2010-03-03 12:02:51 -05:00
/* stbi-1.18 - public domain JPEG/PNG reader - http://nothings.org/stb_image.c
2010-01-05 13:02:29 -05:00
when you control the images you ' re loading
QUICK NOTES :
Primarily of interest to game developers and other people who can
avoid problematic images and only need the trivial interface
JPEG baseline ( no JPEG progressive , no oddball channel decimations )
2010-03-03 12:02:51 -05:00
PNG 8 - bit only
2010-01-05 13:02:29 -05:00
BMP non - 1 bpp , non - RLE
TGA ( not sure what subset , if a subset )
PSD ( composited view only , no extra channels )
HDR ( radiance rgbE format )
writes BMP , TGA ( define STBI_NO_WRITE to remove code )
decoded from memory or through stdio FILE ( define STBI_NO_STDIO to remove code )
supports installable dequantizing - IDCT , YCbCr - to - RGB conversion ( define STBI_SIMD )
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
2010-01-05 13:02:29 -05:00
TODO :
stbi_info_ *
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
2010-01-05 13:02:29 -05:00
history :
2010-03-03 12:02:51 -05:00
1.18 fix a threading bug ( local mutable static )
1.17 support interlaced PNG
1.16 major bugfix - convert_format converted one too many pixels
1.15 initialize some fields for thread safety
1.14 fix threadsafe conversion bug ; header - file - only version ( # define STBI_HEADER_FILE_ONLY before including )
1.13 threadsafe
2010-01-05 13:02:29 -05:00
1.12 const qualifiers in the API
1.11 Support installable IDCT , colorspace conversion routines
1.10 Fixes for 64 - bit ( don ' t use " unsigned long " )
optimized upsampling by Fabian " ryg " Giesen
1.09 Fix format - conversion for PSD code ( bad global variables ! )
1.08 Thatcher Ulrich ' s PSD code integrated by Nicolas Schulz
1.07 attempt to fix C + + warning / errors again
1.06 attempt to fix C + + warning / errors again
1.05 fix TGA loading to return correct * comp and use good luminance calc
1.04 default float alpha is 1 , not 255 ; use ' void * ' for stbi_image_free
1.03 bugfixes to STBI_NO_STDIO , STBI_NO_HDR
1.02 support for ( subset of ) HDR files , float interface for preferred access to them
1.01 fix bug : possible bug in handling right - side up bmps . . . not sure
fix bug : the stbi_bmp_load ( ) and stbi_tga_load ( ) functions didn ' t work at all
1.00 interface to zlib that skips zlib header
0.99 correct handling of alpha in palette
0.98 TGA loader by lonesock ; dynamically add loaders ( untested )
0.97 jpeg errors on too large a file ; also catch another malloc failure
0.96 fix detection of invalid v value - particleman @ mollyrocket forum
0.95 during header scan , seek to markers in case of padding
0.94 STBI_NO_STDIO to disable stdio usage ; rename all # defines the same
0.93 handle jpegtran output ; verbose errors
0.92 read 4 , 8 , 16 , 24 , 32 - bit BMP files of several formats
0.91 output 24 - bit Windows 3.0 BMP files
0.90 fix a few more warnings ; bump version number to approach 1.0
0.61 bugfixes due to Marc LeBlanc , Christopher Lloyd
0.60 fix compiling as c + +
0.59 fix warnings : merge Dave Moore ' s - Wall fixes
0.58 fix bug : zlib uncompressed mode len / nlen was wrong endian
0.57 fix bug : jpg last huffman symbol before marker was > 9 bits but less
than 16 available
0.56 fix bug : zlib uncompressed mode len vs . nlen
0.55 fix bug : restart_interval not initialized to 0
0.54 allow NULL for ' int * comp '
0.53 fix bug in png 3 - > 4 ; speedup png decoding
0.52 png handles req_comp = 3 , 4 directly ; minor cleanup ; jpeg comments
0.51 obey req_comp requests , 1 - component jpegs return as 1 - component ,
on ' test ' only check type , not whether we support this variant
*/
2011-08-04 10:09:17 -04:00
# include <glib.h>
2010-01-05 13:02:29 -05:00
2010-03-03 12:02:51 -05:00
# ifndef STBI_INCLUDE_STB_IMAGE_H
# define STBI_INCLUDE_STB_IMAGE_H
2010-01-05 13:02:29 -05:00
//// begin header file ////////////////////////////////////////////////////
//
// Limitations:
// - no progressive/interlaced support (jpeg, png)
// - 8-bit samples only (jpeg, png)
// - not threadsafe
// - channel subsampling of at most 2 in each dimension (jpeg)
// - no delayed line count (jpeg) -- IJG doesn't support either
//
// Basic usage (see HDR discussion below):
// int x,y,n;
// unsigned char *data = stbi_load(filename, &x, &y, &n, 0);
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
// // ... process data if not NULL ...
2010-01-05 13:02:29 -05:00
// // ... x = width, y = height, n = # 8-bit components per pixel ...
// // ... replace '0' with '1'..'4' to force that many components per pixel
// stbi_image_free(data)
//
// Standard parameters:
// int *x -- outputs image width in pixels
// int *y -- outputs image height in pixels
// int *comp -- outputs # of image components in image file
// int req_comp -- if non-zero, # of image components requested in result
//
// The return value from an image loader is an 'unsigned char *' which points
// to the pixel data. The pixel data consists of *y scanlines of *x pixels,
// with each pixel consisting of N interleaved 8-bit components; the first
// pixel pointed to is top-left-most in the image. There is no padding between
// image scanlines or between pixels, regardless of format. The number of
// components N is 'req_comp' if req_comp is non-zero, or *comp otherwise.
// If req_comp is non-zero, *comp has the number of components that _would_
// have been output otherwise. E.g. if you set req_comp to 4, you will always
// get RGBA output, but you can check *comp to easily see if it's opaque.
//
// An output image with N components has the following components interleaved
// in this order in each pixel:
//
// N=#comp components
// 1 grey
// 2 grey, alpha
// 3 red, green, blue
// 4 red, green, blue, alpha
//
// If image loading fails for any reason, the return value will be NULL,
// and *x, *y, *comp will be unchanged. The function stbi_failure_reason()
// can be queried for an extremely brief, end-user unfriendly explanation
// of why the load failed. Define STBI_NO_FAILURE_STRINGS to avoid
// compiling these strings at all, and STBI_FAILURE_USERMSG to get slightly
// more user-friendly ones.
//
// Paletted PNG and BMP images are automatically depalettized.
//
//
// ===========================================================================
//
// HDR image support (disable by defining STBI_NO_HDR)
//
// stb_image now supports loading HDR images in general, and currently
// the Radiance .HDR file format, although the support is provided
// generically. You can still load any file through the existing interface;
// if you attempt to load an HDR file, it will be automatically remapped to
// LDR, assuming gamma 2.2 and an arbitrary scale factor defaulting to 1;
// both of these constants can be reconfigured through this interface:
//
// stbi_hdr_to_ldr_gamma(2.2f);
// stbi_hdr_to_ldr_scale(1.0f);
//
// (note, do not use _inverse_ constants; stbi_image will invert them
// appropriately).
//
// Additionally, there is a new, parallel interface for loading files as
// (linear) floats to preserve the full dynamic range:
//
// float *data = stbi_loadf(filename, &x, &y, &n, 0);
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
//
2010-01-05 13:02:29 -05:00
// If you load LDR images through this interface, those images will
// be promoted to floating point values, run through the inverse of
// constants corresponding to the above:
//
// stbi_ldr_to_hdr_scale(1.0f);
// stbi_ldr_to_hdr_gamma(2.2f);
//
// Finally, given a filename (or an open file or memory block--see header
// file for details) containing image data, you can query for the "most
// appropriate" interface to use (that is, whether the image is HDR or
// not), using:
//
// stbi_is_hdr(char *filename);
# ifndef STBI_NO_STDIO
# include <stdio.h>
# endif
2010-03-03 12:02:51 -05:00
# define STBI_VERSION 1
2010-01-05 13:02:29 -05:00
enum
{
STBI_default = 0 , // only used for req_comp
STBI_grey = 1 ,
STBI_grey_alpha = 2 ,
STBI_rgb = 3 ,
STBI_rgb_alpha = 4 ,
} ;
typedef unsigned char stbi_uc ;
# ifdef __cplusplus
extern " C " {
# endif
// WRITING API
# if !defined(STBI_NO_WRITE) && !defined(STBI_NO_STDIO)
// write a BMP/TGA file given tightly packed 'comp' channels (no padding, nor bmp-stride-padding)
// (you must include the appropriate extension in the filename).
// returns TRUE on success, FALSE if couldn't open file, error writing file
extern int stbi_write_bmp ( char const * filename , int x , int y , int comp , void * data ) ;
extern int stbi_write_tga ( char const * filename , int x , int y , int comp , void * data ) ;
# endif
// PRIMARY API - works on images of any type
// load image by filename, open file, or memory buffer
# ifndef STBI_NO_STDIO
extern stbi_uc * stbi_load ( char const * filename , int * x , int * y , int * comp , int req_comp ) ;
extern stbi_uc * stbi_load_from_file ( FILE * f , int * x , int * y , int * comp , int req_comp ) ;
extern int stbi_info_from_file ( FILE * f , int * x , int * y , int * comp ) ;
# endif
extern stbi_uc * stbi_load_from_memory ( stbi_uc const * buffer , int len , int * x , int * y , int * comp , int req_comp ) ;
// for stbi_load_from_file, file pointer is left pointing immediately after image
# ifndef STBI_NO_HDR
# ifndef STBI_NO_STDIO
extern float * stbi_loadf ( char const * filename , int * x , int * y , int * comp , int req_comp ) ;
extern float * stbi_loadf_from_file ( FILE * f , int * x , int * y , int * comp , int req_comp ) ;
# endif
extern float * stbi_loadf_from_memory ( stbi_uc const * buffer , int len , int * x , int * y , int * comp , int req_comp ) ;
extern void stbi_hdr_to_ldr_gamma ( float gamma ) ;
extern void stbi_hdr_to_ldr_scale ( float scale ) ;
extern void stbi_ldr_to_hdr_gamma ( float gamma ) ;
extern void stbi_ldr_to_hdr_scale ( float scale ) ;
# endif // STBI_NO_HDR
// get a VERY brief reason for failure
2010-03-03 12:02:51 -05:00
// NOT THREADSAFE
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
extern char * stbi_failure_reason ( void ) ;
2010-01-05 13:02:29 -05:00
// free the loaded image -- this is just free()
extern void stbi_image_free ( void * retval_from_stbi_load ) ;
// get image dimensions & components without fully decoding
extern int stbi_info_from_memory ( stbi_uc const * buffer , int len , int * x , int * y , int * comp ) ;
extern int stbi_is_hdr_from_memory ( stbi_uc const * buffer , int len ) ;
# ifndef STBI_NO_STDIO
extern int stbi_info ( char const * filename , int * x , int * y , int * comp ) ;
extern int stbi_is_hdr ( char const * filename ) ;
extern int stbi_is_hdr_from_file ( FILE * f ) ;
# endif
// ZLIB client - used by PNG, available for other purposes
2010-03-03 12:02:51 -05:00
extern char * stbi_zlib_decode_malloc_guesssize ( const char * buffer , int len , int initial_size , int * outlen ) ;
2010-01-05 13:02:29 -05:00
extern char * stbi_zlib_decode_malloc ( const char * buffer , int len , int * outlen ) ;
extern int stbi_zlib_decode_buffer ( char * obuffer , int olen , const char * ibuffer , int ilen ) ;
extern char * stbi_zlib_decode_noheader_malloc ( const char * buffer , int len , int * outlen ) ;
extern int stbi_zlib_decode_noheader_buffer ( char * obuffer , int olen , const char * ibuffer , int ilen ) ;
// TYPE-SPECIFIC ACCESS
// is it a jpeg?
extern int stbi_jpeg_test_memory ( stbi_uc const * buffer , int len ) ;
extern stbi_uc * stbi_jpeg_load_from_memory ( stbi_uc const * buffer , int len , int * x , int * y , int * comp , int req_comp ) ;
extern int stbi_jpeg_info_from_memory ( stbi_uc const * buffer , int len , int * x , int * y , int * comp ) ;
# ifndef STBI_NO_STDIO
extern stbi_uc * stbi_jpeg_load ( char const * filename , int * x , int * y , int * comp , int req_comp ) ;
extern int stbi_jpeg_test_file ( FILE * f ) ;
extern stbi_uc * stbi_jpeg_load_from_file ( FILE * f , int * x , int * y , int * comp , int req_comp ) ;
extern int stbi_jpeg_info ( char const * filename , int * x , int * y , int * comp ) ;
extern int stbi_jpeg_info_from_file ( FILE * f , int * x , int * y , int * comp ) ;
# endif
// is it a png?
extern int stbi_png_test_memory ( stbi_uc const * buffer , int len ) ;
extern stbi_uc * stbi_png_load_from_memory ( stbi_uc const * buffer , int len , int * x , int * y , int * comp , int req_comp ) ;
extern int stbi_png_info_from_memory ( stbi_uc const * buffer , int len , int * x , int * y , int * comp ) ;
# ifndef STBI_NO_STDIO
extern stbi_uc * stbi_png_load ( char const * filename , int * x , int * y , int * comp , int req_comp ) ;
extern int stbi_png_info ( char const * filename , int * x , int * y , int * comp ) ;
extern int stbi_png_test_file ( FILE * f ) ;
extern stbi_uc * stbi_png_load_from_file ( FILE * f , int * x , int * y , int * comp , int req_comp ) ;
extern int stbi_png_info_from_file ( FILE * f , int * x , int * y , int * comp ) ;
# endif
// is it a bmp?
extern int stbi_bmp_test_memory ( stbi_uc const * buffer , int len ) ;
extern stbi_uc * stbi_bmp_load ( char const * filename , int * x , int * y , int * comp , int req_comp ) ;
extern stbi_uc * stbi_bmp_load_from_memory ( stbi_uc const * buffer , int len , int * x , int * y , int * comp , int req_comp ) ;
# ifndef STBI_NO_STDIO
extern int stbi_bmp_test_file ( FILE * f ) ;
extern stbi_uc * stbi_bmp_load_from_file ( FILE * f , int * x , int * y , int * comp , int req_comp ) ;
# endif
// is it a tga?
extern int stbi_tga_test_memory ( stbi_uc const * buffer , int len ) ;
extern stbi_uc * stbi_tga_load ( char const * filename , int * x , int * y , int * comp , int req_comp ) ;
extern stbi_uc * stbi_tga_load_from_memory ( stbi_uc const * buffer , int len , int * x , int * y , int * comp , int req_comp ) ;
# ifndef STBI_NO_STDIO
extern int stbi_tga_test_file ( FILE * f ) ;
extern stbi_uc * stbi_tga_load_from_file ( FILE * f , int * x , int * y , int * comp , int req_comp ) ;
# endif
// is it a psd?
extern int stbi_psd_test_memory ( stbi_uc const * buffer , int len ) ;
extern stbi_uc * stbi_psd_load ( char const * filename , int * x , int * y , int * comp , int req_comp ) ;
extern stbi_uc * stbi_psd_load_from_memory ( stbi_uc const * buffer , int len , int * x , int * y , int * comp , int req_comp ) ;
# ifndef STBI_NO_STDIO
extern int stbi_psd_test_file ( FILE * f ) ;
extern stbi_uc * stbi_psd_load_from_file ( FILE * f , int * x , int * y , int * comp , int req_comp ) ;
# endif
// is it an hdr?
