video_format.size.height;
stride = SPA_ROUND_UP_N (width * bpp, 4);
size = height * stride;
priv->video_stride = stride;
pod_builder = SPA_POD_BUILDER_INIT (params_buffer, sizeof (params_buffer));
if (!spa_pod_find_prop (format, NULL, SPA_FORMAT_VIDEO_modifier))
buffer_types = 1 << SPA_DATA_MemFd;
else
buffer_types = 1 << SPA_DATA_DmaBuf;
params[0] = spa_pod_builder_add_object (
&pod_builder,
SPA_TYPE_OBJECT_ParamBuffers, SPA_PARAM_Buffers,
SPA_PARAM_BUFFERS_buffers, SPA_POD_CHOICE_RANGE_Int (16, 2, 16),
SPA_PARAM_BUFFERS_blocks, SPA_POD_Int (1),
SPA_PARAM_BUFFERS_size, SPA_POD_Int (size),
SPA_PARAM_BUFFERS_stride, SPA_POD_Int (stride),
SPA_PARAM_BUFFERS_align, SPA_POD_Int (16),
SPA_PARAM_BUFFERS_dataType, SPA_POD_CHOICE_FLAGS_Int (buffer_types));
params[1] = spa_pod_builder_add_object (
&pod_builder,
SPA_TYPE_OBJECT_ParamMeta, SPA_PARAM_Meta,
SPA_PARAM_META_type, SPA_POD_Id (SPA_META_VideoCrop),
SPA_PARAM_META_size, SPA_POD_Int (sizeof (struct spa_meta_region)));
params[2] = spa_pod_builder_add_object (
&pod_builder,
SPA_TYPE_OBJECT_ParamMeta, SPA_PARAM_Meta,
SPA_PARAM_META_type, SPA_POD_Id (SPA_META_Cursor),
SPA_PARAM_META_size, SPA_POD_Int (CURSOR_META_SIZE (384, 384)));
pw_stream_update_params (priv->pipewire_stream, params, G_N_ELEMENTS (params));
if (klass->notify_params_updated)
klass->notify_params_updated (src, &priv->video_format);
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
}
static void
on_stream_add_buffer (void *data,
struct pw_buffer *buffer)
{
MetaScreenCastStreamSrc *src = data;
MetaScreenCastStreamSrcPrivate *priv =
meta_screen_cast_stream_src_get_instance_private (src);
MetaScreenCastStream *stream = meta_screen_cast_stream_src_get_stream (src);
MetaScreenCastSession *session = meta_screen_cast_stream_get_session (stream);
MetaScreenCast *screen_cast =
meta_screen_cast_session_get_screen_cast (session);
CoglDmaBufHandle *dmabuf_handle;
struct spa_buffer *spa_buffer = buffer->buffer;
struct spa_data *spa_data = spa_buffer->datas;
const int bpp = 4;
int stride;
stride = SPA_ROUND_UP_N (priv->video_format.size.width * bpp, 4);
spa_data[0].mapoffset = 0;
spa_data[0].maxsize = stride * priv->video_format.size.height;
spa_data[0].data = NULL;
if (spa_data[0].type & (1 << SPA_DATA_DmaBuf))
{
dmabuf_handle =
meta_screen_cast_create_dma_buf_handle (screen_cast,
priv->video_format.size.width,
priv->video_format.size.height);
}
else
{
dmabuf_handle = NULL;
}
if (dmabuf_handle)
{
meta_topic (META_DEBUG_SCREEN_CAST,
"Allocating DMA buffer for pw_stream %u",
pw_stream_get_node_id (priv->pipewire_stream));
spa_data[0].type = SPA_DATA_DmaBuf;
spa_data[0].flags = SPA_DATA_FLAG_READWRITE;
spa_data[0].fd = cogl_dma_buf_handle_get_fd (dmabuf_handle);
g_hash_table_insert (priv->dmabuf_handles,
GINT_TO_POINTER (spa_data[0].fd),
dmabuf_handle);
}
else
{
unsigned int seals;
if (!(spa_data[0].type & (1 << SPA_DATA_MemFd)))
{
g_critical ("No supported PipeWire stream buffer data type could "
"be negotiated");
return;
}
meta_topic (META_DEBUG_SCREEN_CAST,
"Allocating MemFd buffer for pw_stream %u",
pw_stream_get_node_id (priv->pipewire_stream));
/* Fallback to a memfd buffer */
spa_data[0].type = SPA_DATA_MemFd;
spa_data[0].flags = SPA_DATA_FLAG_READWRITE;
