window-actor: Split into two subclasses of MetaSurfaceActor
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
|
|
|
/* -*- mode: C; c-file-style: "gnu"; indent-tabs-mode: nil; -*- */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Copyright (C) 2013 Red Hat
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU General Public License as
|
|
|
|
* published by the Free Software Foundation; either version 2 of the
|
|
|
|
* License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful, but
|
|
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
* General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
|
|
|
|
* 02111-1307, USA.
|
|
|
|
*
|
|
|
|
* Written by:
|
|
|
|
* Jasper St. Pierre <jstpierre@mecheye.net>
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "config.h"
|
|
|
|
|
|
|
|
#include "meta-surface-actor-wayland.h"
|
|
|
|
|
|
|
|
#include <cogl/cogl-wayland-server.h>
|
|
|
|
#include "meta-shaped-texture-private.h"
|
2014-03-18 22:01:31 -04:00
|
|
|
|
|
|
|
#include "wayland/meta-wayland-private.h"
|
window-actor: Split into two subclasses of MetaSurfaceActor
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
|
|
|
|
|
|
|
struct _MetaSurfaceActorWaylandPrivate
|
|
|
|
{
|
|
|
|
MetaWaylandSurface *surface;
|
|
|
|
MetaWaylandBuffer *buffer;
|
wayland: Kill the buffer destroy error
Previously, a sequence like this would crash a client:
=> surface.attach(buffer)
=> buffer.destroy()
The correct behavior is to wait until we release the buffer before
destroying it.
=> surface.attach(buffer)
=> surface.attach(buffer2)
<= buffer.release()
=> buffer.destroy()
The protocol upstream says that "the surface contents are undefined"
in a case like this. Personally, I think that this is broken behavior
and no client should ever do it, so I explicitly killed any client
that tried to do this.
But unfortunately, as we're all well aware, XWayland does this.
Rather than wait for XWayland to be fixed, let's just allow this.
Technically, since we always copy SHM buffers into GL textures, we
could release the buffer as soon as the Cogl texture is made.
Since we do this copy, the semantics we apply are that the texture is
"frozen" in time until another newer buffer is attached. For simple
clients that simply abort on exit and don't wait for the buffer event
anyhow, this has the added bonus that we'll get nice destroy animations.
2014-03-20 13:20:47 -04:00
|
|
|
struct wl_listener buffer_destroy_listener;
|
window-actor: Split into two subclasses of MetaSurfaceActor
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
|
|
|
};
|
|
|
|
typedef struct _MetaSurfaceActorWaylandPrivate MetaSurfaceActorWaylandPrivate;
|
|
|
|
|
|
|
|
G_DEFINE_TYPE_WITH_PRIVATE (MetaSurfaceActorWayland, meta_surface_actor_wayland, META_TYPE_SURFACE_ACTOR)
|
|
|
|
|
wayland: Kill the buffer destroy error
Previously, a sequence like this would crash a client:
=> surface.attach(buffer)
=> buffer.destroy()
The correct behavior is to wait until we release the buffer before
destroying it.
=> surface.attach(buffer)
=> surface.attach(buffer2)
<= buffer.release()
=> buffer.destroy()
The protocol upstream says that "the surface contents are undefined"
in a case like this. Personally, I think that this is broken behavior
and no client should ever do it, so I explicitly killed any client
that tried to do this.
But unfortunately, as we're all well aware, XWayland does this.
Rather than wait for XWayland to be fixed, let's just allow this.
Technically, since we always copy SHM buffers into GL textures, we
could release the buffer as soon as the Cogl texture is made.
Since we do this copy, the semantics we apply are that the texture is
"frozen" in time until another newer buffer is attached. For simple
clients that simply abort on exit and don't wait for the buffer event
anyhow, this has the added bonus that we'll get nice destroy animations.