extern int stbi_hdr_test_memory ( stbi_uc const * buffer , int len ) ;
extern float * stbi_hdr_load ( char const * filename , int * x , int * y , int * comp , int req_comp ) ;
extern float * stbi_hdr_load_from_memory ( stbi_uc const * buffer , int len , int * x , int * y , int * comp , int req_comp ) ;
# ifndef STBI_NO_STDIO
extern int stbi_hdr_test_file ( FILE * f ) ;
extern float * stbi_hdr_load_from_file ( FILE * f , int * x , int * y , int * comp , int req_comp ) ;
# endif
// define new loaders
typedef struct
{
int ( * test_memory ) ( stbi_uc const * buffer , int len ) ;
stbi_uc * ( * load_from_memory ) ( stbi_uc const * buffer , int len , int * x , int * y , int * comp , int req_comp ) ;
# ifndef STBI_NO_STDIO
int ( * test_file ) ( FILE * f ) ;
stbi_uc * ( * load_from_file ) ( FILE * f , int * x , int * y , int * comp , int req_comp ) ;
# endif
} stbi_loader ;
// register a loader by filling out the above structure (you must defined ALL functions)
// returns 1 if added or already added, 0 if not added (too many loaders)
2010-03-03 12:02:51 -05:00
// NOT THREADSAFE
2010-01-05 13:02:29 -05:00
extern int stbi_register_loader ( stbi_loader * loader ) ;
// define faster low-level operations (typically SIMD support)
# if STBI_SIMD
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
typedef void ( * stbi_idct_8x8 ) ( uint8_t * out , int out_stride , short data [ 64 ] , unsigned short * dequantize ) ;
2010-01-05 13:02:29 -05:00
// compute an integer IDCT on "input"
// input[x] = data[x] * dequantize[x]
// write results to 'out': 64 samples, each run of 8 spaced by 'out_stride'
// CLAMP results to 0..255
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
typedef void ( * stbi_YCbCr_to_RGB_run ) ( uint8_t * output , uint8_t const * y , uint8_t const * cb , uint8_t const * cr , int count , int step ) ;
2010-01-05 13:02:29 -05:00
// compute a conversion from YCbCr to RGB
// 'count' pixels
// write pixels to 'output'; each pixel is 'step' bytes (either 3 or 4; if 4, write '255' as 4th), order R,G,B
// y: Y input channel
// cb: Cb input channel; scale/biased to be 0..255
// cr: Cr input channel; scale/biased to be 0..255
extern void stbi_install_idct ( stbi_idct_8x8 func ) ;
extern void stbi_install_YCbCr_to_RGB ( stbi_YCbCr_to_RGB_run func ) ;
# endif // STBI_SIMD
# ifdef __cplusplus
}
# endif
//
//
//// end header file /////////////////////////////////////////////////////
2010-03-03 12:02:51 -05:00
# endif // STBI_INCLUDE_STB_IMAGE_H
# ifndef STBI_HEADER_FILE_ONLY
# ifndef STBI_NO_HDR
# include <math.h> // ldexp
# include <string.h> // strcmp
# endif
2010-01-05 13:02:29 -05:00
# ifndef STBI_NO_STDIO
# include <stdio.h>
# endif
# include <stdlib.h>
# include <memory.h>
# include <assert.h>
# include <stdarg.h>
# ifndef _MSC_VER
2010-03-03 12:02:51 -05:00
# ifdef __cplusplus
# define __forceinline inline
# else
# define __forceinline
# endif
2010-01-05 13:02:29 -05:00
# endif
// should produce compiler error if size is wrong
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
typedef unsigned char validate_uint32_t [ sizeof ( uint32_t ) = = 4 ] ;
2010-01-05 13:02:29 -05:00
# if defined(STBI_NO_STDIO) && !defined(STBI_NO_WRITE)
# define STBI_NO_WRITE
# endif
//////////////////////////////////////////////////////////////////////////////
//
// Generic API that works on all image types
//
2010-03-03 12:02:51 -05:00
// this is not threadsafe
2010-01-05 13:02:29 -05:00
static char * failure_reason ;
char * stbi_failure_reason ( void )
{
return failure_reason ;
}
static int e ( char * str )
{
failure_reason = str ;
return 0 ;
}
# ifdef STBI_NO_FAILURE_STRINGS
# define e(x,y) 0
# elif defined(STBI_FAILURE_USERMSG)
# define e(x,y) e(y)
# else
# define e(x,y) e(x)
# endif
# define epf(x,y) ((float *) (e(x,y)?NULL:NULL))
# define epuc(x,y) ((unsigned char *) (e(x,y)?NULL:NULL))
void stbi_image_free ( void * retval_from_stbi_load )
{
free ( retval_from_stbi_load ) ;
}
# define MAX_LOADERS 32
stbi_loader * loaders [ MAX_LOADERS ] ;
static int max_loaders = 0 ;
int stbi_register_loader ( stbi_loader * loader )
{
int i ;
for ( i = 0 ; i < MAX_LOADERS ; + + i ) {
// already present?
if ( loaders [ i ] = = loader )
return 1 ;
// end of the list?
if ( loaders [ i ] = = NULL ) {
loaders [ i ] = loader ;
max_loaders = i + 1 ;
return 1 ;
}
}
// no room for it
return 0 ;
}
# ifndef STBI_NO_HDR
static float * ldr_to_hdr ( stbi_uc * data , int x , int y , int comp ) ;
static stbi_uc * hdr_to_ldr ( float * data , int x , int y , int comp ) ;
# endif
# ifndef STBI_NO_STDIO
unsigned char * stbi_load ( char const * filename , int * x , int * y , int * comp , int req_comp )
{
FILE * f = fopen ( filename , " rb " ) ;
unsigned char * result ;
if ( ! f ) return epuc ( " can't fopen " , " Unable to open file " ) ;
result = stbi_load_from_file ( f , x , y , comp , req_comp ) ;
fclose ( f ) ;
return result ;
}
unsigned char * stbi_load_from_file ( FILE * f , int * x , int * y , int * comp , int req_comp )
{
int i ;
if ( stbi_jpeg_test_file ( f ) )
return stbi_jpeg_load_from_file ( f , x , y , comp , req_comp ) ;
if ( stbi_png_test_file ( f ) )
return stbi_png_load_from_file ( f , x , y , comp , req_comp ) ;
if ( stbi_bmp_test_file ( f ) )
return stbi_bmp_load_from_file ( f , x , y , comp , req_comp ) ;
if ( stbi_psd_test_file ( f ) )
return stbi_psd_load_from_file ( f , x , y , comp , req_comp ) ;
# ifndef STBI_NO_HDR
if ( stbi_hdr_test_file ( f ) ) {
float * hdr = stbi_hdr_load_from_file ( f , x , y , comp , req_comp ) ;
return hdr_to_ldr ( hdr , * x , * y , req_comp ? req_comp : * comp ) ;
}
# endif
for ( i = 0 ; i < max_loaders ; + + i )
if ( loaders [ i ] - > test_file ( f ) )
return loaders [ i ] - > load_from_file ( f , x , y , comp , req_comp ) ;
// test tga last because it's a crappy test!
if ( stbi_tga_test_file ( f ) )
return stbi_tga_load_from_file ( f , x , y , comp , req_comp ) ;
return epuc ( " unknown image type " , " Image not of any known type, or corrupt " ) ;
}
# endif
unsigned char * stbi_load_from_memory ( stbi_uc const * buffer , int len , int * x , int * y , int * comp , int req_comp )
{
int i ;
if ( stbi_jpeg_test_memory ( buffer , len ) )
return stbi_jpeg_load_from_memory ( buffer , len , x , y , comp , req_comp ) ;
if ( stbi_png_test_memory ( buffer , len ) )
return stbi_png_load_from_memory ( buffer , len , x , y , comp , req_comp ) ;
if ( stbi_bmp_test_memory ( buffer , len ) )
return stbi_bmp_load_from_memory ( buffer , len , x , y , comp , req_comp ) ;
if ( stbi_psd_test_memory ( buffer , len ) )
return stbi_psd_load_from_memory ( buffer , len , x , y , comp , req_comp ) ;
# ifndef STBI_NO_HDR
if ( stbi_hdr_test_memory ( buffer , len ) ) {
float * hdr = stbi_hdr_load_from_memory ( buffer , len , x , y , comp , req_comp ) ;
return hdr_to_ldr ( hdr , * x , * y , req_comp ? req_comp : * comp ) ;
}
# endif
for ( i = 0 ; i < max_loaders ; + + i )
if ( loaders [ i ] - > test_memory ( buffer , len ) )
return loaders [ i ] - > load_from_memory ( buffer , len , x , y , comp , req_comp ) ;
// test tga last because it's a crappy test!
if ( stbi_tga_test_memory ( buffer , len ) )
return stbi_tga_load_from_memory ( buffer , len , x , y , comp , req_comp ) ;
return epuc ( " unknown image type " , " Image not of any known type, or corrupt " ) ;
}
# ifndef STBI_NO_HDR
# ifndef STBI_NO_STDIO
float * stbi_loadf ( char const * filename , int * x , int * y , int * comp , int req_comp )
{
FILE * f = fopen ( filename , " rb " ) ;
float * result ;
if ( ! f ) return epf ( " can't fopen " , " Unable to open file " ) ;
result = stbi_loadf_from_file ( f , x , y , comp , req_comp ) ;
fclose ( f ) ;
return result ;
}
float * stbi_loadf_from_file ( FILE * f , int * x , int * y , int * comp , int req_comp )
{
unsigned char * data ;
# ifndef STBI_NO_HDR
if ( stbi_hdr_test_file ( f ) )
return stbi_hdr_load_from_file ( f , x , y , comp , req_comp ) ;
# endif
data = stbi_load_from_file ( f , x , y , comp , req_comp ) ;
if ( data )
return ldr_to_hdr ( data , * x , * y , req_comp ? req_comp : * comp ) ;
return epf ( " unknown image type " , " Image not of any known type, or corrupt " ) ;
}
# endif
float * stbi_loadf_from_memory ( stbi_uc const * buffer , int len , int * x , int * y , int * comp , int req_comp )
{
stbi_uc * data ;
# ifndef STBI_NO_HDR
if ( stbi_hdr_test_memory ( buffer , len ) )
return stbi_hdr_load_from_memory ( buffer , len , x , y , comp , req_comp ) ;
# endif
data = stbi_load_from_memory ( buffer , len , x , y , comp , req_comp ) ;
if ( data )
return ldr_to_hdr ( data , * x , * y , req_comp ? req_comp : * comp ) ;
return epf ( " unknown image type " , " Image not of any known type, or corrupt " ) ;
}
# endif
// these is-hdr-or-not is defined independent of whether STBI_NO_HDR is
// defined, for API simplicity; if STBI_NO_HDR is defined, it always
// reports false!
2010-03-03 12:02:51 -05:00
int stbi_is_hdr_from_memory ( stbi_uc const * buffer , int len )
2010-01-05 13:02:29 -05:00
{
# ifndef STBI_NO_HDR
return stbi_hdr_test_memory ( buffer , len ) ;
# else
return 0 ;
# endif
}
# ifndef STBI_NO_STDIO
extern int stbi_is_hdr ( char const * filename )
{
FILE * f = fopen ( filename , " rb " ) ;
int result = 0 ;
if ( f ) {
result = stbi_is_hdr_from_file ( f ) ;
fclose ( f ) ;
}
return result ;
}
extern int stbi_is_hdr_from_file ( FILE * f )
{
# ifndef STBI_NO_HDR
return stbi_hdr_test_file ( f ) ;
# else
return 0 ;
# endif
}
# endif
// @TODO: get image dimensions & components without fully decoding
# ifndef STBI_NO_STDIO
extern int stbi_info ( char const * filename , int * x , int * y , int * comp ) ;
extern int stbi_info_from_file ( FILE * f , int * x , int * y , int * comp ) ;
# endif
extern int stbi_info_from_memory ( stbi_uc const * buffer , int len , int * x , int * y , int * comp ) ;
# ifndef STBI_NO_HDR
static float h2l_gamma_i = 1.0f / 2.2f , h2l_scale_i = 1.0f ;
static float l2h_gamma = 2.2f , l2h_scale = 1.0f ;
void stbi_hdr_to_ldr_gamma ( float gamma ) { h2l_gamma_i = 1 / gamma ; }
void stbi_hdr_to_ldr_scale ( float scale ) { h2l_scale_i = 1 / scale ; }
void stbi_ldr_to_hdr_gamma ( float gamma ) { l2h_gamma = gamma ; }
void stbi_ldr_to_hdr_scale ( float scale ) { l2h_scale = scale ; }
# endif
//////////////////////////////////////////////////////////////////////////////
//
// Common code used by all image loaders
//
enum
{
SCAN_load = 0 ,
SCAN_type ,
SCAN_header ,
} ;
2010-03-03 12:02:51 -05:00
typedef struct
{
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint32_t img_x , img_y ;
2010-03-03 12:02:51 -05:00
int img_n , img_out_n ;
# ifndef STBI_NO_STDIO
FILE * img_file ;
# endif
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint8_t * img_buffer , * img_buffer_end ;
2010-03-03 12:02:51 -05:00
} stbi ;
2010-01-05 13:02:29 -05:00
# ifndef STBI_NO_STDIO
2010-03-03 12:02:51 -05:00
static void start_file ( stbi * s , FILE * f )
2010-01-05 13:02:29 -05:00
{
2010-03-03 12:02:51 -05:00
s - > img_file = f ;
2010-01-05 13:02:29 -05:00
}
# endif
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
static void start_mem ( stbi * s , uint8_t const * buffer , int len )
2010-01-05 13:02:29 -05:00
{
# ifndef STBI_NO_STDIO
2010-03-03 12:02:51 -05:00
s - > img_file = NULL ;
2010-01-05 13:02:29 -05:00
# endif
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
s - > img_buffer = ( uint8_t * ) buffer ;
s - > img_buffer_end = ( uint8_t * ) buffer + len ;
2010-01-05 13:02:29 -05:00
}
2010-03-03 12:02:51 -05:00
__forceinline static int get8 ( stbi * s )
2010-01-05 13:02:29 -05:00
{
# ifndef STBI_NO_STDIO
2010-03-03 12:02:51 -05:00
if ( s - > img_file ) {
int c = fgetc ( s - > img_file ) ;
2010-01-05 13:02:29 -05:00
return c = = EOF ? 0 : c ;
}
# endif
2010-03-03 12:02:51 -05:00
if ( s - > img_buffer < s - > img_buffer_end )
return * s - > img_buffer + + ;
2010-01-05 13:02:29 -05:00
return 0 ;
}
2010-03-03 12:02:51 -05:00
__forceinline static int at_eof ( stbi * s )
2010-01-05 13:02:29 -05:00
{
# ifndef STBI_NO_STDIO
2010-03-03 12:02:51 -05:00
if ( s - > img_file )
return feof ( s - > img_file ) ;
2010-01-05 13:02:29 -05:00
# endif
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
return s - > img_buffer > = s - > img_buffer_end ;
2010-01-05 13:02:29 -05:00
}
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
__forceinline static uint8_t get8u ( stbi * s )
2010-01-05 13:02:29 -05:00
{
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
return ( uint8_t ) get8 ( s ) ;
2010-01-05 13:02:29 -05:00
}
2010-03-03 12:02:51 -05:00
static void skip ( stbi * s , int n )
2010-01-05 13:02:29 -05:00
{
# ifndef STBI_NO_STDIO
2010-03-03 12:02:51 -05:00
if ( s - > img_file )
fseek ( s - > img_file , n , SEEK_CUR ) ;
2010-01-05 13:02:29 -05:00
else
# endif
2010-03-03 12:02:51 -05:00
s - > img_buffer + = n ;
2010-01-05 13:02:29 -05:00
}
2010-03-03 12:02:51 -05:00
static int get16 ( stbi * s )
2010-01-05 13:02:29 -05:00
{
2010-03-03 12:02:51 -05:00
int z = get8 ( s ) ;
return ( z < < 8 ) + get8 ( s ) ;
2010-01-05 13:02:29 -05:00
}
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
static uint32_t get32 ( stbi * s )
2010-01-05 13:02:29 -05:00
{
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint32_t z = get16 ( s ) ;
2010-03-03 12:02:51 -05:00
return ( z < < 16 ) + get16 ( s ) ;
2010-01-05 13:02:29 -05:00
}
2010-03-03 12:02:51 -05:00
static int get16le ( stbi * s )
2010-01-05 13:02:29 -05:00
{
2010-03-03 12:02:51 -05:00
int z = get8 ( s ) ;
return z + ( get8 ( s ) < < 8 ) ;
2010-01-05 13:02:29 -05:00
}
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
static uint32_t get32le ( stbi * s )
2010-01-05 13:02:29 -05:00
{