spa_data[0].fd = memfd_create ("mutter-screen-cast-memfd",
MFD_CLOEXEC | MFD_ALLOW_SEALING);
if (spa_data[0].fd == -1)
{
g_critical ("Can't create memfd: %m");
return;
}
spa_data[0].mapoffset = 0;
spa_data[0].maxsize = stride * priv->video_format.size.height;
if (ftruncate (spa_data[0].fd, spa_data[0].maxsize) < 0)
{
close (spa_data[0].fd);
spa_data[0].fd = -1;
g_critical ("Can't truncate to %d: %m", spa_data[0].maxsize);
return;
}
seals = F_SEAL_GROW | F_SEAL_SHRINK | F_SEAL_SEAL;
if (fcntl (spa_data[0].fd, F_ADD_SEALS, seals) == -1)
g_warning ("Failed to add seals: %m");
spa_data[0].data = mmap (NULL,
spa_data[0].maxsize,
PROT_READ | PROT_WRITE,
MAP_SHARED,
spa_data[0].fd,
spa_data[0].mapoffset);
if (spa_data[0].data == MAP_FAILED)
{
close (spa_data[0].fd);
spa_data[0].fd = -1;
g_critical ("Failed to mmap memory: %m");
return;
}
}
}
static void
on_stream_remove_buffer (void *data,
struct pw_buffer *buffer)
{
MetaScreenCastStreamSrc *src = data;
MetaScreenCastStreamSrcPrivate *priv =
meta_screen_cast_stream_src_get_instance_private (src);
struct spa_buffer *spa_buffer = buffer->buffer;
struct spa_data *spa_data = spa_buffer->datas;
if (spa_data[0].type == SPA_DATA_DmaBuf)
{
if (!g_hash_table_remove (priv->dmabuf_handles, GINT_TO_POINTER (spa_data[0].fd)))
g_critical ("Failed to remove non-exported DMA buffer");
}
else if (spa_data[0].type == SPA_DATA_MemFd)
{
g_warn_if_fail (spa_data[0].fd > 0 || !spa_data[0].data);
if (spa_data[0].fd > 0)
{
munmap (spa_data[0].data, spa_data[0].maxsize);
close (spa_data[0].fd);
}
}
}
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
static const struct pw_stream_events stream_events = {
PW_VERSION_STREAM_EVENTS,
.state_changed = on_stream_state_changed,
.param_changed = on_stream_param_changed,
.add_buffer = on_stream_add_buffer,
.remove_buffer = on_stream_remove_buffer,
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
};
static struct pw_stream *
create_pipewire_stream (MetaScreenCastStreamSrc *src,
GError **error)
{
MetaScreenCastStreamSrcPrivate *priv =
meta_screen_cast_stream_src_get_instance_private (src);
#ifdef HAVE_NATIVE_BACKEND
MetaScreenCastStream *stream = meta_screen_cast_stream_src_get_stream (src);
MetaScreenCastSession *session = meta_screen_cast_stream_get_session (stream);
MetaScreenCast *screen_cast =
meta_screen_cast_session_get_screen_cast (session);
MetaBackend *backend = meta_screen_cast_get_backend (screen_cast);
ClutterBackend *clutter_backend = meta_backend_get_clutter_backend (backend);
CoglContext *cogl_context =
clutter_backend_get_cogl_context (clutter_backend);
CoglRenderer *cogl_renderer = cogl_context_get_renderer (cogl_context);
#endif /* HAVE_NATIVE_BACKEND */
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
struct pw_stream *pipewire_stream;
uint8_t buffer[1024];
struct spa_pod_builder pod_builder =
SPA_POD_BUILDER_INIT (buffer, sizeof (buffer));
int width;
int height;
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
float frame_rate;
const struct spa_pod *params[2];
int n_params = 0;
int result;
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
priv->node_id = SPA_ID_INVALID;
pipewire_stream = pw_stream_new (priv->pipewire_core,
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
"meta-screen-cast-src",
NULL);