2014-03-20 13:20:47 -04:00
|
|
|
static void
|
|
|
|
meta_surface_actor_handle_buffer_destroy (struct wl_listener *listener, void *data)
|
|
|
|
{
|
|
|
|
MetaSurfaceActorWaylandPrivate *priv = wl_container_of (listener, priv, buffer_destroy_listener);
|
|
|
|
|
|
|
|
/* If the buffer is destroyed while we're attached to it,
|
|
|
|
* we want to unset priv->buffer so we don't access freed
|
|
|
|
* memory. Keep the texture set however so the user doesn't
|
|
|
|
* see the window disappear. */
|
|
|
|
priv->buffer = NULL;
|
|
|
|
}
|
|
|
|
|
window-actor: Split into two subclasses of MetaSurfaceActor
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
|
|
|
static void
|
|
|
|
meta_surface_actor_wayland_process_damage (MetaSurfaceActor *actor,
|
|
|
|
int x, int y, int width, int height)
|
|
|
|
{
|
|
|
|
MetaSurfaceActorWayland *self = META_SURFACE_ACTOR_WAYLAND (actor);
|
|
|
|
MetaSurfaceActorWaylandPrivate *priv = meta_surface_actor_wayland_get_instance_private (self);
|
|
|
|
|
wayland: Kill the buffer destroy error
Previously, a sequence like this would crash a client:
=> surface.attach(buffer)
=> buffer.destroy()
The correct behavior is to wait until we release the buffer before
destroying it.
=> surface.attach(buffer)
=> surface.attach(buffer2)
<= buffer.release()
=> buffer.destroy()
The protocol upstream says that "the surface contents are undefined"
in a case like this. Personally, I think that this is broken behavior
and no client should ever do it, so I explicitly killed any client
that tried to do this.
But unfortunately, as we're all well aware, XWayland does this.
Rather than wait for XWayland to be fixed, let's just allow this.
Technically, since we always copy SHM buffers into GL textures, we
could release the buffer as soon as the Cogl texture is made.
Since we do this copy, the semantics we apply are that the texture is
"frozen" in time until another newer buffer is attached. For simple
clients that simply abort on exit and don't wait for the buffer event
anyhow, this has the added bonus that we'll get nice destroy animations.
2014-03-20 13:20:47 -04:00
|
|
|
if (priv->buffer)
|
window-actor: Split into two subclasses of MetaSurfaceActor
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
|
|
|
{
|
wayland: Kill the buffer destroy error
Previously, a sequence like this would crash a client:
=> surface.attach(buffer)
=> buffer.destroy()
The correct behavior is to wait until we release the buffer before
destroying it.
=> surface.attach(buffer)
=> surface.attach(buffer2)
<= buffer.release()
=> buffer.destroy()
The protocol upstream says that "the surface contents are undefined"
in a case like this. Personally, I think that this is broken behavior
and no client should ever do it, so I explicitly killed any client
that tried to do this.
But unfortunately, as we're all well aware, XWayland does this.
Rather than wait for XWayland to be fixed, let's just allow this.
Technically, since we always copy SHM buffers into GL textures, we
could release the buffer as soon as the Cogl texture is made.
Since we do this copy, the semantics we apply are that the texture is
"frozen" in time until another newer buffer is attached. For simple
clients that simply abort on exit and don't wait for the buffer event
anyhow, this has the added bonus that we'll get nice destroy animations.
2014-03-20 13:20:47 -04:00
|
|
|
struct wl_resource *resource = priv->buffer->resource;
|
|
|
|
struct wl_shm_buffer *shm_buffer = wl_shm_buffer_get (resource);
|
window-actor: Split into two subclasses of MetaSurfaceActor
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
|
|
|
|
wayland: Kill the buffer destroy error
Previously, a sequence like this would crash a client:
=> surface.attach(buffer)
=> buffer.destroy()
The correct behavior is to wait until we release the buffer before
destroying it.