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint32_t z = get16le ( s ) ;
2010-03-03 12:02:51 -05:00
return z + ( get16le ( s ) < < 16 ) ;
2010-01-05 13:02:29 -05:00
}
2010-03-03 12:02:51 -05:00
static void getn ( stbi * s , stbi_uc * buffer , int n )
2010-01-05 13:02:29 -05:00
{
# ifndef STBI_NO_STDIO
2010-03-03 12:02:51 -05:00
if ( s - > img_file ) {
fread ( buffer , 1 , n , s - > img_file ) ;
2010-01-05 13:02:29 -05:00
return ;
}
# endif
2010-03-03 12:02:51 -05:00
memcpy ( buffer , s - > img_buffer , n ) ;
s - > img_buffer + = n ;
2010-01-05 13:02:29 -05:00
}
//////////////////////////////////////////////////////////////////////////////
//
// generic converter from built-in img_n to req_comp
// individual types do this automatically as much as possible (e.g. jpeg
// does all cases internally since it needs to colorspace convert anyway,
// and it never has alpha, so very few cases ). png can automatically
// interleave an alpha=255 channel, but falls back to this for other cases
//
// assume data buffer is malloced, so malloc a new one and free that one
// only failure mode is malloc failing
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
static uint8_t compute_y ( int r , int g , int b )
2010-01-05 13:02:29 -05:00
{
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
return ( uint8_t ) ( ( ( r * 77 ) + ( g * 150 ) + ( 29 * b ) ) > > 8 ) ;
2010-01-05 13:02:29 -05:00
}
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
static unsigned char * convert_format ( unsigned char * data ,
int img_n ,
int req_comp ,
unsigned int x ,
unsigned int y )
2010-01-05 13:02:29 -05:00
{
2010-03-03 12:02:51 -05:00
int i , j ;
2010-01-05 13:02:29 -05:00
unsigned char * good ;
if ( req_comp = = img_n ) return data ;
assert ( req_comp > = 1 & & req_comp < = 4 ) ;
2010-03-03 12:02:51 -05:00
good = ( unsigned char * ) malloc ( req_comp * x * y ) ;
2010-01-05 13:02:29 -05:00
if ( good = = NULL ) {
free ( data ) ;
return epuc ( " outofmem " , " Out of memory " ) ;
}
2010-03-03 12:02:51 -05:00
for ( j = 0 ; j < ( int ) y ; + + j ) {
unsigned char * src = data + j * x * img_n ;
unsigned char * dest = good + j * x * req_comp ;
2010-01-05 13:02:29 -05:00
# define COMBO(a,b) ((a)*8+(b))
2010-03-03 12:02:51 -05:00
# define CASE(a,b) case COMBO(a,b): for(i=x-1; i >= 0; --i, src += a, dest += b)
2010-01-05 13:02:29 -05:00
// convert source image with img_n components to one with req_comp components;
// avoid switch per pixel, so use switch per scanline and massive macros
switch ( COMBO ( img_n , req_comp ) ) {
CASE ( 1 , 2 ) dest [ 0 ] = src [ 0 ] , dest [ 1 ] = 255 ; break ;
CASE ( 1 , 3 ) dest [ 0 ] = dest [ 1 ] = dest [ 2 ] = src [ 0 ] ; break ;
CASE ( 1 , 4 ) dest [ 0 ] = dest [ 1 ] = dest [ 2 ] = src [ 0 ] , dest [ 3 ] = 255 ; break ;
CASE ( 2 , 1 ) dest [ 0 ] = src [ 0 ] ; break ;
CASE ( 2 , 3 ) dest [ 0 ] = dest [ 1 ] = dest [ 2 ] = src [ 0 ] ; break ;
CASE ( 2 , 4 ) dest [ 0 ] = dest [ 1 ] = dest [ 2 ] = src [ 0 ] , dest [ 3 ] = src [ 1 ] ; break ;
CASE ( 3 , 4 ) dest [ 0 ] = src [ 0 ] , dest [ 1 ] = src [ 1 ] , dest [ 2 ] = src [ 2 ] , dest [ 3 ] = 255 ; break ;
CASE ( 3 , 1 ) dest [ 0 ] = compute_y ( src [ 0 ] , src [ 1 ] , src [ 2 ] ) ; break ;
CASE ( 3 , 2 ) dest [ 0 ] = compute_y ( src [ 0 ] , src [ 1 ] , src [ 2 ] ) , dest [ 1 ] = 255 ; break ;
CASE ( 4 , 1 ) dest [ 0 ] = compute_y ( src [ 0 ] , src [ 1 ] , src [ 2 ] ) ; break ;
CASE ( 4 , 2 ) dest [ 0 ] = compute_y ( src [ 0 ] , src [ 1 ] , src [ 2 ] ) , dest [ 1 ] = src [ 3 ] ; break ;
CASE ( 4 , 3 ) dest [ 0 ] = src [ 0 ] , dest [ 1 ] = src [ 1 ] , dest [ 2 ] = src [ 2 ] ; break ;
default : assert ( 0 ) ;
}
# undef CASE
}
free ( data ) ;
return good ;
}
# ifndef STBI_NO_HDR
static float * ldr_to_hdr ( stbi_uc * data , int x , int y , int comp )
{
int i , k , n ;
float * output = ( float * ) malloc ( x * y * comp * sizeof ( float ) ) ;
if ( output = = NULL ) { free ( data ) ; return epf ( " outofmem " , " Out of memory " ) ; }
// compute number of non-alpha components
if ( comp & 1 ) n = comp ; else n = comp - 1 ;
for ( i = 0 ; i < x * y ; + + i ) {
for ( k = 0 ; k < n ; + + k ) {
output [ i * comp + k ] = ( float ) pow ( data [ i * comp + k ] / 255.0f , l2h_gamma ) * l2h_scale ;
}
if ( k < comp ) output [ i * comp + k ] = data [ i * comp + k ] / 255.0f ;
}
free ( data ) ;
return output ;
}
# define float2int(x) ((int) (x))
static stbi_uc * hdr_to_ldr ( float * data , int x , int y , int comp )
{
int i , k , n ;
stbi_uc * output = ( stbi_uc * ) malloc ( x * y * comp ) ;
if ( output = = NULL ) { free ( data ) ; return epuc ( " outofmem " , " Out of memory " ) ; }
// compute number of non-alpha components
if ( comp & 1 ) n = comp ; else n = comp - 1 ;
for ( i = 0 ; i < x * y ; + + i ) {
for ( k = 0 ; k < n ; + + k ) {
float z = ( float ) pow ( data [ i * comp + k ] * h2l_scale_i , h2l_gamma_i ) * 255 + 0.5f ;
if ( z < 0 ) z = 0 ;
if ( z > 255 ) z = 255 ;
output [ i * comp + k ] = float2int ( z ) ;
}
if ( k < comp ) {
float z = data [ i * comp + k ] * 255 + 0.5f ;
if ( z < 0 ) z = 0 ;
if ( z > 255 ) z = 255 ;
output [ i * comp + k ] = float2int ( z ) ;
}
}
free ( data ) ;
return output ;
}
# endif
//////////////////////////////////////////////////////////////////////////////
//
// "baseline" JPEG/JFIF decoder (not actually fully baseline implementation)
//
// simple implementation
// - channel subsampling of at most 2 in each dimension
// - doesn't support delayed output of y-dimension
// - simple interface (only one output format: 8-bit interleaved RGB)
// - doesn't try to recover corrupt jpegs
// - doesn't allow partial loading, loading multiple at once
// - still fast on x86 (copying globals into locals doesn't help x86)
// - allocates lots of intermediate memory (full size of all components)
// - non-interleaved case requires this anyway
// - allows good upsampling (see next)
// high-quality
// - upsampled channels are bilinearly interpolated, even across blocks
// - quality integer IDCT derived from IJG's 'slow'
// performance
// - fast huffman; reasonable integer IDCT
// - uses a lot of intermediate memory, could cache poorly
// - load http://nothings.org/remote/anemones.jpg 3 times on 2.8Ghz P4
// stb_jpeg: 1.34 seconds (MSVC6, default release build)
// stb_jpeg: 1.06 seconds (MSVC6, processor = Pentium Pro)
// IJL11.dll: 1.08 seconds (compiled by intel)
// IJG 1998: 0.98 seconds (MSVC6, makefile provided by IJG)
// IJG 1998: 0.95 seconds (MSVC6, makefile + proc=PPro)
// huffman decoding acceleration
# define FAST_BITS 9 // larger handles more cases; smaller stomps less cache
typedef struct
{
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint8_t fast [ 1 < < FAST_BITS ] ;
2010-01-05 13:02:29 -05:00
// weirdly, repacking this into AoS is a 10% speed loss, instead of a win
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint16_t code [ 256 ] ;
uint8_t values [ 256 ] ;
uint8_t size [ 257 ] ;
2010-01-05 13:02:29 -05:00
unsigned int maxcode [ 18 ] ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
int delta [ 17 ] ; // old 'firstsymbol' - old 'firstcode'
2010-01-05 13:02:29 -05:00
} huffman ;
2010-03-03 12:02:51 -05:00
typedef struct
{
# if STBI_SIMD
unsigned short dequant2 [ 4 ] [ 64 ] ;
# endif
stbi s ;
huffman huff_dc [ 4 ] ;
huffman huff_ac [ 4 ] ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint8_t dequant [ 4 ] [ 64 ] ;
2010-03-03 12:02:51 -05:00
// sizes for components, interleaved MCUs
int img_h_max , img_v_max ;
int img_mcu_x , img_mcu_y ;
int img_mcu_w , img_mcu_h ;
// definition of jpeg image component
struct
{
int id ;
int h , v ;
int tq ;
int hd , ha ;
int dc_pred ;
int x , y , w2 , h2 ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint8_t * data ;
2010-03-03 12:02:51 -05:00
void * raw_data ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint8_t * linebuf ;
2010-03-03 12:02:51 -05:00
} img_comp [ 4 ] ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint32_t code_buffer ; // jpeg entropy-coded buffer
2010-03-03 12:02:51 -05:00
int code_bits ; // number of valid bits
unsigned char marker ; // marker seen while filling entropy buffer
int nomore ; // flag if we saw a marker so must stop
int scan_n , order [ 4 ] ;
int restart_interval , todo ;
} jpeg ;
2010-01-05 13:02:29 -05:00
static int build_huffman ( huffman * h , int * count )
{
int i , j , k = 0 , code ;
// build size list for each symbol (from JPEG spec)
for ( i = 0 ; i < 16 ; + + i )
for ( j = 0 ; j < count [ i ] ; + + j )
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
h - > size [ k + + ] = ( uint8_t ) ( i + 1 ) ;
2010-01-05 13:02:29 -05:00
h - > size [ k ] = 0 ;
// compute actual symbols (from jpeg spec)
code = 0 ;
k = 0 ;
for ( j = 1 ; j < = 16 ; + + j ) {
// compute delta to add to code to compute symbol id
h - > delta [ j ] = k - code ;
if ( h - > size [ k ] = = j ) {
while ( h - > size [ k ] = = j )
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
h - > code [ k + + ] = ( uint16_t ) ( code + + ) ;
2010-01-05 13:02:29 -05:00
if ( code - 1 > = ( 1 < < j ) ) return e ( " bad code lengths " , " Corrupt JPEG " ) ;
}
// compute largest code + 1 for this size, preshifted as needed later
h - > maxcode [ j ] = code < < ( 16 - j ) ;
code < < = 1 ;
}
h - > maxcode [ j ] = 0xffffffff ;
// build non-spec acceleration table; 255 is flag for not-accelerated
memset ( h - > fast , 255 , 1 < < FAST_BITS ) ;
for ( i = 0 ; i < k ; + + i ) {
int s = h - > size [ i ] ;
if ( s < = FAST_BITS ) {
int c = h - > code [ i ] < < ( FAST_BITS - s ) ;
int m = 1 < < ( FAST_BITS - s ) ;
for ( j = 0 ; j < m ; + + j ) {
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
h - > fast [ c + j ] = ( uint8_t ) i ;
2010-01-05 13:02:29 -05:00
}
}
}
return 1 ;
}
2010-03-03 12:02:51 -05:00
static void grow_buffer_unsafe ( jpeg * j )
2010-01-05 13:02:29 -05:00
{
do {
2010-03-03 12:02:51 -05:00
int b = j - > nomore ? 0 : get8 ( & j - > s ) ;
2010-01-05 13:02:29 -05:00
if ( b = = 0xff ) {
2010-03-03 12:02:51 -05:00
int c = get8 ( & j - > s ) ;
2010-01-05 13:02:29 -05:00
if ( c ! = 0 ) {
2010-03-03 12:02:51 -05:00
j - > marker = ( unsigned char ) c ;
j - > nomore = 1 ;
2010-01-05 13:02:29 -05:00
return ;
}
}
2010-03-03 12:02:51 -05:00
j - > code_buffer = ( j - > code_buffer < < 8 ) | b ;
j - > code_bits + = 8 ;
} while ( j - > code_bits < = 24 ) ;
2010-01-05 13:02:29 -05:00
}
// (1 << n) - 1
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
static uint32_t bmask [ 17 ] = { 0 , 1 , 3 , 7 , 15 , 31 , 63 , 127 , 255 , 511 , 1023 , 2047 , 4095 , 8191 , 16383 , 32767 , 65535 } ;
2010-01-05 13:02:29 -05:00
// decode a jpeg huffman value from the bitstream
2010-03-03 12:02:51 -05:00
__forceinline static int decode ( jpeg * j , huffman * h )
2010-01-05 13:02:29 -05:00
{
unsigned int temp ;
int c , k ;
2010-03-03 12:02:51 -05:00
if ( j - > code_bits < 16 ) grow_buffer_unsafe ( j ) ;
2010-01-05 13:02:29 -05:00
// look at the top FAST_BITS and determine what symbol ID it is,
// if the code is <= FAST_BITS
2010-03-03 12:02:51 -05:00
c = ( j - > code_buffer > > ( j - > code_bits - FAST_BITS ) ) & ( ( 1 < < FAST_BITS ) - 1 ) ;
2010-01-05 13:02:29 -05:00
k = h - > fast [ c ] ;
if ( k < 255 ) {
2010-03-03 12:02:51 -05:00
if ( h - > size [ k ] > j - > code_bits )
2010-01-05 13:02:29 -05:00
return - 1 ;
2010-03-03 12:02:51 -05:00
j - > code_bits - = h - > size [ k ] ;
2010-01-05 13:02:29 -05:00
return h - > values [ k ] ;
}
// naive test is to shift the code_buffer down so k bits are
// valid, then test against maxcode. To speed this up, we've
// preshifted maxcode left so that it has (16-k) 0s at the
// end; in other words, regardless of the number of bits, it
// wants to be compared against something shifted to have 16;
// that way we don't need to shift inside the loop.
2010-03-03 12:02:51 -05:00
if ( j - > code_bits < 16 )
temp = ( j - > code_buffer < < ( 16 - j - > code_bits ) ) & 0xffff ;
2010-01-05 13:02:29 -05:00
else
2010-03-03 12:02:51 -05:00
temp = ( j - > code_buffer > > ( j - > code_bits - 16 ) ) & 0xffff ;
2010-01-05 13:02:29 -05:00
for ( k = FAST_BITS + 1 ; ; + + k )
if ( temp < h - > maxcode [ k ] )
break ;
if ( k = = 17 ) {
// error! code not found
2010-03-03 12:02:51 -05:00
j - > code_bits - = 16 ;
2010-01-05 13:02:29 -05:00
return - 1 ;
}
2010-03-03 12:02:51 -05:00
if ( k > j - > code_bits )
2010-01-05 13:02:29 -05:00
return - 1 ;
// convert the huffman code to the symbol id
2010-03-03 12:02:51 -05:00
c = ( ( j - > code_buffer > > ( j - > code_bits - k ) ) & bmask [ k ] ) + h - > delta [ k ] ;
assert ( ( ( ( j - > code_buffer ) > > ( j - > code_bits - h - > size [ c ] ) ) & bmask [ h - > size [ c ] ] ) = = h - > code [ c ] ) ;
2010-01-05 13:02:29 -05:00
// convert the id to a symbol
2010-03-03 12:02:51 -05:00
j - > code_bits - = k ;
2010-01-05 13:02:29 -05:00
return h - > values [ c ] ;
}
// combined JPEG 'receive' and JPEG 'extend', since baseline
// always extends everything it receives.
2010-03-03 12:02:51 -05:00
__forceinline static int extend_receive ( jpeg * j , int n )
2010-01-05 13:02:29 -05:00
{
unsigned int m = 1 < < ( n - 1 ) ;
unsigned int k ;
2010-03-03 12:02:51 -05:00
if ( j - > code_bits < n ) grow_buffer_unsafe ( j ) ;
k = ( j - > code_buffer > > ( j - > code_bits - n ) ) & bmask [ n ] ;
j - > code_bits - = n ;
2010-01-05 13:02:29 -05:00
// the following test is probably a random branch that won't
// predict well. I tried to table accelerate it but failed.
// maybe it's compiling as a conditional move?
if ( k < m )
return ( - 1 < < n ) + k + 1 ;
else
return k ;
}
// given a value that's at position X in the zigzag stream,
// where does it appear in the 8x8 matrix coded as row-major?