if (!pipewire_stream)
{
g_set_error (error, G_IO_ERROR, G_IO_ERROR_FAILED,
"Failed to create PipeWire stream: %s",
strerror (errno));
return NULL;
}
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
if (meta_screen_cast_stream_src_get_specs (src, &width, &height, &frame_rate))
{
MetaFraction frame_rate_fraction;
struct spa_fraction max_framerate;
struct spa_fraction min_framerate;
frame_rate_fraction = meta_fraction_from_double (frame_rate);
min_framerate = SPA_FRACTION (1, 1);
max_framerate = SPA_FRACTION (frame_rate_fraction.num,
frame_rate_fraction.denom);
#ifdef HAVE_NATIVE_BACKEND
if (cogl_renderer_is_dma_buf_supported (cogl_renderer))
{
uint64_t modifier = DRM_FORMAT_MOD_INVALID;
params[n_params++] = push_format_object (
&pod_builder,
SPA_VIDEO_FORMAT_BGRx, &modifier, 1,
SPA_FORMAT_VIDEO_size, SPA_POD_Rectangle (&SPA_RECTANGLE (width,
height)),
SPA_FORMAT_VIDEO_framerate, SPA_POD_Fraction (&SPA_FRACTION (0, 1)),
SPA_FORMAT_VIDEO_maxFramerate,
SPA_POD_CHOICE_RANGE_Fraction (&max_framerate,
&min_framerate,
&max_framerate),
0);
params[n_params++] = push_format_object (
&pod_builder,
SPA_VIDEO_FORMAT_BGRx, NULL, 0,
SPA_FORMAT_VIDEO_size, SPA_POD_Rectangle (&SPA_RECTANGLE (width,
height)),
SPA_FORMAT_VIDEO_framerate, SPA_POD_Fraction (&SPA_FRACTION (0, 1)),
SPA_FORMAT_VIDEO_maxFramerate,
SPA_POD_CHOICE_RANGE_Fraction (&max_framerate,
&min_framerate,
&max_framerate),
0);
}
else
#endif /* HAVE_NATIVE_BACKEND */
{
params[n_params++] = push_format_object (
&pod_builder,
SPA_VIDEO_FORMAT_BGRx, NULL, 0,
SPA_FORMAT_VIDEO_size, SPA_POD_Rectangle (&SPA_RECTANGLE (width,
height)),
SPA_FORMAT_VIDEO_framerate, SPA_POD_Fraction (&SPA_FRACTION (0, 1)),
SPA_FORMAT_VIDEO_maxFramerate,
SPA_POD_CHOICE_RANGE_Fraction (&max_framerate,
&min_framerate,
&max_framerate),
0);
}
}
else
{
#ifdef HAVE_NATIVE_BACKEND
if (cogl_renderer_is_dma_buf_supported (cogl_renderer))
{
uint64_t modifier = DRM_FORMAT_MOD_INVALID;
params[n_params++] = push_format_object (
&pod_builder,
SPA_VIDEO_FORMAT_BGRx, &modifier, 1,
SPA_FORMAT_VIDEO_size, SPA_POD_CHOICE_RANGE_Rectangle (&DEFAULT_SIZE,
&MIN_SIZE,
&MAX_SIZE),
SPA_FORMAT_VIDEO_framerate, SPA_POD_Fraction (&SPA_FRACTION (0, 1)),
SPA_FORMAT_VIDEO_maxFramerate,
SPA_POD_CHOICE_RANGE_Fraction (&DEFAULT_FRAME_RATE,
&MIN_FRAME_RATE,
&MAX_FRAME_RATE),
0);
params[n_params++] = push_format_object (
&pod_builder,
SPA_VIDEO_FORMAT_BGRx, NULL, 0,
SPA_FORMAT_VIDEO_size, SPA_POD_CHOICE_RANGE_Rectangle (&DEFAULT_SIZE,
&MIN_SIZE,
&MAX_SIZE),
SPA_FORMAT_VIDEO_framerate, SPA_POD_Fraction (&SPA_FRACTION (0, 1)),
SPA_FORMAT_VIDEO_maxFramerate,
SPA_POD_CHOICE_RANGE_Fraction (&DEFAULT_FRAME_RATE,
&MIN_FRAME_RATE,
&MAX_FRAME_RATE),
0);
}
else
#endif /* HAVE_NATIVE_BACKEND */
{
params[n_params++] = push_format_object (
&pod_builder,
SPA_VIDEO_FORMAT_BGRx, NULL, 0,
SPA_FORMAT_VIDEO_size, SPA_POD_CHOICE_RANGE_Rectangle (&DEFAULT_SIZE,
&MIN_SIZE,
&MAX_SIZE),
SPA_FORMAT_VIDEO_framerate, SPA_POD_Fraction (&SPA_FRACTION (0, 1)),
SPA_FORMAT_VIDEO_maxFramerate,
SPA_POD_CHOICE_RANGE_Fraction (&DEFAULT_FRAME_RATE,
&MIN_FRAME_RATE,
&MAX_FRAME_RATE),
0);
}
}
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
pw_stream_add_listener (pipewire_stream,
&priv->pipewire_stream_listener,
&stream_events,