=> surface.attach(buffer)
=> surface.attach(buffer2)
<= buffer.release()
=> buffer.destroy()
The protocol upstream says that "the surface contents are undefined"
in a case like this. Personally, I think that this is broken behavior
and no client should ever do it, so I explicitly killed any client
that tried to do this.
But unfortunately, as we're all well aware, XWayland does this.
Rather than wait for XWayland to be fixed, let's just allow this.
Technically, since we always copy SHM buffers into GL textures, we
could release the buffer as soon as the Cogl texture is made.
Since we do this copy, the semantics we apply are that the texture is
"frozen" in time until another newer buffer is attached. For simple
clients that simply abort on exit and don't wait for the buffer event
anyhow, this has the added bonus that we'll get nice destroy animations.
2014-03-20 13:20:47 -04:00
|
|
|
if (shm_buffer)
|
|
|
|
{
|
|
|
|
CoglTexture2D *texture = COGL_TEXTURE_2D (priv->buffer->texture);
|
|
|
|
cogl_wayland_texture_set_region_from_shm_buffer (texture, x, y, width, height, shm_buffer, x, y, 0, NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
meta_surface_actor_update_area (META_SURFACE_ACTOR (self), x, y, width, height);
|
|
|
|
}
|
window-actor: Split into two subclasses of MetaSurfaceActor
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
meta_surface_actor_wayland_pre_paint (MetaSurfaceActor *actor)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
static gboolean
|
|
|
|
meta_surface_actor_wayland_is_visible (MetaSurfaceActor *actor)
|
|
|
|
{
|
|
|
|
/* TODO: ensure that the buffer isn't NULL, implement
|
|
|
|
* wayland mapping semantics */
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
static gboolean
|
|
|
|
meta_surface_actor_wayland_should_unredirect (MetaSurfaceActor *actor)
|
|
|
|
{
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
meta_surface_actor_wayland_set_unredirected (MetaSurfaceActor *actor,
|
|
|
|
gboolean unredirected)
|
|
|
|
{
|
|
|
|
/* Do nothing. In the future, we'll use KMS to set this
|
|
|
|
* up as a hardware overlay or something. */
|
|
|
|
}
|
|
|
|
|
|
|
|
static gboolean
|
|
|
|
meta_surface_actor_wayland_is_unredirected (MetaSurfaceActor *actor)
|
|
|
|
{
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
|
2014-04-26 06:55:54 -04:00
|
|
|
static int
|
|
|
|
get_output_scale (int output_id)
|
|
|
|
{
|
|
|
|
MetaMonitorManager *monitor_manager = meta_monitor_manager_get ();
|
|
|
|
MetaOutput *outputs;
|
|
|
|
guint n_outputs, i;
|
|
|
|
int output_scale = 1;
|
|
|
|
|
|
|
|
outputs = meta_monitor_manager_get_outputs (monitor_manager, &n_outputs);
|
|
|
|
|
|
|
|
for (i = 0; i < n_outputs; i++)
|
|
|
|
{
|
|
|
|
if (outputs[i].output_id == output_id)
|
|
|
|
{
|
|
|
|
output_scale = outputs[i].scale;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return output_scale;
|
|
|
|
}
|
|
|
|
|
|
|
|
double
|
|
|
|
meta_surface_actor_wayland_get_scale (MetaSurfaceActorWayland *actor)
|
|
|
|
{
|
|
|
|
MetaSurfaceActorWaylandPrivate *priv = meta_surface_actor_wayland_get_instance_private (actor);