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
static uint8_t dezigzag [ 64 + 15 ] =
2010-01-05 13:02:29 -05:00
{
0 , 1 , 8 , 16 , 9 , 2 , 3 , 10 ,
17 , 24 , 32 , 25 , 18 , 11 , 4 , 5 ,
12 , 19 , 26 , 33 , 40 , 48 , 41 , 34 ,
27 , 20 , 13 , 6 , 7 , 14 , 21 , 28 ,
35 , 42 , 49 , 56 , 57 , 50 , 43 , 36 ,
29 , 22 , 15 , 23 , 30 , 37 , 44 , 51 ,
58 , 59 , 52 , 45 , 38 , 31 , 39 , 46 ,
53 , 60 , 61 , 54 , 47 , 55 , 62 , 63 ,
// let corrupt input sample past end
63 , 63 , 63 , 63 , 63 , 63 , 63 , 63 ,
63 , 63 , 63 , 63 , 63 , 63 , 63
} ;
// decode one 64-entry block--
2010-03-03 12:02:51 -05:00
static int decode_block ( jpeg * j , short data [ 64 ] , huffman * hdc , huffman * hac , int b )
2010-01-05 13:02:29 -05:00
{
int diff , dc , k ;
2010-03-03 12:02:51 -05:00
int t = decode ( j , hdc ) ;
2010-01-05 13:02:29 -05:00
if ( t < 0 ) return e ( " bad huffman code " , " Corrupt JPEG " ) ;
// 0 all the ac values now so we can do it 32-bits at a time
memset ( data , 0 , 64 * sizeof ( data [ 0 ] ) ) ;
2010-03-03 12:02:51 -05:00
diff = t ? extend_receive ( j , t ) : 0 ;
dc = j - > img_comp [ b ] . dc_pred + diff ;
j - > img_comp [ b ] . dc_pred = dc ;
2010-01-05 13:02:29 -05:00
data [ 0 ] = ( short ) dc ;
// decode AC components, see JPEG spec
k = 1 ;
do {
int r , s ;
2010-03-03 12:02:51 -05:00
int rs = decode ( j , hac ) ;
2010-01-05 13:02:29 -05:00
if ( rs < 0 ) return e ( " bad huffman code " , " Corrupt JPEG " ) ;
s = rs & 15 ;
r = rs > > 4 ;
if ( s = = 0 ) {
if ( rs ! = 0xf0 ) break ; // end block
k + = 16 ;
} else {
k + = r ;
// decode into unzigzag'd location
2010-03-03 12:02:51 -05:00
data [ dezigzag [ k + + ] ] = ( short ) extend_receive ( j , s ) ;
2010-01-05 13:02:29 -05:00
}
} while ( k < 64 ) ;
return 1 ;
}
// take a -128..127 value and clamp it and convert to 0..255
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
__forceinline static uint8_t clamp ( int x )
2010-01-05 13:02:29 -05:00
{
x + = 128 ;
// trick to use a single test to catch both cases
if ( ( unsigned int ) x > 255 ) {
if ( x < 0 ) return 0 ;
if ( x > 255 ) return 255 ;
}
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
return ( uint8_t ) x ;
2010-01-05 13:02:29 -05:00
}
# define f2f(x) (int) (((x) * 4096 + 0.5))
# define fsh(x) ((x) << 12)
// derived from jidctint -- DCT_ISLOW
# define IDCT_1D(s0,s1,s2,s3,s4,s5,s6,s7) \
int t0 , t1 , t2 , t3 , p1 , p2 , p3 , p4 , p5 , x0 , x1 , x2 , x3 ; \
p2 = s2 ; \
p3 = s6 ; \
p1 = ( p2 + p3 ) * f2f ( 0.5411961f ) ; \
t2 = p1 + p3 * f2f ( - 1.847759065f ) ; \
t3 = p1 + p2 * f2f ( 0.765366865f ) ; \
p2 = s0 ; \
p3 = s4 ; \
t0 = fsh ( p2 + p3 ) ; \
t1 = fsh ( p2 - p3 ) ; \
x0 = t0 + t3 ; \
x3 = t0 - t3 ; \
x1 = t1 + t2 ; \
x2 = t1 - t2 ; \
t0 = s7 ; \
t1 = s5 ; \
t2 = s3 ; \
t3 = s1 ; \
p3 = t0 + t2 ; \
p4 = t1 + t3 ; \
p1 = t0 + t3 ; \
p2 = t1 + t2 ; \
p5 = ( p3 + p4 ) * f2f ( 1.175875602f ) ; \
t0 = t0 * f2f ( 0.298631336f ) ; \
t1 = t1 * f2f ( 2.053119869f ) ; \
t2 = t2 * f2f ( 3.072711026f ) ; \
t3 = t3 * f2f ( 1.501321110f ) ; \
p1 = p5 + p1 * f2f ( - 0.899976223f ) ; \
p2 = p5 + p2 * f2f ( - 2.562915447f ) ; \
p3 = p3 * f2f ( - 1.961570560f ) ; \
p4 = p4 * f2f ( - 0.390180644f ) ; \
t3 + = p1 + p4 ; \
t2 + = p2 + p3 ; \
t1 + = p2 + p4 ; \
t0 + = p1 + p3 ;
# if !STBI_SIMD
// .344 seconds on 3*anemones.jpg
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
static void idct_block ( uint8_t * out , int out_stride , short data [ 64 ] , uint8_t * dequantize )
2010-01-05 13:02:29 -05:00
{
int i , val [ 64 ] , * v = val ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint8_t * o , * dq = dequantize ;
2010-01-05 13:02:29 -05:00
short * d = data ;
// columns
for ( i = 0 ; i < 8 ; + + i , + + d , + + dq , + + v ) {
// if all zeroes, shortcut -- this avoids dequantizing 0s and IDCTing
if ( d [ 8 ] = = 0 & & d [ 16 ] = = 0 & & d [ 24 ] = = 0 & & d [ 32 ] = = 0
& & d [ 40 ] = = 0 & & d [ 48 ] = = 0 & & d [ 56 ] = = 0 ) {
// no shortcut 0 seconds
// (1|2|3|4|5|6|7)==0 0 seconds
// all separate -0.047 seconds
// 1 && 2|3 && 4|5 && 6|7: -0.047 seconds
int dcterm = d [ 0 ] * dq [ 0 ] < < 2 ;
v [ 0 ] = v [ 8 ] = v [ 16 ] = v [ 24 ] = v [ 32 ] = v [ 40 ] = v [ 48 ] = v [ 56 ] = dcterm ;
} else {
IDCT_1D ( d [ 0 ] * dq [ 0 ] , d [ 8 ] * dq [ 8 ] , d [ 16 ] * dq [ 16 ] , d [ 24 ] * dq [ 24 ] ,
d [ 32 ] * dq [ 32 ] , d [ 40 ] * dq [ 40 ] , d [ 48 ] * dq [ 48 ] , d [ 56 ] * dq [ 56 ] )
// constants scaled things up by 1<<12; let's bring them back
// down, but keep 2 extra bits of precision
x0 + = 512 ; x1 + = 512 ; x2 + = 512 ; x3 + = 512 ;
v [ 0 ] = ( x0 + t3 ) > > 10 ;
v [ 56 ] = ( x0 - t3 ) > > 10 ;
v [ 8 ] = ( x1 + t2 ) > > 10 ;
v [ 48 ] = ( x1 - t2 ) > > 10 ;
v [ 16 ] = ( x2 + t1 ) > > 10 ;
v [ 40 ] = ( x2 - t1 ) > > 10 ;
v [ 24 ] = ( x3 + t0 ) > > 10 ;
v [ 32 ] = ( x3 - t0 ) > > 10 ;
}
}
for ( i = 0 , v = val , o = out ; i < 8 ; + + i , v + = 8 , o + = out_stride ) {
// no fast case since the first 1D IDCT spread components out
IDCT_1D ( v [ 0 ] , v [ 1 ] , v [ 2 ] , v [ 3 ] , v [ 4 ] , v [ 5 ] , v [ 6 ] , v [ 7 ] )
// constants scaled things up by 1<<12, plus we had 1<<2 from first
// loop, plus horizontal and vertical each scale by sqrt(8) so together
// we've got an extra 1<<3, so 1<<17 total we need to remove.
x0 + = 65536 ; x1 + = 65536 ; x2 + = 65536 ; x3 + = 65536 ;
o [ 0 ] = clamp ( ( x0 + t3 ) > > 17 ) ;
o [ 7 ] = clamp ( ( x0 - t3 ) > > 17 ) ;
o [ 1 ] = clamp ( ( x1 + t2 ) > > 17 ) ;
o [ 6 ] = clamp ( ( x1 - t2 ) > > 17 ) ;
o [ 2 ] = clamp ( ( x2 + t1 ) > > 17 ) ;
o [ 5 ] = clamp ( ( x2 - t1 ) > > 17 ) ;
o [ 3 ] = clamp ( ( x3 + t0 ) > > 17 ) ;
o [ 4 ] = clamp ( ( x3 - t0 ) > > 17 ) ;
}
}
# else
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
static void idct_block ( uint8_t * out , int out_stride , short data [ 64 ] , unsigned short * dequantize )
2010-01-05 13:02:29 -05:00
{
int i , val [ 64 ] , * v = val ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint8_t * o ;
2010-01-05 13:02:29 -05:00
unsigned short * dq = dequantize ;
short * d = data ;
// columns
for ( i = 0 ; i < 8 ; + + i , + + d , + + dq , + + v ) {
// if all zeroes, shortcut -- this avoids dequantizing 0s and IDCTing
if ( d [ 8 ] = = 0 & & d [ 16 ] = = 0 & & d [ 24 ] = = 0 & & d [ 32 ] = = 0
& & d [ 40 ] = = 0 & & d [ 48 ] = = 0 & & d [ 56 ] = = 0 ) {
// no shortcut 0 seconds
// (1|2|3|4|5|6|7)==0 0 seconds
// all separate -0.047 seconds
// 1 && 2|3 && 4|5 && 6|7: -0.047 seconds
int dcterm = d [ 0 ] * dq [ 0 ] < < 2 ;
v [ 0 ] = v [ 8 ] = v [ 16 ] = v [ 24 ] = v [ 32 ] = v [ 40 ] = v [ 48 ] = v [ 56 ] = dcterm ;
} else {
IDCT_1D ( d [ 0 ] * dq [ 0 ] , d [ 8 ] * dq [ 8 ] , d [ 16 ] * dq [ 16 ] , d [ 24 ] * dq [ 24 ] ,
d [ 32 ] * dq [ 32 ] , d [ 40 ] * dq [ 40 ] , d [ 48 ] * dq [ 48 ] , d [ 56 ] * dq [ 56 ] )
// constants scaled things up by 1<<12; let's bring them back
// down, but keep 2 extra bits of precision
x0 + = 512 ; x1 + = 512 ; x2 + = 512 ; x3 + = 512 ;
v [ 0 ] = ( x0 + t3 ) > > 10 ;
v [ 56 ] = ( x0 - t3 ) > > 10 ;
v [ 8 ] = ( x1 + t2 ) > > 10 ;
v [ 48 ] = ( x1 - t2 ) > > 10 ;
v [ 16 ] = ( x2 + t1 ) > > 10 ;
v [ 40 ] = ( x2 - t1 ) > > 10 ;
v [ 24 ] = ( x3 + t0 ) > > 10 ;
v [ 32 ] = ( x3 - t0 ) > > 10 ;
}
}
for ( i = 0 , v = val , o = out ; i < 8 ; + + i , v + = 8 , o + = out_stride ) {
// no fast case since the first 1D IDCT spread components out
IDCT_1D ( v [ 0 ] , v [ 1 ] , v [ 2 ] , v [ 3 ] , v [ 4 ] , v [ 5 ] , v [ 6 ] , v [ 7 ] )
// constants scaled things up by 1<<12, plus we had 1<<2 from first
// loop, plus horizontal and vertical each scale by sqrt(8) so together
// we've got an extra 1<<3, so 1<<17 total we need to remove.
x0 + = 65536 ; x1 + = 65536 ; x2 + = 65536 ; x3 + = 65536 ;
o [ 0 ] = clamp ( ( x0 + t3 ) > > 17 ) ;
o [ 7 ] = clamp ( ( x0 - t3 ) > > 17 ) ;
o [ 1 ] = clamp ( ( x1 + t2 ) > > 17 ) ;
o [ 6 ] = clamp ( ( x1 - t2 ) > > 17 ) ;
o [ 2 ] = clamp ( ( x2 + t1 ) > > 17 ) ;
o [ 5 ] = clamp ( ( x2 - t1 ) > > 17 ) ;
o [ 3 ] = clamp ( ( x3 + t0 ) > > 17 ) ;
o [ 4 ] = clamp ( ( x3 - t0 ) > > 17 ) ;
}
}
static stbi_idct_8x8 stbi_idct_installed = idct_block ;
extern void stbi_install_idct ( stbi_idct_8x8 func )
{
stbi_idct_installed = func ;
}
# endif
# define MARKER_none 0xff
// if there's a pending marker from the entropy stream, return that
// otherwise, fetch from the stream and get a marker. if there's no
// marker, return 0xff, which is never a valid marker value
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
static uint8_t get_marker ( jpeg * j )
2010-01-05 13:02:29 -05:00
{
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint8_t x ;
2010-03-03 12:02:51 -05:00
if ( j - > marker ! = MARKER_none ) { x = j - > marker ; j - > marker = MARKER_none ; return x ; }
x = get8u ( & j - > s ) ;
2010-01-05 13:02:29 -05:00
if ( x ! = 0xff ) return MARKER_none ;
while ( x = = 0xff )
2010-03-03 12:02:51 -05:00
x = get8u ( & j - > s ) ;
2010-01-05 13:02:29 -05:00
return x ;
}
// in each scan, we'll have scan_n components, and the order
// of the components is specified by order[]
# define RESTART(x) ((x) >= 0xd0 && (x) <= 0xd7)
// after a restart interval, reset the entropy decoder and
// the dc prediction
2010-03-03 12:02:51 -05:00
static void reset ( jpeg * j )
{
j - > code_bits = 0 ;
j - > code_buffer = 0 ;
j - > nomore = 0 ;
j - > img_comp [ 0 ] . dc_pred = j - > img_comp [ 1 ] . dc_pred = j - > img_comp [ 2 ] . dc_pred = 0 ;
j - > marker = MARKER_none ;
j - > todo = j - > restart_interval ? j - > restart_interval : 0x7fffffff ;
2010-01-05 13:02:29 -05:00
// no more than 1<<31 MCUs if no restart_interal? that's plenty safe,
// since we don't even allow 1<<30 pixels
}
2010-03-03 12:02:51 -05:00
static int parse_entropy_coded_data ( jpeg * z )
2010-01-05 13:02:29 -05:00
{
2010-03-03 12:02:51 -05:00
reset ( z ) ;
if ( z - > scan_n = = 1 ) {
2010-01-05 13:02:29 -05:00
int i , j ;
# if STBI_SIMD
__declspec ( align ( 16 ) )
# endif
short data [ 64 ] ;
2010-03-03 12:02:51 -05:00
int n = z - > order [ 0 ] ;
2010-01-05 13:02:29 -05:00
// non-interleaved data, we just need to process one block at a time,
// in trivial scanline order
// number of blocks to do just depends on how many actual "pixels" this
// component has, independent of interleaved MCU blocking and such
2010-03-03 12:02:51 -05:00
int w = ( z - > img_comp [ n ] . x + 7 ) > > 3 ;
int h = ( z - > img_comp [ n ] . y + 7 ) > > 3 ;
2010-01-05 13:02:29 -05:00
for ( j = 0 ; j < h ; + + j ) {
for ( i = 0 ; i < w ; + + i ) {
2010-03-03 12:02:51 -05:00
if ( ! decode_block ( z , data , z - > huff_dc + z - > img_comp [ n ] . hd , z - > huff_ac + z - > img_comp [ n ] . ha , n ) ) return 0 ;
2010-01-05 13:02:29 -05:00
# if STBI_SIMD
2010-03-03 12:02:51 -05:00
stbi_idct_installed ( z - > img_comp [ n ] . data + z - > img_comp [ n ] . w2 * j * 8 + i * 8 , z - > img_comp [ n ] . w2 , data , z - > dequant2 [ z - > img_comp [ n ] . tq ] ) ;
2010-01-05 13:02:29 -05:00
# else
2010-03-03 12:02:51 -05:00
idct_block ( z - > img_comp [ n ] . data + z - > img_comp [ n ] . w2 * j * 8 + i * 8 , z - > img_comp [ n ] . w2 , data , z - > dequant [ z - > img_comp [ n ] . tq ] ) ;
2010-01-05 13:02:29 -05:00
# endif
// every data block is an MCU, so countdown the restart interval
2010-03-03 12:02:51 -05:00
if ( - - z - > todo < = 0 ) {
if ( z - > code_bits < 24 ) grow_buffer_unsafe ( z ) ;
2010-01-05 13:02:29 -05:00
// if it's NOT a restart, then just bail, so we get corrupt data
// rather than no data
2010-03-03 12:02:51 -05:00
if ( ! RESTART ( z - > marker ) ) return 1 ;
reset ( z ) ;
2010-01-05 13:02:29 -05:00
}
}
}
} else { // interleaved!