src);
result = pw_stream_connect (pipewire_stream,
PW_DIRECTION_OUTPUT,
SPA_ID_INVALID,
(PW_STREAM_FLAG_DRIVER |
PW_STREAM_FLAG_ALLOC_BUFFERS),
params, n_params);
if (result != 0)
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
{
g_set_error (error, G_IO_ERROR, G_IO_ERROR_FAILED,
"Could not connect: %s", spa_strerror (result));
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
return NULL;
}
return pipewire_stream;
}
static void
on_core_error (void *data,
uint32_t id,
int seq,
int res,
const char *message)
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
{
MetaScreenCastStreamSrc *src = data;
g_warning ("pipewire remote error: id:%u %s", id, message);
if (id == PW_ID_CORE && res == -EPIPE)
meta_screen_cast_stream_src_close (src);
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
}
static gboolean
pipewire_loop_source_prepare (GSource *base,
int *timeout)
{
*timeout = -1;
return FALSE;
}
static gboolean
pipewire_loop_source_dispatch (GSource *source,
GSourceFunc callback,
gpointer user_data)
{
MetaPipeWireSource *pipewire_source = (MetaPipeWireSource *) source;
MetaScreenCastStreamSrc *src = pipewire_source->src;
MetaScreenCastStreamSrcPrivate *priv =
meta_screen_cast_stream_src_get_instance_private (src);
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
int result;
result = pw_loop_iterate (pipewire_source->pipewire_loop, 0);
if (result < 0)
g_warning ("pipewire_loop_iterate failed: %s", spa_strerror (result));
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
if (priv->emit_closed_after_dispatch)
g_signal_emit (src, signals[CLOSED], 0);
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
return TRUE;
}
static void
pipewire_loop_source_finalize (GSource *source)
{
MetaPipeWireSource *pipewire_source = (MetaPipeWireSource *) source;
pw_loop_leave (pipewire_source->pipewire_loop);
pw_loop_destroy (pipewire_source->pipewire_loop);
}
static GSourceFuncs pipewire_source_funcs =
{
pipewire_loop_source_prepare,
NULL,
pipewire_loop_source_dispatch,
pipewire_loop_source_finalize
};
static MetaPipeWireSource *
create_pipewire_source (MetaScreenCastStreamSrc *src)
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
{
MetaPipeWireSource *pipewire_source;
pipewire_source =
(MetaPipeWireSource *) g_source_new (&pipewire_source_funcs,
sizeof (MetaPipeWireSource));
pipewire_source->src = src;
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
pipewire_source->pipewire_loop = pw_loop_new (NULL);
if (!pipewire_source->pipewire_loop)
{
g_source_unref ((GSource *) pipewire_source);
return NULL;
}
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
g_source_add_unix_fd (&pipewire_source->base,
pw_loop_get_fd (pipewire_source->pipewire_loop),
G_IO_IN | G_IO_ERR);
pw_loop_enter (pipewire_source->pipewire_loop);
g_source_attach (&pipewire_source->base, NULL);
return pipewire_source;
}
static const struct pw_core_events core_events = {
PW_VERSION_CORE_EVENTS,
.error = on_core_error,
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
};
static gboolean
meta_screen_cast_stream_src_initable_init (GInitable *initable,
GCancellable *cancellable,
GError **error)
{
MetaScreenCastStreamSrc *src = META_SCREEN_CAST_STREAM_SRC (initable);
MetaScreenCastStreamSrcPrivate *priv =