|
|
|
|
MetaWaylandSurface *surface = priv->surface;
|
|
|
|
MetaWindow *window = surface->window;
|
|
|
|
int output_scale = 1;
|
|
|
|
|
|
|
|
while (surface)
|
|
|
|
{
|
|
|
|
if (surface->window)
|
|
|
|
{
|
|
|
|
window = surface->window;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
surface = surface->sub.parent;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* XXX: We do not handle x11 clients yet */
|
|
|
|
if (window && window->client_type != META_WINDOW_CLIENT_TYPE_X11)
|
|
|
|
output_scale = get_output_scale (window->monitor->output_id);
|
|
|
|
|
|
|
|
return (double)output_scale / (double)priv->surface->scale;
|
|
|
|
}
|
|
|
|
|
2014-05-03 05:59:07 -04:00
|
|
|
void
|
|
|
|
meta_surface_actor_wayland_scale_texture (MetaSurfaceActorWayland *actor)
|
|
|
|
{
|
|
|
|
MetaShapedTexture *stex = meta_surface_actor_get_texture (META_SURFACE_ACTOR (actor));
|
|
|
|
double output_scale = meta_surface_actor_wayland_get_scale (actor);
|
|
|
|
|
|
|
|
clutter_actor_set_scale (CLUTTER_ACTOR (stex), output_scale, output_scale);
|
|
|
|
}
|
|
|
|
|
2014-02-26 20:21:51 -05:00
|
|
|
static MetaWindow *
|
|
|
|
meta_surface_actor_wayland_get_window (MetaSurfaceActor *actor)
|
|
|
|
{
|
|
|
|
MetaSurfaceActorWaylandPrivate *priv = meta_surface_actor_wayland_get_instance_private (META_SURFACE_ACTOR_WAYLAND (actor));
|
|
|
|
|
|
|
|
return priv->surface->window;
|
|
|
|
}
|
|
|
|
|
2014-04-26 06:55:54 -04:00
|
|
|
static void
|
|
|
|
meta_surface_actor_wayland_get_preferred_width (ClutterActor *self,
|
|
|
|
gfloat for_height,
|
|
|
|
gfloat *min_width_p,
|
|
|
|
gfloat *natural_width_p)
|
|
|
|
{
|
|
|
|
MetaShapedTexture *stex = meta_surface_actor_get_texture (META_SURFACE_ACTOR (self));
|
|
|
|
double scale = meta_surface_actor_wayland_get_scale (META_SURFACE_ACTOR_WAYLAND (self));
|
|
|
|
|
|
|
|
clutter_actor_get_preferred_width (CLUTTER_ACTOR (stex), for_height, min_width_p, natural_width_p);
|
|
|
|
|
|
|
|
if (min_width_p)
|
|
|
|
*min_width_p *= scale;
|
|
|
|
|
|
|
|
if (natural_width_p)
|
|
|
|
*natural_width_p *= scale;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
meta_surface_actor_wayland_get_preferred_height (ClutterActor *self,
|
|
|
|
gfloat for_width,
|
|
|
|
gfloat *min_height_p,
|
|
|
|
gfloat *natural_height_p)
|
|
|
|
{
|
|
|
|
MetaShapedTexture *stex = meta_surface_actor_get_texture (META_SURFACE_ACTOR (self));
|
|
|
|
double scale = meta_surface_actor_wayland_get_scale (META_SURFACE_ACTOR_WAYLAND (self));
|
|
|
|
|
|
|
|
clutter_actor_get_preferred_height (CLUTTER_ACTOR (stex), for_width, min_height_p, natural_height_p);
|
|
|
|
|
|
|
|
if (min_height_p)
|
|
|
|
*min_height_p *= scale;
|
|
|
|
|
|
|
|
if (natural_height_p)
|
|
|
|
*natural_height_p *= scale;
|
|
|
|
}
|
|
|
|
|
2014-03-25 11:59:52 -04:00
|
|
|
static void
|
|
|
|
meta_surface_actor_wayland_dispose (GObject *object)
|
|
|
|
{
|
|
|
|
MetaSurfaceActorWayland *self = META_SURFACE_ACTOR_WAYLAND (object);
|
|
|
|
|
|
|
|
meta_surface_actor_wayland_set_buffer (self, NULL);
|
|
|
|
|
|
|
|