int i , j , k , x , y ;
short data [ 64 ] ;
2010-03-03 12:02:51 -05:00
for ( j = 0 ; j < z - > img_mcu_y ; + + j ) {
for ( i = 0 ; i < z - > img_mcu_x ; + + i ) {
2010-01-05 13:02:29 -05:00
// scan an interleaved mcu... process scan_n components in order
2010-03-03 12:02:51 -05:00
for ( k = 0 ; k < z - > scan_n ; + + k ) {
int n = z - > order [ k ] ;
2010-01-05 13:02:29 -05:00
// scan out an mcu's worth of this component; that's just determined
// by the basic H and V specified for the component
2010-03-03 12:02:51 -05:00
for ( y = 0 ; y < z - > img_comp [ n ] . v ; + + y ) {
for ( x = 0 ; x < z - > img_comp [ n ] . h ; + + x ) {
int x2 = ( i * z - > img_comp [ n ] . h + x ) * 8 ;
int y2 = ( j * z - > img_comp [ n ] . v + y ) * 8 ;
if ( ! decode_block ( z , data , z - > huff_dc + z - > img_comp [ n ] . hd , z - > huff_ac + z - > img_comp [ n ] . ha , n ) ) return 0 ;
2010-01-05 13:02:29 -05:00
# if STBI_SIMD
2010-03-03 12:02:51 -05:00
stbi_idct_installed ( z - > img_comp [ n ] . data + z - > img_comp [ n ] . w2 * y2 + x2 , z - > img_comp [ n ] . w2 , data , z - > dequant2 [ z - > img_comp [ n ] . tq ] ) ;
2010-01-05 13:02:29 -05:00
# else
2010-03-03 12:02:51 -05:00
idct_block ( z - > img_comp [ n ] . data + z - > img_comp [ n ] . w2 * y2 + x2 , z - > img_comp [ n ] . w2 , data , z - > dequant [ z - > img_comp [ n ] . tq ] ) ;
2010-01-05 13:02:29 -05:00
# endif
}
}
}
// after all interleaved components, that's an interleaved MCU,
// so now count down the restart interval
2010-03-03 12:02:51 -05:00
if ( - - z - > todo < = 0 ) {
if ( z - > code_bits < 24 ) grow_buffer_unsafe ( z ) ;
2010-01-05 13:02:29 -05:00
// if it's NOT a restart, then just bail, so we get corrupt data
// rather than no data
2010-03-03 12:02:51 -05:00
if ( ! RESTART ( z - > marker ) ) return 1 ;
reset ( z ) ;
2010-01-05 13:02:29 -05:00
}
}
}
}
return 1 ;
}
2010-03-03 12:02:51 -05:00
static int process_marker ( jpeg * z , int m )
2010-01-05 13:02:29 -05:00
{
int L ;
switch ( m ) {
case MARKER_none : // no marker found
return e ( " expected marker " , " Corrupt JPEG " ) ;
case 0xC2 : // SOF - progressive
return e ( " progressive jpeg " , " JPEG format not supported (progressive) " ) ;
case 0xDD : // DRI - specify restart interval
2010-03-03 12:02:51 -05:00
if ( get16 ( & z - > s ) ! = 4 ) return e ( " bad DRI len " , " Corrupt JPEG " ) ;
z - > restart_interval = get16 ( & z - > s ) ;
2010-01-05 13:02:29 -05:00
return 1 ;
case 0xDB : // DQT - define quantization table
2010-03-03 12:02:51 -05:00
L = get16 ( & z - > s ) - 2 ;
2010-01-05 13:02:29 -05:00
while ( L > 0 ) {
2010-03-03 12:02:51 -05:00
int q = get8 ( & z - > s ) ;
int p = q > > 4 ;
int t = q & 15 , i ;
2010-01-05 13:02:29 -05:00
if ( p ! = 0 ) return e ( " bad DQT type " , " Corrupt JPEG " ) ;
if ( t > 3 ) return e ( " bad DQT table " , " Corrupt JPEG " ) ;
for ( i = 0 ; i < 64 ; + + i )
2010-03-03 12:02:51 -05:00
z - > dequant [ t ] [ dezigzag [ i ] ] = get8u ( & z - > s ) ;
2010-01-05 13:02:29 -05:00
# if STBI_SIMD
for ( i = 0 ; i < 64 ; + + i )
2010-03-03 12:02:51 -05:00
z - > dequant2 [ t ] [ i ] = z - > dequant [ t ] [ i ] ;
2010-01-05 13:02:29 -05:00
# endif
L - = 65 ;
}
return L = = 0 ;
case 0xC4 : // DHT - define huffman table
2010-03-03 12:02:51 -05:00
L = get16 ( & z - > s ) - 2 ;
2010-01-05 13:02:29 -05:00
while ( L > 0 ) {
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint8_t * v ;
2010-01-05 13:02:29 -05:00
int sizes [ 16 ] , i , m = 0 ;
2010-03-03 12:02:51 -05:00
int q = get8 ( & z - > s ) ;
int tc = q > > 4 ;
int th = q & 15 ;
2010-01-05 13:02:29 -05:00
if ( tc > 1 | | th > 3 ) return e ( " bad DHT header " , " Corrupt JPEG " ) ;
for ( i = 0 ; i < 16 ; + + i ) {
2010-03-03 12:02:51 -05:00
sizes [ i ] = get8 ( & z - > s ) ;
2010-01-05 13:02:29 -05:00
m + = sizes [ i ] ;
}
L - = 17 ;
if ( tc = = 0 ) {
2010-03-03 12:02:51 -05:00
if ( ! build_huffman ( z - > huff_dc + th , sizes ) ) return 0 ;
v = z - > huff_dc [ th ] . values ;
2010-01-05 13:02:29 -05:00
} else {
2010-03-03 12:02:51 -05:00
if ( ! build_huffman ( z - > huff_ac + th , sizes ) ) return 0 ;
v = z - > huff_ac [ th ] . values ;
2010-01-05 13:02:29 -05:00
}
for ( i = 0 ; i < m ; + + i )
2010-03-03 12:02:51 -05:00
v [ i ] = get8u ( & z - > s ) ;
2010-01-05 13:02:29 -05:00
L - = m ;
}
return L = = 0 ;
}
// check for comment block or APP blocks
if ( ( m > = 0xE0 & & m < = 0xEF ) | | m = = 0xFE ) {
2010-03-03 12:02:51 -05:00
skip ( & z - > s , get16 ( & z - > s ) - 2 ) ;
2010-01-05 13:02:29 -05:00
return 1 ;
}
return 0 ;
}
// after we see SOS
2010-03-03 12:02:51 -05:00
static int process_scan_header ( jpeg * z )
2010-01-05 13:02:29 -05:00
{
int i ;
2010-03-03 12:02:51 -05:00
int Ls = get16 ( & z - > s ) ;
z - > scan_n = get8 ( & z - > s ) ;
if ( z - > scan_n < 1 | | z - > scan_n > 4 | | z - > scan_n > ( int ) z - > s . img_n ) return e ( " bad SOS component count " , " Corrupt JPEG " ) ;
if ( Ls ! = 6 + 2 * z - > scan_n ) return e ( " bad SOS len " , " Corrupt JPEG " ) ;
for ( i = 0 ; i < z - > scan_n ; + + i ) {
int id = get8 ( & z - > s ) , which ;
int q = get8 ( & z - > s ) ;
for ( which = 0 ; which < z - > s . img_n ; + + which )
if ( z - > img_comp [ which ] . id = = id )
2010-01-05 13:02:29 -05:00
break ;
2010-03-03 12:02:51 -05:00
if ( which = = z - > s . img_n ) return 0 ;
z - > img_comp [ which ] . hd = q > > 4 ; if ( z - > img_comp [ which ] . hd > 3 ) return e ( " bad DC huff " , " Corrupt JPEG " ) ;
z - > img_comp [ which ] . ha = q & 15 ; if ( z - > img_comp [ which ] . ha > 3 ) return e ( " bad AC huff " , " Corrupt JPEG " ) ;
z - > order [ i ] = which ;
2010-01-05 13:02:29 -05:00
}
2010-03-03 12:02:51 -05:00
if ( get8 ( & z - > s ) ! = 0 ) return e ( " bad SOS " , " Corrupt JPEG " ) ;
get8 ( & z - > s ) ; // should be 63, but might be 0
if ( get8 ( & z - > s ) ! = 0 ) return e ( " bad SOS " , " Corrupt JPEG " ) ;
2010-01-05 13:02:29 -05:00
return 1 ;
}
2010-03-03 12:02:51 -05:00
static int process_frame_header ( jpeg * z , int scan )
{
stbi * s = & z - > s ;
int Lf , p , i , q , h_max = 1 , v_max = 1 , c ;
Lf = get16 ( s ) ; if ( Lf < 11 ) return e ( " bad SOF len " , " Corrupt JPEG " ) ; // JPEG
p = get8 ( s ) ; if ( p ! = 8 ) return e ( " only 8-bit " , " JPEG format not supported: 8-bit only " ) ; // JPEG baseline
s - > img_y = get16 ( s ) ; if ( s - > img_y = = 0 ) return e ( " no header height " , " JPEG format not supported: delayed height " ) ; // Legal, but we don't handle it--but neither does IJG
s - > img_x = get16 ( s ) ; if ( s - > img_x = = 0 ) return e ( " 0 width " , " Corrupt JPEG " ) ; // JPEG requires
c = get8 ( s ) ;
if ( c ! = 3 & & c ! = 1 ) return e ( " bad component count " , " Corrupt JPEG " ) ; // JFIF requires
s - > img_n = c ;
for ( i = 0 ; i < c ; + + i ) {
z - > img_comp [ i ] . data = NULL ;
z - > img_comp [ i ] . linebuf = NULL ;
}
2010-01-05 13:02:29 -05:00
2010-03-03 12:02:51 -05:00
if ( Lf ! = 8 + 3 * s - > img_n ) return e ( " bad SOF len " , " Corrupt JPEG " ) ;
2010-01-05 13:02:29 -05:00
2010-03-03 12:02:51 -05:00
for ( i = 0 ; i < s - > img_n ; + + i ) {
z - > img_comp [ i ] . id = get8 ( s ) ;
if ( z - > img_comp [ i ] . id ! = i + 1 ) // JFIF requires
if ( z - > img_comp [ i ] . id ! = i ) // some version of jpegtran outputs non-JFIF-compliant files!
2010-01-05 13:02:29 -05:00
return e ( " bad component ID " , " Corrupt JPEG " ) ;
2010-03-03 12:02:51 -05:00
q = get8 ( s ) ;
z - > img_comp [ i ] . h = ( q > > 4 ) ; if ( ! z - > img_comp [ i ] . h | | z - > img_comp [ i ] . h > 4 ) return e ( " bad H " , " Corrupt JPEG " ) ;
z - > img_comp [ i ] . v = q & 15 ; if ( ! z - > img_comp [ i ] . v | | z - > img_comp [ i ] . v > 4 ) return e ( " bad V " , " Corrupt JPEG " ) ;
z - > img_comp [ i ] . tq = get8 ( s ) ; if ( z - > img_comp [ i ] . tq > 3 ) return e ( " bad TQ " , " Corrupt JPEG " ) ;
2010-01-05 13:02:29 -05:00
}
if ( scan ! = SCAN_load ) return 1 ;
2010-03-03 12:02:51 -05:00
if ( ( 1 < < 30 ) / s - > img_x / s - > img_n < s - > img_y ) return e ( " too large " , " Image too large to decode " ) ;
2010-01-05 13:02:29 -05:00
2010-03-03 12:02:51 -05:00
for ( i = 0 ; i < s - > img_n ; + + i ) {
if ( z - > img_comp [ i ] . h > h_max ) h_max = z - > img_comp [ i ] . h ;
if ( z - > img_comp [ i ] . v > v_max ) v_max = z - > img_comp [ i ] . v ;
2010-01-05 13:02:29 -05:00
}
// compute interleaved mcu info
2010-03-03 12:02:51 -05:00
z - > img_h_max = h_max ;
z - > img_v_max = v_max ;
z - > img_mcu_w = h_max * 8 ;
z - > img_mcu_h = v_max * 8 ;
z - > img_mcu_x = ( s - > img_x + z - > img_mcu_w - 1 ) / z - > img_mcu_w ;
z - > img_mcu_y = ( s - > img_y + z - > img_mcu_h - 1 ) / z - > img_mcu_h ;
for ( i = 0 ; i < s - > img_n ; + + i ) {
2010-01-05 13:02:29 -05:00
// number of effective pixels (e.g. for non-interleaved MCU)
2010-03-03 12:02:51 -05:00
z - > img_comp [ i ] . x = ( s - > img_x * z - > img_comp [ i ] . h + h_max - 1 ) / h_max ;
z - > img_comp [ i ] . y = ( s - > img_y * z - > img_comp [ i ] . v + v_max - 1 ) / v_max ;
2010-01-05 13:02:29 -05:00
// to simplify generation, we'll allocate enough memory to decode
// the bogus oversized data from using interleaved MCUs and their
// big blocks (e.g. a 16x16 iMCU on an image of width 33); we won't
// discard the extra data until colorspace conversion
2010-03-03 12:02:51 -05:00
z - > img_comp [ i ] . w2 = z - > img_mcu_x * z - > img_comp [ i ] . h * 8 ;
z - > img_comp [ i ] . h2 = z - > img_mcu_y * z - > img_comp [ i ] . v * 8 ;
z - > img_comp [ i ] . raw_data = malloc ( z - > img_comp [ i ] . w2 * z - > img_comp [ i ] . h2 + 15 ) ;
if ( z - > img_comp [ i ] . raw_data = = NULL ) {
2010-01-05 13:02:29 -05:00
for ( - - i ; i > = 0 ; - - i ) {
2010-03-03 12:02:51 -05:00
free ( z - > img_comp [ i ] . raw_data ) ;
z - > img_comp [ i ] . data = NULL ;
2010-01-05 13:02:29 -05:00
}
return e ( " outofmem " , " Out of memory " ) ;
}
2010-03-03 12:02:51 -05:00
// align blocks for installable-idct using mmx/sse
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
z - > img_comp [ i ] . data = ( uint8_t * ) ( ( ( size_t ) z - > img_comp [ i ] . raw_data + 15 ) & ~ 15 ) ;
2010-03-03 12:02:51 -05:00
z - > img_comp [ i ] . linebuf = NULL ;
2010-01-05 13:02:29 -05:00
}
return 1 ;
}
// use comparisons since in some cases we handle more than one case (e.g. SOF)
# define DNL(x) ((x) == 0xdc)
# define SOI(x) ((x) == 0xd8)
# define EOI(x) ((x) == 0xd9)
# define SOF(x) ((x) == 0xc0 || (x) == 0xc1)
# define SOS(x) ((x) == 0xda)
2010-03-03 12:02:51 -05:00
static int decode_jpeg_header ( jpeg * z , int scan )
2010-01-05 13:02:29 -05:00
{
int m ;
2010-03-03 12:02:51 -05:00
z - > marker = MARKER_none ; // initialize cached marker to empty
m = get_marker ( z ) ;
2010-01-05 13:02:29 -05:00
if ( ! SOI ( m ) ) return e ( " no SOI " , " Corrupt JPEG " ) ;
if ( scan = = SCAN_type ) return 1 ;
2010-03-03 12:02:51 -05:00
m = get_marker ( z ) ;
2010-01-05 13:02:29 -05:00
while ( ! SOF ( m ) ) {
2010-03-03 12:02:51 -05:00
if ( ! process_marker ( z , m ) ) return 0 ;
m = get_marker ( z ) ;
2010-01-05 13:02:29 -05:00
while ( m = = MARKER_none ) {
// some files have extra padding after their blocks, so ok, we'll scan
2010-03-03 12:02:51 -05:00
if ( at_eof ( & z - > s ) ) return e ( " no SOF " , " Corrupt JPEG " ) ;
m = get_marker ( z ) ;
2010-01-05 13:02:29 -05:00
}
}
2010-03-03 12:02:51 -05:00
if ( ! process_frame_header ( z , scan ) ) return 0 ;
2010-01-05 13:02:29 -05:00
return 1 ;
}
2010-03-03 12:02:51 -05:00
static int decode_jpeg_image ( jpeg * j )
2010-01-05 13:02:29 -05:00
{
int m ;
2010-03-03 12:02:51 -05:00
j - > restart_interval = 0 ;
if ( ! decode_jpeg_header ( j , SCAN_load ) ) return 0 ;
m = get_marker ( j ) ;
2010-01-05 13:02:29 -05:00
while ( ! EOI ( m ) ) {
if ( SOS ( m ) ) {
2010-03-03 12:02:51 -05:00
if ( ! process_scan_header ( j ) ) return 0 ;
if ( ! parse_entropy_coded_data ( j ) ) return 0 ;
2010-01-05 13:02:29 -05:00
} else {
2010-03-03 12:02:51 -05:00
if ( ! process_marker ( j , m ) ) return 0 ;
2010-01-05 13:02:29 -05:00
}
2010-03-03 12:02:51 -05:00
m = get_marker ( j ) ;
2010-01-05 13:02:29 -05:00
}
return 1 ;
}
// static jfif-centered resampling (across block boundaries)
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
typedef uint8_t * ( * resample_row_func ) ( uint8_t * out , uint8_t * in0 , uint8_t * in1 ,
int w , int hs ) ;
2010-01-05 13:02:29 -05:00
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
# define div4(x) ((uint8_t) ((x) >> 2))
2010-01-05 13:02:29 -05:00
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
static uint8_t * resample_row_1 ( uint8_t * out , uint8_t * in_near , uint8_t * in_far , int w , int hs )
2010-01-05 13:02:29 -05:00
{
return in_near ;
}
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
static uint8_t * resample_row_v_2 ( uint8_t * out , uint8_t * in_near , uint8_t * in_far , int w , int hs )
2010-01-05 13:02:29 -05:00
{
// need to generate two samples vertically for every one in input
int i ;
for ( i = 0 ; i < w ; + + i )
out [ i ] = div4 ( 3 * in_near [ i ] + in_far [ i ] + 2 ) ;
return out ;
}
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
static uint8_t * resample_row_h_2 ( uint8_t * out , uint8_t * in_near , uint8_t * in_far , int w , int hs )
2010-01-05 13:02:29 -05:00
{
// need to generate two samples horizontally for every one in input
int i ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint8_t * input = in_near ;
2010-01-05 13:02:29 -05:00
if ( w = = 1 ) {
// if only one sample, can't do any interpolation
out [ 0 ] = out [ 1 ] = input [ 0 ] ;
return out ;
}
out [ 0 ] = input [ 0 ] ;
out [ 1 ] = div4 ( input [ 0 ] * 3 + input [ 1 ] + 2 ) ;
for ( i = 1 ; i < w - 1 ; + + i ) {
int n = 3 * input [ i ] + 2 ;
out [ i * 2 + 0 ] = div4 ( n + input [ i - 1 ] ) ;
out [ i * 2 + 1 ] = div4 ( n + input [ i + 1 ] ) ;
}
out [ i * 2 + 0 ] = div4 ( input [ w - 2 ] * 3 + input [ w - 1 ] + 2 ) ;
out [ i * 2 + 1 ] = input [ w - 1 ] ;
return out ;
}
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
# define div16(x) ((uint8_t) ((x) >> 4))
2010-01-05 13:02:29 -05:00
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
static uint8_t * resample_row_hv_2 ( uint8_t * out , uint8_t * in_near , uint8_t * in_far , int w , int hs )
2010-01-05 13:02:29 -05:00
{
// need to generate 2x2 samples for every one in input
int i , t0 , t1 ;
if ( w = = 1 ) {
out [ 0 ] = out [ 1 ] = div4 ( 3 * in_near [ 0 ] + in_far [ 0 ] + 2 ) ;
return out ;
}
t1 = 3 * in_near [ 0 ] + in_far [ 0 ] ;
out [ 0 ] = div4 ( t1 + 2 ) ;
for ( i = 1 ; i < w ; + + i ) {
t0 = t1 ;
t1 = 3 * in_near [ i ] + in_far [ i ] ;
out [ i * 2 - 1 ] = div16 ( 3 * t0 + t1 + 8 ) ;
out [ i * 2 ] = div16 ( 3 * t1 + t0 + 8 ) ;
}
out [ w * 2 - 1 ] = div4 ( t1 + 2 ) ;
return out ;
}
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
static uint8_t * resample_row_generic ( uint8_t * out , uint8_t * in_near , uint8_t * in_far , int w , int hs )
2010-01-05 13:02:29 -05:00
{
// resample with nearest-neighbor
int i , j ;
for ( i = 0 ; i < w ; + + i )
for ( j = 0 ; j < hs ; + + j )
out [ i * hs + j ] = in_near [ i ] ;
return out ;
}
# define float2fixed(x) ((int) ((x) * 65536 + 0.5))
// 0.38 seconds on 3*anemones.jpg (0.25 with processor = Pro)
// VC6 without processor=Pro is generating multiple LEAs per multiply!