meta_screen_cast_stream_src_get_instance_private (src);
priv->pipewire_source = create_pipewire_source (src);
if (!priv->pipewire_source)
{
g_set_error (error, G_IO_ERROR, G_IO_ERROR_FAILED,
"Failed to create PipeWire source");
return FALSE;
}
priv->pipewire_context = pw_context_new (priv->pipewire_source->pipewire_loop,
NULL, 0);
if (!priv->pipewire_context)
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
{
g_set_error (error, G_IO_ERROR, G_IO_ERROR_FAILED,
"Failed to create pipewire context");
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
return FALSE;
}
priv->pipewire_core = pw_context_connect (priv->pipewire_context, NULL, 0);
if (!priv->pipewire_core)
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
{
g_set_error (error, G_IO_ERROR, G_IO_ERROR_FAILED,
"Couldn't connect pipewire context");
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
return FALSE;
}
pw_core_add_listener (priv->pipewire_core,
&priv->pipewire_core_listener,
&core_events,
src);
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
priv->pipewire_stream = create_pipewire_stream (src, error);
if (!priv->pipewire_stream)
return FALSE;
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
return TRUE;
}
static void
meta_screen_cast_stream_src_init_initable_iface (GInitableIface *iface)
{
iface->init = meta_screen_cast_stream_src_initable_init;
}
MetaScreenCastStream *
meta_screen_cast_stream_src_get_stream (MetaScreenCastStreamSrc *src)
{
MetaScreenCastStreamSrcPrivate *priv =
meta_screen_cast_stream_src_get_instance_private (src);
return priv->stream;
}
static void
meta_screen_cast_stream_src_finalize (GObject *object)
{
MetaScreenCastStreamSrc *src = META_SCREEN_CAST_STREAM_SRC (object);
MetaScreenCastStreamSrcPrivate *priv =
meta_screen_cast_stream_src_get_instance_private (src);
if (meta_screen_cast_stream_src_is_enabled (src))
meta_screen_cast_stream_src_disable (src);
g_clear_pointer (&priv->pipewire_stream, pw_stream_destroy);
g_clear_pointer (&priv->dmabuf_handles, g_hash_table_destroy);
g_clear_pointer (&priv->pipewire_core, pw_core_disconnect);
g_clear_pointer (&priv->pipewire_context, pw_context_destroy);
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
g_source_destroy (&priv->pipewire_source->base);
g_source_unref (&priv->pipewire_source->base);
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
G_OBJECT_CLASS (meta_screen_cast_stream_src_parent_class)->finalize (object);
}
static void
meta_screen_cast_stream_src_set_property (GObject *object,
guint prop_id,
const GValue *value,
GParamSpec *pspec)
{
MetaScreenCastStreamSrc *src = META_SCREEN_CAST_STREAM_SRC (object);
MetaScreenCastStreamSrcPrivate *priv =
meta_screen_cast_stream_src_get_instance_private (src);
switch (prop_id)
{
case PROP_STREAM:
priv->stream = g_value_get_object (value);
break;
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
}
}
static void
meta_screen_cast_stream_src_get_property (GObject *object,
guint prop_id,
GValue *value,
GParamSpec *pspec)
{
MetaScreenCastStreamSrc *src = META_SCREEN_CAST_STREAM_SRC (object);
MetaScreenCastStreamSrcPrivate *priv =
meta_screen_cast_stream_src_get_instance_private (src);
switch (prop_id)
{
case PROP_STREAM:
g_value_set_object (value, priv->stream);