G_OBJECT_CLASS (meta_surface_actor_wayland_parent_class)->dispose (object);
|
|
|
|
}
|
|
|
|
|
window-actor: Split into two subclasses of MetaSurfaceActor
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
|
|
|
static void
|
|
|
|
meta_surface_actor_wayland_class_init (MetaSurfaceActorWaylandClass *klass)
|
|
|
|
{
|
|
|
|
MetaSurfaceActorClass *surface_actor_class = META_SURFACE_ACTOR_CLASS (klass);
|
2014-04-26 06:55:54 -04:00
|
|
|
ClutterActorClass *actor_class = CLUTTER_ACTOR_CLASS (klass);
|
2014-03-25 11:59:52 -04:00
|
|
|
GObjectClass *object_class = G_OBJECT_CLASS (klass);
|
window-actor: Split into two subclasses of MetaSurfaceActor
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
|
|
|
|
2014-04-26 06:55:54 -04:00
|
|
|
actor_class->get_preferred_width = meta_surface_actor_wayland_get_preferred_width;
|
|
|
|
actor_class->get_preferred_height = meta_surface_actor_wayland_get_preferred_height;
|
|
|
|
|
window-actor: Split into two subclasses of MetaSurfaceActor
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
|
|
|
surface_actor_class->process_damage = meta_surface_actor_wayland_process_damage;
|
|
|
|
surface_actor_class->pre_paint = meta_surface_actor_wayland_pre_paint;
|
|
|
|
surface_actor_class->is_visible = meta_surface_actor_wayland_is_visible;
|
|
|
|
|
|
|
|
surface_actor_class->should_unredirect = meta_surface_actor_wayland_should_unredirect;
|
|
|
|
surface_actor_class->set_unredirected = meta_surface_actor_wayland_set_unredirected;
|
|
|
|
surface_actor_class->is_unredirected = meta_surface_actor_wayland_is_unredirected;
|
2014-02-26 20:21:51 -05:00
|
|
|
|
|
|
|
surface_actor_class->get_window = meta_surface_actor_wayland_get_window;
|
2014-03-25 11:59:52 -04:00
|
|
|
|
|
|
|
object_class->dispose = meta_surface_actor_wayland_dispose;
|
window-actor: Split into two subclasses of MetaSurfaceActor
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
meta_surface_actor_wayland_init (MetaSurfaceActorWayland *self)
|
|
|
|
{
|
wayland: Kill the buffer destroy error
Previously, a sequence like this would crash a client:
=> surface.attach(buffer)
=> buffer.destroy()
The correct behavior is to wait until we release the buffer before
destroying it.
=> surface.attach(buffer)
=> surface.attach(buffer2)
<= buffer.release()
=> buffer.destroy()
The protocol upstream says that "the surface contents are undefined"
in a case like this. Personally, I think that this is broken behavior
and no client should ever do it, so I explicitly killed any client
that tried to do this.
But unfortunately, as we're all well aware, XWayland does this.
Rather than wait for XWayland to be fixed, let's just allow this.
Technically, since we always copy SHM buffers into GL textures, we
could release the buffer as soon as the Cogl texture is made.
Since we do this copy, the semantics we apply are that the texture is
"frozen" in time until another newer buffer is attached. For simple
clients that simply abort on exit and don't wait for the buffer event
anyhow, this has the added bonus that we'll get nice destroy animations.