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
static void YCbCr_to_RGB_row ( uint8_t * out , const uint8_t * y , const uint8_t * pcb , const uint8_t * pcr , int count , int step )
2010-01-05 13:02:29 -05:00
{
int i ;
for ( i = 0 ; i < count ; + + i ) {
int y_fixed = ( y [ i ] < < 16 ) + 32768 ; // rounding
int r , g , b ;
int cr = pcr [ i ] - 128 ;
int cb = pcb [ i ] - 128 ;
r = y_fixed + cr * float2fixed ( 1.40200f ) ;
g = y_fixed - cr * float2fixed ( 0.71414f ) - cb * float2fixed ( 0.34414f ) ;
b = y_fixed + cb * float2fixed ( 1.77200f ) ;
r > > = 16 ;
g > > = 16 ;
b > > = 16 ;
if ( ( unsigned ) r > 255 ) { if ( r < 0 ) r = 0 ; else r = 255 ; }
if ( ( unsigned ) g > 255 ) { if ( g < 0 ) g = 0 ; else g = 255 ; }
if ( ( unsigned ) b > 255 ) { if ( b < 0 ) b = 0 ; else b = 255 ; }
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
out [ 0 ] = ( uint8_t ) r ;
out [ 1 ] = ( uint8_t ) g ;
out [ 2 ] = ( uint8_t ) b ;
2010-01-05 13:02:29 -05:00
out [ 3 ] = 255 ;
out + = step ;
}
}
# if STBI_SIMD
static stbi_YCbCr_to_RGB_run stbi_YCbCr_installed = YCbCr_to_RGB_row ;
void stbi_install_YCbCr_to_RGB ( stbi_YCbCr_to_RGB_run func )
{
stbi_YCbCr_installed = func ;
}
# endif
// clean up the temporary component buffers
2010-03-03 12:02:51 -05:00
static void cleanup_jpeg ( jpeg * j )
2010-01-05 13:02:29 -05:00
{
int i ;
2010-03-03 12:02:51 -05:00
for ( i = 0 ; i < j - > s . img_n ; + + i ) {
if ( j - > img_comp [ i ] . data ) {
free ( j - > img_comp [ i ] . raw_data ) ;
j - > img_comp [ i ] . data = NULL ;
2010-01-05 13:02:29 -05:00
}
2010-03-03 12:02:51 -05:00
if ( j - > img_comp [ i ] . linebuf ) {
free ( j - > img_comp [ i ] . linebuf ) ;
j - > img_comp [ i ] . linebuf = NULL ;
2010-01-05 13:02:29 -05:00
}
}
}
typedef struct
{
resample_row_func resample ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint8_t * line0 , * line1 ;
2010-01-05 13:02:29 -05:00
int hs , vs ; // expansion factor in each axis
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
int w_lores ; // horizontal pixels pre-expansion
2010-01-05 13:02:29 -05:00
int ystep ; // how far through vertical expansion we are
int ypos ; // which pre-expansion row we're on
} stbi_resample ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
static uint8_t * load_jpeg_image ( jpeg * z , int * out_x , int * out_y , int * comp , int req_comp )
2010-01-05 13:02:29 -05:00
{
int n , decode_n ;
// validate req_comp
if ( req_comp < 0 | | req_comp > 4 ) return epuc ( " bad req_comp " , " Internal error " ) ;
2010-03-03 12:02:51 -05:00
z - > s . img_n = 0 ;
2010-01-05 13:02:29 -05:00
// load a jpeg image from whichever source
2010-03-03 12:02:51 -05:00
if ( ! decode_jpeg_image ( z ) ) { cleanup_jpeg ( z ) ; return NULL ; }
2010-01-05 13:02:29 -05:00
// determine actual number of components to generate
2010-03-03 12:02:51 -05:00
n = req_comp ? req_comp : z - > s . img_n ;
2010-01-05 13:02:29 -05:00
2010-03-03 12:02:51 -05:00
if ( z - > s . img_n = = 3 & & n < 3 )
2010-01-05 13:02:29 -05:00
decode_n = 1 ;
else
2010-03-03 12:02:51 -05:00
decode_n = z - > s . img_n ;
2010-01-05 13:02:29 -05:00
// resample and color-convert
{
int k ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
unsigned int i , j ;
uint8_t * output ;
uint8_t * coutput [ 4 ] ;
2010-01-05 13:02:29 -05:00
stbi_resample res_comp [ 4 ] ;
for ( k = 0 ; k < decode_n ; + + k ) {
stbi_resample * r = & res_comp [ k ] ;
// allocate line buffer big enough for upsampling off the edges
// with upsample factor of 4
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
z - > img_comp [ k ] . linebuf = ( uint8_t * ) malloc ( z - > s . img_x + 3 ) ;
2010-03-03 12:02:51 -05:00
if ( ! z - > img_comp [ k ] . linebuf ) { cleanup_jpeg ( z ) ; return epuc ( " outofmem " , " Out of memory " ) ; }
2010-01-05 13:02:29 -05:00
2010-03-03 12:02:51 -05:00
r - > hs = z - > img_h_max / z - > img_comp [ k ] . h ;
r - > vs = z - > img_v_max / z - > img_comp [ k ] . v ;
2010-01-05 13:02:29 -05:00
r - > ystep = r - > vs > > 1 ;
2010-03-03 12:02:51 -05:00
r - > w_lores = ( z - > s . img_x + r - > hs - 1 ) / r - > hs ;
2010-01-05 13:02:29 -05:00
r - > ypos = 0 ;
2010-03-03 12:02:51 -05:00
r - > line0 = r - > line1 = z - > img_comp [ k ] . data ;
2010-01-05 13:02:29 -05:00
if ( r - > hs = = 1 & & r - > vs = = 1 ) r - > resample = resample_row_1 ;
else if ( r - > hs = = 1 & & r - > vs = = 2 ) r - > resample = resample_row_v_2 ;
else if ( r - > hs = = 2 & & r - > vs = = 1 ) r - > resample = resample_row_h_2 ;
else if ( r - > hs = = 2 & & r - > vs = = 2 ) r - > resample = resample_row_hv_2 ;
else r - > resample = resample_row_generic ;
}
// can't error after this so, this is safe
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
output = ( uint8_t * ) malloc ( n * z - > s . img_x * z - > s . img_y + 1 ) ;
2010-03-03 12:02:51 -05:00
if ( ! output ) { cleanup_jpeg ( z ) ; return epuc ( " outofmem " , " Out of memory " ) ; }
2010-01-05 13:02:29 -05:00
// now go ahead and resample
2010-03-03 12:02:51 -05:00
for ( j = 0 ; j < z - > s . img_y ; + + j ) {
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint8_t * out = output + n * z - > s . img_x * j ;
2010-01-05 13:02:29 -05:00
for ( k = 0 ; k < decode_n ; + + k ) {
stbi_resample * r = & res_comp [ k ] ;
int y_bot = r - > ystep > = ( r - > vs > > 1 ) ;
2010-03-03 12:02:51 -05:00
coutput [ k ] = r - > resample ( z - > img_comp [ k ] . linebuf ,
2010-01-05 13:02:29 -05:00
y_bot ? r - > line1 : r - > line0 ,
y_bot ? r - > line0 : r - > line1 ,
r - > w_lores , r - > hs ) ;
if ( + + r - > ystep > = r - > vs ) {
r - > ystep = 0 ;
r - > line0 = r - > line1 ;
2010-03-03 12:02:51 -05:00
if ( + + r - > ypos < z - > img_comp [ k ] . y )
r - > line1 + = z - > img_comp [ k ] . w2 ;
2010-01-05 13:02:29 -05:00
}
}
if ( n > = 3 ) {
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint8_t * y = coutput [ 0 ] ;
2010-03-03 12:02:51 -05:00
if ( z - > s . img_n = = 3 ) {
2010-01-05 13:02:29 -05:00
# if STBI_SIMD
2010-03-03 12:02:51 -05:00
stbi_YCbCr_installed ( out , y , coutput [ 1 ] , coutput [ 2 ] , z - > s . img_x , n ) ;
2010-01-05 13:02:29 -05:00
# else
2010-03-03 12:02:51 -05:00
YCbCr_to_RGB_row ( out , y , coutput [ 1 ] , coutput [ 2 ] , z - > s . img_x , n ) ;
2010-01-05 13:02:29 -05:00
# endif
} else
2010-03-03 12:02:51 -05:00
for ( i = 0 ; i < z - > s . img_x ; + + i ) {
2010-01-05 13:02:29 -05:00
out [ 0 ] = out [ 1 ] = out [ 2 ] = y [ i ] ;
out [ 3 ] = 255 ; // not used if n==3
out + = n ;
}
} else {
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint8_t * y = coutput [ 0 ] ;
2010-01-05 13:02:29 -05:00
if ( n = = 1 )
2010-03-03 12:02:51 -05:00
for ( i = 0 ; i < z - > s . img_x ; + + i ) out [ i ] = y [ i ] ;
2010-01-05 13:02:29 -05:00
else
2010-03-03 12:02:51 -05:00
for ( i = 0 ; i < z - > s . img_x ; + + i ) * out + + = y [ i ] , * out + + = 255 ;
2010-01-05 13:02:29 -05:00
}
}
2010-03-03 12:02:51 -05:00
cleanup_jpeg ( z ) ;
* out_x = z - > s . img_x ;
* out_y = z - > s . img_y ;
if ( comp ) * comp = z - > s . img_n ; // report original components, not output
2010-01-05 13:02:29 -05:00
return output ;
}
}
# ifndef STBI_NO_STDIO
unsigned char * stbi_jpeg_load_from_file ( FILE * f , int * x , int * y , int * comp , int req_comp )
{
2010-03-03 12:02:51 -05:00
jpeg j ;
start_file ( & j . s , f ) ;
return load_jpeg_image ( & j , x , y , comp , req_comp ) ;
2010-01-05 13:02:29 -05:00
}
unsigned char * stbi_jpeg_load ( char const * filename , int * x , int * y , int * comp , int req_comp )
{
unsigned char * data ;
FILE * f = fopen ( filename , " rb " ) ;
if ( ! f ) return NULL ;
data = stbi_jpeg_load_from_file ( f , x , y , comp , req_comp ) ;
fclose ( f ) ;
return data ;
}
# endif
unsigned char * stbi_jpeg_load_from_memory ( stbi_uc const * buffer , int len , int * x , int * y , int * comp , int req_comp )
{
2010-03-03 12:02:51 -05:00
jpeg j ;
start_mem ( & j . s , buffer , len ) ;
return load_jpeg_image ( & j , x , y , comp , req_comp ) ;
2010-01-05 13:02:29 -05:00
}
# ifndef STBI_NO_STDIO
int stbi_jpeg_test_file ( FILE * f )
{
int n , r ;
2010-03-03 12:02:51 -05:00
jpeg j ;
2010-01-05 13:02:29 -05:00
n = ftell ( f ) ;
2010-03-03 12:02:51 -05:00
start_file ( & j . s , f ) ;
r = decode_jpeg_header ( & j , SCAN_type ) ;
2010-01-05 13:02:29 -05:00
fseek ( f , n , SEEK_SET ) ;
return r ;
}
# endif
int stbi_jpeg_test_memory ( stbi_uc const * buffer , int len )
{
2010-03-03 12:02:51 -05:00
jpeg j ;
start_mem ( & j . s , buffer , len ) ;
return decode_jpeg_header ( & j , SCAN_type ) ;
2010-01-05 13:02:29 -05:00
}
// @TODO:
# ifndef STBI_NO_STDIO
extern int stbi_jpeg_info ( char const * filename , int * x , int * y , int * comp ) ;
extern int stbi_jpeg_info_from_file ( FILE * f , int * x , int * y , int * comp ) ;
# endif
extern int stbi_jpeg_info_from_memory ( stbi_uc const * buffer , int len , int * x , int * y , int * comp ) ;
// public domain zlib decode v0.2 Sean Barrett 2006-11-18
// simple implementation
// - all input must be provided in an upfront buffer
// - all output is written to a single output buffer (can malloc/realloc)
// performance
// - fast huffman
// fast-way is faster to check than jpeg huffman, but slow way is slower
# define ZFAST_BITS 9 // accelerate all cases in default tables
# define ZFAST_MASK ((1 << ZFAST_BITS) - 1)
// zlib-style huffman encoding
// (jpegs packs from left, zlib from right, so can't share code)
typedef struct
{
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint16_t fast [ 1 < < ZFAST_BITS ] ;
uint16_t firstcode [ 16 ] ;
2010-01-05 13:02:29 -05:00
int maxcode [ 17 ] ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint16_t firstsymbol [ 16 ] ;
uint8_t size [ 288 ] ;
uint16_t value [ 288 ] ;
2010-01-05 13:02:29 -05:00
} zhuffman ;
__forceinline static int bitreverse16 ( int n )
{
n = ( ( n & 0xAAAA ) > > 1 ) | ( ( n & 0x5555 ) < < 1 ) ;
n = ( ( n & 0xCCCC ) > > 2 ) | ( ( n & 0x3333 ) < < 2 ) ;
n = ( ( n & 0xF0F0 ) > > 4 ) | ( ( n & 0x0F0F ) < < 4 ) ;
n = ( ( n & 0xFF00 ) > > 8 ) | ( ( n & 0x00FF ) < < 8 ) ;
return n ;
}
__forceinline static int bit_reverse ( int v , int bits )
{
assert ( bits < = 16 ) ;
// to bit reverse n bits, reverse 16 and shift
// e.g. 11 bits, bit reverse and shift away 5
return bitreverse16 ( v ) > > ( 16 - bits ) ;