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
}
}
static void
meta_screen_cast_stream_src_init (MetaScreenCastStreamSrc *src)
{
MetaScreenCastStreamSrcPrivate *priv =
meta_screen_cast_stream_src_get_instance_private (src);
priv->dmabuf_handles =
g_hash_table_new_full (NULL, NULL, NULL,
(GDestroyNotify) cogl_dma_buf_handle_free);
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
}
static void
meta_screen_cast_stream_src_class_init (MetaScreenCastStreamSrcClass *klass)
{
GObjectClass *object_class = G_OBJECT_CLASS (klass);
object_class->finalize = meta_screen_cast_stream_src_finalize;
object_class->set_property = meta_screen_cast_stream_src_set_property;
object_class->get_property = meta_screen_cast_stream_src_get_property;
g_object_class_install_property (object_class,
PROP_STREAM,
g_param_spec_object ("stream",
"stream",
"MetaScreenCastStream",
META_TYPE_SCREEN_CAST_STREAM,
G_PARAM_READWRITE |
G_PARAM_CONSTRUCT_ONLY |
G_PARAM_STATIC_STRINGS));
signals[READY] = g_signal_new ("ready",
G_TYPE_FROM_CLASS (klass),
G_SIGNAL_RUN_LAST,
0,
NULL, NULL, NULL,
G_TYPE_NONE, 1,
G_TYPE_UINT);
signals[CLOSED] = g_signal_new ("closed",
G_TYPE_FROM_CLASS (klass),
G_SIGNAL_RUN_LAST,
0,
NULL, NULL, NULL,
G_TYPE_NONE, 0);
Add remote desktop and screen cast functionality This commit adds basic screen casting and remote desktoping functionalty. This works by exposing two D-Bus API services: org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop. The remote desktop API is used to create remote desktop sessions. For each session, a D-Bus object is created, and an application can manage the session by sending messages to the session object. A remote desktop session the user to emit input events using the D-Bus methods on the session object. To get framebuffer content, the application should create an associated screen cast session. The screen cast API is used to create screen cast sessions. One can so far either create stand-alone screen cast sessions, or a screen cast session associated with a remote desktop session. A remote desktop associated screen cast session is managed by the remote desktop session. So far only remote desktop managed screen cast sessions are implemented. Each screen cast session may have one or more streams. A screen cast stream is a stream of buffers of some part of the compositor content. So far API exists for creating streams of monitors and windows, but only monitor streams are implemented. When a screen cast session is started, the one PipeWire stream is created for each screen cast stream created for the session. When this has happened, a PipeWireStreamAdded signal is emitted on the stream object, passing a unique identifier. The application may use this identifier to find the associated stream being advertised by the PipeWire daemon. The remote desktop and screen cast functionality must be explicitly be enabled at ./configure time by passing --enable-remote-desktop to ./configure. Doing this will build both screen cast and remote desktop support. To actually enable the screen casting and remote desktop, the user must enable the experimental feature. See org.gnome.mutter.experimental-features. https://bugzilla.gnome.org/show_bug.cgi?id=784199
2017-06-21 02:23:44 -04:00
}