2014-03-20 13:20:47 -04:00
|
|
|
MetaSurfaceActorWaylandPrivate *priv = meta_surface_actor_wayland_get_instance_private (self);
|
|
|
|
|
|
|
|
priv->buffer_destroy_listener.notify = meta_surface_actor_handle_buffer_destroy;
|
window-actor: Split into two subclasses of MetaSurfaceActor
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
MetaSurfaceActor *
|
|
|
|
meta_surface_actor_wayland_new (MetaWaylandSurface *surface)
|
|
|
|
{
|
|
|
|
MetaSurfaceActorWayland *self = g_object_new (META_TYPE_SURFACE_ACTOR_WAYLAND, NULL);
|
|
|
|
MetaSurfaceActorWaylandPrivate *priv = meta_surface_actor_wayland_get_instance_private (self);
|
|
|
|
|
|
|
|
g_assert (meta_is_wayland_compositor ());
|
|
|
|
|
|
|
|
priv->surface = surface;
|
|
|
|
|
|
|
|
return META_SURFACE_ACTOR (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
meta_surface_actor_wayland_set_buffer (MetaSurfaceActorWayland *self,
|
|
|
|
MetaWaylandBuffer *buffer)
|
|
|
|
{
|
|
|
|
MetaSurfaceActorWaylandPrivate *priv = meta_surface_actor_wayland_get_instance_private (self);
|
|
|
|
MetaShapedTexture *stex = meta_surface_actor_get_texture (META_SURFACE_ACTOR (self));
|
|
|
|
|
wayland: Kill the buffer destroy error
Previously, a sequence like this would crash a client:
=> surface.attach(buffer)
=> buffer.destroy()
The correct behavior is to wait until we release the buffer before
destroying it.
=> surface.attach(buffer)
=> surface.attach(buffer2)
<= buffer.release()
=> buffer.destroy()
The protocol upstream says that "the surface contents are undefined"
in a case like this. Personally, I think that this is broken behavior
and no client should ever do it, so I explicitly killed any client
that tried to do this.
But unfortunately, as we're all well aware, XWayland does this.
Rather than wait for XWayland to be fixed, let's just allow this.
Technically, since we always copy SHM buffers into GL textures, we
could release the buffer as soon as the Cogl texture is made.
Since we do this copy, the semantics we apply are that the texture is
"frozen" in time until another newer buffer is attached. For simple
clients that simply abort on exit and don't wait for the buffer event
anyhow, this has the added bonus that we'll get nice destroy animations.
2014-03-20 13:20:47 -04:00
|
|
|
if (priv->buffer)
|
|
|
|
wl_list_remove (&priv->buffer_destroy_listener.link);
|
|
|
|
|
window-actor: Split into two subclasses of MetaSurfaceActor
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
|
|
|
priv->buffer = buffer;
|
|
|
|
|
wayland: Kill the buffer destroy error
Previously, a sequence like this would crash a client:
=> surface.attach(buffer)
=> buffer.destroy()
The correct behavior is to wait until we release the buffer before
destroying it.
=> surface.attach(buffer)
=> surface.attach(buffer2)
<= buffer.release()
=> buffer.destroy()
The protocol upstream says that "the surface contents are undefined"
in a case like this. Personally, I think that this is broken behavior
and no client should ever do it, so I explicitly killed any client
that tried to do this.
But unfortunately, as we're all well aware, XWayland does this.
Rather than wait for XWayland to be fixed, let's just allow this.
Technically, since we always copy SHM buffers into GL textures, we
could release the buffer as soon as the Cogl texture is made.
Since we do this copy, the semantics we apply are that the texture is
"frozen" in time until another newer buffer is attached. For simple
clients that simply abort on exit and don't wait for the buffer event
anyhow, this has the added bonus that we'll get nice destroy animations.
2014-03-20 13:20:47 -04:00
|
|
|
if (priv->buffer)
|
|
|
|
{
|
|
|
|
wl_signal_add (&priv->buffer->destroy_signal, &priv->buffer_destroy_listener);
|
|
|
|
meta_shaped_texture_set_texture (stex, priv->buffer->texture);
|
|
|
|
}
|
window-actor: Split into two subclasses of MetaSurfaceActor
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
|
|
|
else
|
|
|
|
meta_shaped_texture_set_texture (stex, NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
MetaWaylandSurface *
|
|
|
|
meta_surface_actor_wayland_get_surface (MetaSurfaceActorWayland *self)
|
|
|
|
{
|
|
|
|
MetaSurfaceActorWaylandPrivate *priv = meta_surface_actor_wayland_get_instance_private (self);
|
|
|
|
return priv->surface;
|
|
|
|
}
|