}
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
static int zbuild_huffman ( zhuffman * z , uint8_t * sizelist , int num )
2010-01-05 13:02:29 -05:00
{
int i , k = 0 ;
int code , next_code [ 16 ] , sizes [ 17 ] ;
// DEFLATE spec for generating codes
memset ( sizes , 0 , sizeof ( sizes ) ) ;
memset ( z - > fast , 255 , sizeof ( z - > fast ) ) ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
for ( i = 0 ; i < num ; + + i )
2010-01-05 13:02:29 -05:00
+ + sizes [ sizelist [ i ] ] ;
sizes [ 0 ] = 0 ;
for ( i = 1 ; i < 16 ; + + i )
assert ( sizes [ i ] < = ( 1 < < i ) ) ;
code = 0 ;
for ( i = 1 ; i < 16 ; + + i ) {
next_code [ i ] = code ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
z - > firstcode [ i ] = ( uint16_t ) code ;
z - > firstsymbol [ i ] = ( uint16_t ) k ;
2010-01-05 13:02:29 -05:00
code = ( code + sizes [ i ] ) ;
if ( sizes [ i ] )
if ( code - 1 > = ( 1 < < i ) ) return e ( " bad codelengths " , " Corrupt JPEG " ) ;
z - > maxcode [ i ] = code < < ( 16 - i ) ; // preshift for inner loop
code < < = 1 ;
k + = sizes [ i ] ;
}
z - > maxcode [ 16 ] = 0x10000 ; // sentinel
for ( i = 0 ; i < num ; + + i ) {
int s = sizelist [ i ] ;
if ( s ) {
int c = next_code [ s ] - z - > firstcode [ s ] + z - > firstsymbol [ s ] ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
z - > size [ c ] = ( uint8_t ) s ;
z - > value [ c ] = ( uint16_t ) i ;
2010-01-05 13:02:29 -05:00
if ( s < = ZFAST_BITS ) {
int k = bit_reverse ( next_code [ s ] , s ) ;
while ( k < ( 1 < < ZFAST_BITS ) ) {
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
z - > fast [ k ] = ( uint16_t ) c ;
2010-01-05 13:02:29 -05:00
k + = ( 1 < < s ) ;
}
}
+ + next_code [ s ] ;
}
}
return 1 ;
}
// zlib-from-memory implementation for PNG reading
// because PNG allows splitting the zlib stream arbitrarily,
// and it's annoying structurally to have PNG call ZLIB call PNG,
// we require PNG read all the IDATs and combine them into a single
// memory buffer
2010-03-03 12:02:51 -05:00
typedef struct
{
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint8_t * zbuffer , * zbuffer_end ;
2010-03-03 12:02:51 -05:00
int num_bits ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint32_t code_buffer ;
2010-03-03 12:02:51 -05:00
char * zout ;
char * zout_start ;
char * zout_end ;
int z_expandable ;
2010-01-05 13:02:29 -05:00
2010-03-03 12:02:51 -05:00
zhuffman z_length , z_distance ;
} zbuf ;
__forceinline static int zget8 ( zbuf * z )
2010-01-05 13:02:29 -05:00
{
2010-03-03 12:02:51 -05:00
if ( z - > zbuffer > = z - > zbuffer_end ) return 0 ;
return * z - > zbuffer + + ;
2010-01-05 13:02:29 -05:00
}
2010-03-03 12:02:51 -05:00
static void fill_bits ( zbuf * z )
2010-01-05 13:02:29 -05:00
{
do {
2010-03-03 12:02:51 -05:00
assert ( z - > code_buffer < ( 1U < < z - > num_bits ) ) ;
z - > code_buffer | = zget8 ( z ) < < z - > num_bits ;
z - > num_bits + = 8 ;
} while ( z - > num_bits < = 24 ) ;
2010-01-05 13:02:29 -05:00
}
2010-03-03 12:02:51 -05:00
__forceinline static unsigned int zreceive ( zbuf * z , int n )
2010-01-05 13:02:29 -05:00
{
unsigned int k ;
2010-03-03 12:02:51 -05:00
if ( z - > num_bits < n ) fill_bits ( z ) ;
k = z - > code_buffer & ( ( 1 < < n ) - 1 ) ;
z - > code_buffer > > = n ;
z - > num_bits - = n ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
return k ;
2010-01-05 13:02:29 -05:00
}
2010-03-03 12:02:51 -05:00
__forceinline static int zhuffman_decode ( zbuf * a , zhuffman * z )
2010-01-05 13:02:29 -05:00
{
int b , s , k ;
2010-03-03 12:02:51 -05:00
if ( a - > num_bits < 16 ) fill_bits ( a ) ;
b = z - > fast [ a - > code_buffer & ZFAST_MASK ] ;
2010-01-05 13:02:29 -05:00
if ( b < 0xffff ) {
s = z - > size [ b ] ;
2010-03-03 12:02:51 -05:00
a - > code_buffer > > = s ;
a - > num_bits - = s ;
2010-01-05 13:02:29 -05:00
return z - > value [ b ] ;
}
// not resolved by fast table, so compute it the slow way
// use jpeg approach, which requires MSbits at top
2010-03-03 12:02:51 -05:00
k = bit_reverse ( a - > code_buffer , 16 ) ;
2010-01-05 13:02:29 -05:00
for ( s = ZFAST_BITS + 1 ; ; + + s )
if ( k < z - > maxcode [ s ] )
break ;
if ( s = = 16 ) return - 1 ; // invalid code!
// code size is s, so:
b = ( k > > ( 16 - s ) ) - z - > firstcode [ s ] + z - > firstsymbol [ s ] ;
assert ( z - > size [ b ] = = s ) ;
2010-03-03 12:02:51 -05:00
a - > code_buffer > > = s ;
a - > num_bits - = s ;
2010-01-05 13:02:29 -05:00
return z - > value [ b ] ;
}
2010-03-03 12:02:51 -05:00
static int expand ( zbuf * z , int n ) // need to make room for n bytes
2010-01-05 13:02:29 -05:00
{
char * q ;
int cur , limit ;
2010-03-03 12:02:51 -05:00
if ( ! z - > z_expandable ) return e ( " output buffer limit " , " Corrupt PNG " ) ;
cur = ( int ) ( z - > zout - z - > zout_start ) ;
limit = ( int ) ( z - > zout_end - z - > zout_start ) ;
2010-01-05 13:02:29 -05:00
while ( cur + n > limit )
limit * = 2 ;
2010-03-03 12:02:51 -05:00
q = ( char * ) realloc ( z - > zout_start , limit ) ;
2010-01-05 13:02:29 -05:00
if ( q = = NULL ) return e ( " outofmem " , " Out of memory " ) ;
2010-03-03 12:02:51 -05:00
z - > zout_start = q ;
z - > zout = q + cur ;
z - > zout_end = q + limit ;
2010-01-05 13:02:29 -05:00
return 1 ;
}
static int length_base [ 31 ] = {
3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 13 ,
15 , 17 , 19 , 23 , 27 , 31 , 35 , 43 , 51 , 59 ,
67 , 83 , 99 , 115 , 131 , 163 , 195 , 227 , 258 , 0 , 0 } ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
static int length_extra [ 31 ] =
2010-01-05 13:02:29 -05:00
{ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 2 , 2 , 2 , 2 , 3 , 3 , 3 , 3 , 4 , 4 , 4 , 4 , 5 , 5 , 5 , 5 , 0 , 0 , 0 } ;
static int dist_base [ 32 ] = { 1 , 2 , 3 , 4 , 5 , 7 , 9 , 13 , 17 , 25 , 33 , 49 , 65 , 97 , 129 , 193 ,
257 , 385 , 513 , 769 , 1025 , 1537 , 2049 , 3073 , 4097 , 6145 , 8193 , 12289 , 16385 , 24577 , 0 , 0 } ;
static int dist_extra [ 32 ] =
{ 0 , 0 , 0 , 0 , 1 , 1 , 2 , 2 , 3 , 3 , 4 , 4 , 5 , 5 , 6 , 6 , 7 , 7 , 8 , 8 , 9 , 9 , 10 , 10 , 11 , 11 , 12 , 12 , 13 , 13 } ;
2010-03-03 12:02:51 -05:00
static int parse_huffman_block ( zbuf * a )
2010-01-05 13:02:29 -05:00
{
for ( ; ; ) {
2010-03-03 12:02:51 -05:00
int z = zhuffman_decode ( a , & a - > z_length ) ;
2010-01-05 13:02:29 -05:00
if ( z < 256 ) {
if ( z < 0 ) return e ( " bad huffman code " , " Corrupt PNG " ) ; // error in huffman codes
2010-03-03 12:02:51 -05:00
if ( a - > zout > = a - > zout_end ) if ( ! expand ( a , 1 ) ) return 0 ;
* a - > zout + + = ( char ) z ;
2010-01-05 13:02:29 -05:00
} else {
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint8_t * p ;
2010-01-05 13:02:29 -05:00
int len , dist ;
if ( z = = 256 ) return 1 ;
z - = 257 ;
len = length_base [ z ] ;
2010-03-03 12:02:51 -05:00
if ( length_extra [ z ] ) len + = zreceive ( a , length_extra [ z ] ) ;
z = zhuffman_decode ( a , & a - > z_distance ) ;
2010-01-05 13:02:29 -05:00
if ( z < 0 ) return e ( " bad huffman code " , " Corrupt PNG " ) ;
dist = dist_base [ z ] ;
2010-03-03 12:02:51 -05:00
if ( dist_extra [ z ] ) dist + = zreceive ( a , dist_extra [ z ] ) ;
if ( a - > zout - a - > zout_start < dist ) return e ( " bad dist " , " Corrupt PNG " ) ;
if ( a - > zout + len > a - > zout_end ) if ( ! expand ( a , len ) ) return 0 ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
p = ( uint8_t * ) ( a - > zout - dist ) ;
2010-01-05 13:02:29 -05:00
while ( len - - )
2010-03-03 12:02:51 -05:00
* a - > zout + + = * p + + ;
2010-01-05 13:02:29 -05:00
}
}
}
2010-03-03 12:02:51 -05:00
static int compute_huffman_codes ( zbuf * a )
2010-01-05 13:02:29 -05:00
{
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
static uint8_t length_dezigzag [ 19 ] = { 16 , 17 , 18 , 0 , 8 , 7 , 9 , 6 , 10 , 5 , 11 , 4 , 12 , 3 , 13 , 2 , 14 , 1 , 15 } ;
2010-03-03 12:02:51 -05:00
zhuffman z_codelength ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint8_t lencodes [ 286 + 32 + 137 ] ; //padding for maximum single op
uint8_t codelength_sizes [ 19 ] ;
2010-01-05 13:02:29 -05:00
int i , n ;
2010-03-03 12:02:51 -05:00
int hlit = zreceive ( a , 5 ) + 257 ;
int hdist = zreceive ( a , 5 ) + 1 ;
int hclen = zreceive ( a , 4 ) + 4 ;
2010-01-05 13:02:29 -05:00
memset ( codelength_sizes , 0 , sizeof ( codelength_sizes ) ) ;
for ( i = 0 ; i < hclen ; + + i ) {
2010-03-03 12:02:51 -05:00
int s = zreceive ( a , 3 ) ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
codelength_sizes [ length_dezigzag [ i ] ] = ( uint8_t ) s ;
2010-01-05 13:02:29 -05:00
}
if ( ! zbuild_huffman ( & z_codelength , codelength_sizes , 19 ) ) return 0 ;
n = 0 ;
while ( n < hlit + hdist ) {
2010-03-03 12:02:51 -05:00
int c = zhuffman_decode ( a , & z_codelength ) ;
2010-01-05 13:02:29 -05:00
assert ( c > = 0 & & c < 19 ) ;
if ( c < 16 )
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
lencodes [ n + + ] = ( uint8_t ) c ;
2010-01-05 13:02:29 -05:00
else if ( c = = 16 ) {
2010-03-03 12:02:51 -05:00
c = zreceive ( a , 2 ) + 3 ;
2010-01-05 13:02:29 -05:00
memset ( lencodes + n , lencodes [ n - 1 ] , c ) ;
n + = c ;
} else if ( c = = 17 ) {
2010-03-03 12:02:51 -05:00
c = zreceive ( a , 3 ) + 3 ;
2010-01-05 13:02:29 -05:00
memset ( lencodes + n , 0 , c ) ;
n + = c ;
} else {
assert ( c = = 18 ) ;
2010-03-03 12:02:51 -05:00
c = zreceive ( a , 7 ) + 11 ;
2010-01-05 13:02:29 -05:00
memset ( lencodes + n , 0 , c ) ;
n + = c ;
}
}
if ( n ! = hlit + hdist ) return e ( " bad codelengths " , " Corrupt PNG " ) ;
2010-03-03 12:02:51 -05:00
if ( ! zbuild_huffman ( & a - > z_length , lencodes , hlit ) ) return 0 ;
if ( ! zbuild_huffman ( & a - > z_distance , lencodes + hlit , hdist ) ) return 0 ;
2010-01-05 13:02:29 -05:00
return 1 ;
}
2010-03-03 12:02:51 -05:00
static int parse_uncompressed_block ( zbuf * a )
2010-01-05 13:02:29 -05:00
{
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint8_t header [ 4 ] ;
2010-01-05 13:02:29 -05:00
int len , nlen , k ;
2010-03-03 12:02:51 -05:00
if ( a - > num_bits & 7 )
zreceive ( a , a - > num_bits & 7 ) ; // discard
2010-01-05 13:02:29 -05:00
// drain the bit-packed data into header
k = 0 ;
2010-03-03 12:02:51 -05:00
while ( a - > num_bits > 0 ) {
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
header [ k + + ] = ( uint8_t ) ( a - > code_buffer & 255 ) ; // wtf this warns?
2010-03-03 12:02:51 -05:00
a - > code_buffer > > = 8 ;
a - > num_bits - = 8 ;
2010-01-05 13:02:29 -05:00
}
2010-03-03 12:02:51 -05:00
assert ( a - > num_bits = = 0 ) ;
2010-01-05 13:02:29 -05:00
// now fill header the normal way
while ( k < 4 )
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
header [ k + + ] = ( uint8_t ) zget8 ( a ) ;
2010-01-05 13:02:29 -05:00
len = header [ 1 ] * 256 + header [ 0 ] ;
nlen = header [ 3 ] * 256 + header [ 2 ] ;
if ( nlen ! = ( len ^ 0xffff ) ) return e ( " zlib corrupt " , " Corrupt PNG " ) ;
2010-03-03 12:02:51 -05:00
if ( a - > zbuffer + len > a - > zbuffer_end ) return e ( " read past buffer " , " Corrupt PNG " ) ;
if ( a - > zout + len > a - > zout_end )
if ( ! expand ( a , len ) ) return 0 ;
memcpy ( a - > zout , a - > zbuffer , len ) ;
a - > zbuffer + = len ;
a - > zout + = len ;
2010-01-05 13:02:29 -05:00
return 1 ;
}
2010-03-03 12:02:51 -05:00
static int parse_zlib_header ( zbuf * a )
2010-01-05 13:02:29 -05:00
{
2010-03-03 12:02:51 -05:00
int cmf = zget8 ( a ) ;
2010-01-05 13:02:29 -05:00
int cm = cmf & 15 ;
/* int cinfo = cmf >> 4; */
2010-03-03 12:02:51 -05:00
int flg = zget8 ( a ) ;
2010-01-05 13:02:29 -05:00
if ( ( cmf * 256 + flg ) % 31 ! = 0 ) return e ( " bad zlib header " , " Corrupt PNG " ) ; // zlib spec
if ( flg & 32 ) return e ( " no preset dict " , " Corrupt PNG " ) ; // preset dictionary not allowed in png
if ( cm ! = 8 ) return e ( " bad compression " , " Corrupt PNG " ) ; // DEFLATE required for png
// window = 1 << (8 + cinfo)... but who cares, we fully buffer output
return 1 ;
}
2010-03-03 12:02:51 -05:00
// @TODO: should statically initialize these for optimal thread safety
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
static uint8_t default_length [ 288 ] , default_distance [ 32 ] ;
2010-01-05 13:02:29 -05:00
static void init_defaults ( void )
{
int i ; // use <= to match clearly with spec
for ( i = 0 ; i < = 143 ; + + i ) default_length [ i ] = 8 ;
for ( ; i < = 255 ; + + i ) default_length [ i ] = 9 ;
for ( ; i < = 279 ; + + i ) default_length [ i ] = 7 ;
for ( ; i < = 287 ; + + i ) default_length [ i ] = 8 ;
for ( i = 0 ; i < = 31 ; + + i ) default_distance [ i ] = 5 ;
}
2010-03-03 12:02:51 -05:00
int stbi_png_partial ; // a quick hack to only allow decoding some of a PNG... I should implement real streaming support instead
static int parse_zlib ( zbuf * a , int parse_header )
2010-01-05 13:02:29 -05:00
{
int final , type ;
if ( parse_header )
2010-03-03 12:02:51 -05:00
if ( ! parse_zlib_header ( a ) ) return 0 ;
a - > num_bits = 0 ;
a - > code_buffer = 0 ;
2010-01-05 13:02:29 -05:00
do {
2010-03-03 12:02:51 -05:00
final = zreceive ( a , 1 ) ;
type = zreceive ( a , 2 ) ;
2010-01-05 13:02:29 -05:00
if ( type = = 0 ) {
2010-03-03 12:02:51 -05:00
if ( ! parse_uncompressed_block ( a ) ) return 0 ;
2010-01-05 13:02:29 -05:00
} else if ( type = = 3 ) {
return 0 ;
} else {
if ( type = = 1 ) {
// use fixed code lengths
2010-03-03 12:02:51 -05:00
if ( ! default_distance [ 31 ] ) init_defaults ( ) ;
if ( ! zbuild_huffman ( & a - > z_length , default_length , 288 ) ) return 0 ;
if ( ! zbuild_huffman ( & a - > z_distance , default_distance , 32 ) ) return 0 ;
2010-01-05 13:02:29 -05:00
} else {
2010-03-03 12:02:51 -05:00
if ( ! compute_huffman_codes ( a ) ) return 0 ;
2010-01-05 13:02:29 -05:00
}
2010-03-03 12:02:51 -05:00
if ( ! parse_huffman_block ( a ) ) return 0 ;
2010-01-05 13:02:29 -05:00
}
2010-03-03 12:02:51 -05:00
if ( stbi_png_partial & & a - > zout - a - > zout_start > 65536 )
break ;
2010-01-05 13:02:29 -05:00
} while ( ! final ) ;
return 1 ;
}
2010-03-03 12:02:51 -05:00
static int do_zlib ( zbuf * a , char * obuf , int olen , int exp , int parse_header )
2010-01-05 13:02:29 -05:00
{
2010-03-03 12:02:51 -05:00
a - > zout_start = obuf ;
a - > zout = obuf ;
a - > zout_end = obuf + olen ;
a - > z_expandable = exp ;
2010-01-05 13:02:29 -05:00
2010-03-03 12:02:51 -05:00
return parse_zlib ( a , parse_header ) ;
2010-01-05 13:02:29 -05:00
}
2010-03-03 12:02:51 -05:00
char * stbi_zlib_decode_malloc_guesssize ( const char * buffer , int len , int initial_size , int * outlen )
2010-01-05 13:02:29 -05:00
{
2010-03-03 12:02:51 -05:00
zbuf a ;
2010-01-05 13:02:29 -05:00
char * p = ( char * ) malloc ( initial_size ) ;
if ( p = = NULL ) return NULL ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
a . zbuffer = ( uint8_t * ) buffer ;
a . zbuffer_end = ( uint8_t * ) buffer + len ;
2010-03-03 12:02:51 -05:00
if ( do_zlib ( & a , p , initial_size , 1 , 1 ) ) {
if ( outlen ) * outlen = ( int ) ( a . zout - a . zout_start ) ;
return a . zout_start ;
2010-01-05 13:02:29 -05:00
} else {
2010-03-03 12:02:51 -05:00
free ( a . zout_start ) ;
2010-01-05 13:02:29 -05:00
return NULL ;
}
}
char * stbi_zlib_decode_malloc ( char const * buffer , int len , int * outlen )
{
2010-03-03 12:02:51 -05:00
return stbi_zlib_decode_malloc_guesssize ( buffer , len , 16384 , outlen ) ;
2010-01-05 13:02:29 -05:00
}
int stbi_zlib_decode_buffer ( char * obuffer , int olen , char const * ibuffer , int ilen )
{
2010-03-03 12:02:51 -05:00
zbuf a ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
a . zbuffer = ( uint8_t * ) ibuffer ;
a . zbuffer_end = ( uint8_t * ) ibuffer + ilen ;
2010-03-03 12:02:51 -05:00
if ( do_zlib ( & a , obuffer , olen , 0 , 1 ) )
return ( int ) ( a . zout - a . zout_start ) ;
2010-01-05 13:02:29 -05:00
else
return - 1 ;
}
char * stbi_zlib_decode_noheader_malloc ( char const * buffer , int len , int * outlen )
{
2010-03-03 12:02:51 -05:00
zbuf a ;
2010-01-05 13:02:29 -05:00
char * p = ( char * ) malloc ( 16384 ) ;
if ( p = = NULL ) return NULL ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
a . zbuffer = ( uint8_t * ) buffer ;
a . zbuffer_end = ( uint8_t * ) buffer + len ;
2010-03-03 12:02:51 -05:00
if ( do_zlib ( & a , p , 16384 , 1 , 0 ) ) {
if ( outlen ) * outlen = ( int ) ( a . zout - a . zout_start ) ;
return a . zout_start ;
2010-01-05 13:02:29 -05:00
} else {
2010-03-03 12:02:51 -05:00
free ( a . zout_start ) ;
2010-01-05 13:02:29 -05:00
return NULL ;
}
}
int stbi_zlib_decode_noheader_buffer ( char * obuffer , int olen , const char * ibuffer , int ilen )
{
2010-03-03 12:02:51 -05:00
zbuf a ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
a . zbuffer = ( uint8_t * ) ibuffer ;
a . zbuffer_end = ( uint8_t * ) ibuffer + ilen ;
2010-03-03 12:02:51 -05:00
if ( do_zlib ( & a , obuffer , olen , 0 , 0 ) )
return ( int ) ( a . zout - a . zout_start ) ;
2010-01-05 13:02:29 -05:00
else
return - 1 ;
}
// public domain "baseline" PNG decoder v0.10 Sean Barrett 2006-11-18
// simple implementation
// - only 8-bit samples
// - no CRC checking
// - allocates lots of intermediate memory
// - avoids problem of streaming data between subsystems
// - avoids explicit window management
// performance
// - uses stb_zlib, a PD zlib implementation with fast huffman decoding
typedef struct
{
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint32_t length ;
uint32_t type ;
2010-01-05 13:02:29 -05:00
} chunk ;
# define PNG_TYPE(a,b,c,d) (((a) << 24) + ((b) << 16) + ((c) << 8) + (d))
2010-03-03 12:02:51 -05:00
static chunk get_chunk_header ( stbi * s )
2010-01-05 13:02:29 -05:00
{
chunk c ;
2010-03-03 12:02:51 -05:00
c . length = get32 ( s ) ;
c . type = get32 ( s ) ;
2010-01-05 13:02:29 -05:00
return c ;
}
2010-03-03 12:02:51 -05:00
static int check_png_header ( stbi * s )
2010-01-05 13:02:29 -05:00
{
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
static uint8_t png_sig [ 8 ] = { 137 , 80 , 78 , 71 , 13 , 10 , 26 , 10 } ;
2010-01-05 13:02:29 -05:00
int i ;
for ( i = 0 ; i < 8 ; + + i )
2010-03-03 12:02:51 -05:00
if ( get8 ( s ) ! = png_sig [ i ] ) return e ( " bad png sig " , " Not a PNG " ) ;
2010-01-05 13:02:29 -05:00
return 1 ;
}
2010-03-03 12:02:51 -05:00
typedef struct
{
stbi s ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint8_t * idata , * expanded , * out ;
2010-03-03 12:02:51 -05:00
} png ;
2010-01-05 13:02:29 -05:00
enum {
F_none = 0 , F_sub = 1 , F_up = 2 , F_avg = 3 , F_paeth = 4 ,
F_avg_first , F_paeth_first ,
} ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
static uint8_t first_row_filter [ 5 ] =
2010-01-05 13:02:29 -05:00
{
F_none , F_sub , F_none , F_avg_first , F_paeth_first
} ;
static int paeth ( int a , int b , int c )
{
int p = a + b - c ;
int pa = abs ( p - a ) ;
int pb = abs ( p - b ) ;
int pc = abs ( p - c ) ;
if ( pa < = pb & & pa < = pc ) return a ;
if ( pb < = pc ) return b ;
return c ;
}
// create the png data from post-deflated data
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
static int create_png_image_raw ( png * a , uint8_t * raw , uint32_t raw_len , int out_n , uint32_t x , uint32_t y )
2010-01-05 13:02:29 -05:00
{
2010-03-03 12:02:51 -05:00
stbi * s = & a - > s ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint32_t i , j , stride = x * out_n ;
2010-01-05 13:02:29 -05:00
int k ;
2010-03-03 12:02:51 -05:00
int img_n = s - > img_n ; // copy it into a local for later
assert ( out_n = = s - > img_n | | out_n = = s - > img_n + 1 ) ;
if ( stbi_png_partial ) y = 1 ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
a - > out = ( uint8_t * ) malloc ( x * y * out_n ) ;
2010-03-03 12:02:51 -05:00
if ( ! a - > out ) return e ( " outofmem " , " Out of memory " ) ;
if ( ! stbi_png_partial ) {
if ( s - > img_x = = x & & s - > img_y = = y )
if ( raw_len ! = ( img_n * x + 1 ) * y ) return e ( " not enough pixels " , " Corrupt PNG " ) ;
else // interlaced:
if ( raw_len < ( img_n * x + 1 ) * y ) return e ( " not enough pixels " , " Corrupt PNG " ) ;
}
for ( j = 0 ; j < y ; + + j ) {
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint8_t * cur = a - > out + stride * j ;
uint8_t * prior = cur - stride ;
2010-01-05 13:02:29 -05:00
int filter = * raw + + ;
if ( filter > 4 ) return e ( " invalid filter " , " Corrupt PNG " ) ;
// if first row, use special filter that doesn't sample previous row
if ( j = = 0 ) filter = first_row_filter [ filter ] ;
// handle first pixel explicitly
for ( k = 0 ; k < img_n ; + + k ) {
switch ( filter ) {
case F_none : cur [ k ] = raw [ k ] ; break ;
case F_sub : cur [ k ] = raw [ k ] ; break ;
case F_up : cur [ k ] = raw [ k ] + prior [ k ] ; break ;
case F_avg : cur [ k ] = raw [ k ] + ( prior [ k ] > > 1 ) ; break ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
case F_paeth : cur [ k ] = ( uint8_t ) ( raw [ k ] + paeth ( 0 , prior [ k ] , 0 ) ) ; break ;
2010-01-05 13:02:29 -05:00
case F_avg_first : cur [ k ] = raw [ k ] ; break ;
case F_paeth_first : cur [ k ] = raw [ k ] ; break ;
}
}
if ( img_n ! = out_n ) cur [ img_n ] = 255 ;
raw + = img_n ;
cur + = out_n ;
prior + = out_n ;
// this is a little gross, so that we don't switch per-pixel or per-component
if ( img_n = = out_n ) {
# define CASE(f) \
case f : \
2010-03-03 12:02:51 -05:00
for ( i = x - 1 ; i > = 1 ; - - i , raw + = img_n , cur + = img_n , prior + = img_n ) \
2010-01-05 13:02:29 -05:00
for ( k = 0 ; k < img_n ; + + k )
switch ( filter ) {
CASE ( F_none ) cur [ k ] = raw [ k ] ; break ;
CASE ( F_sub ) cur [ k ] = raw [ k ] + cur [ k - img_n ] ; break ;
CASE ( F_up ) cur [ k ] = raw [ k ] + prior [ k ] ; break ;
CASE ( F_avg ) cur [ k ] = raw [ k ] + ( ( prior [ k ] + cur [ k - img_n ] ) > > 1 ) ; break ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
CASE ( F_paeth ) cur [ k ] = ( uint8_t ) ( raw [ k ] + paeth ( cur [ k - img_n ] , prior [ k ] , prior [ k - img_n ] ) ) ; break ;
2010-01-05 13:02:29 -05:00
CASE ( F_avg_first ) cur [ k ] = raw [ k ] + ( cur [ k - img_n ] > > 1 ) ; break ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
CASE ( F_paeth_first ) cur [ k ] = ( uint8_t ) ( raw [ k ] + paeth ( cur [ k - img_n ] , 0 , 0 ) ) ; break ;
2010-01-05 13:02:29 -05:00
}
# undef CASE
} else {
assert ( img_n + 1 = = out_n ) ;
# define CASE(f) \
case f : \
2010-03-03 12:02:51 -05:00
for ( i = x - 1 ; i > = 1 ; - - i , cur [ img_n ] = 255 , raw + = img_n , cur + = out_n , prior + = out_n ) \
2010-01-05 13:02:29 -05:00
for ( k = 0 ; k < img_n ; + + k )
switch ( filter ) {
CASE ( F_none ) cur [ k ] = raw [ k ] ; break ;
CASE ( F_sub ) cur [ k ] = raw [ k ] + cur [ k - out_n ] ; break ;
CASE ( F_up ) cur [ k ] = raw [ k ] + prior [ k ] ; break ;
CASE ( F_avg ) cur [ k ] = raw [ k ] + ( ( prior [ k ] + cur [ k - out_n ] ) > > 1 ) ; break ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
CASE ( F_paeth ) cur [ k ] = ( uint8_t ) ( raw [ k ] + paeth ( cur [ k - out_n ] , prior [ k ] , prior [ k - out_n ] ) ) ; break ;
2010-01-05 13:02:29 -05:00
CASE ( F_avg_first ) cur [ k ] = raw [ k ] + ( cur [ k - out_n ] > > 1 ) ; break ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
CASE ( F_paeth_first ) cur [ k ] = ( uint8_t ) ( raw [ k ] + paeth ( cur [ k - out_n ] , 0 , 0 ) ) ; break ;
2010-01-05 13:02:29 -05:00
}
# undef CASE
}
}
return 1 ;
}
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
static int create_png_image ( png * a , uint8_t * raw , uint32_t raw_len , int out_n , int interlaced )
2010-03-03 12:02:51 -05:00
{
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint8_t * final ;
2010-03-03 12:02:51 -05:00
int p ;
int save ;
if ( ! interlaced )
return create_png_image_raw ( a , raw , raw_len , out_n , a - > s . img_x , a - > s . img_y ) ;
save = stbi_png_partial ;
stbi_png_partial = 0 ;
// de-interlacing
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
final = ( uint8_t * ) malloc ( a - > s . img_x * a - > s . img_y * out_n ) ;
2010-03-03 12:02:51 -05:00
for ( p = 0 ; p < 7 ; + + p ) {
int xorig [ ] = { 0 , 4 , 0 , 2 , 0 , 1 , 0 } ;
int yorig [ ] = { 0 , 0 , 4 , 0 , 2 , 0 , 1 } ;
int xspc [ ] = { 8 , 8 , 4 , 4 , 2 , 2 , 1 } ;
int yspc [ ] = { 8 , 8 , 8 , 4 , 4 , 2 , 2 } ;
int i , j , x , y ;
// pass1_x[4] = 0, pass1_x[5] = 1, pass1_x[12] = 1
x = ( a - > s . img_x - xorig [ p ] + xspc [ p ] - 1 ) / xspc [ p ] ;
y = ( a - > s . img_y - yorig [ p ] + yspc [ p ] - 1 ) / yspc [ p ] ;
if ( x & & y ) {
if ( ! create_png_image_raw ( a , raw , raw_len , out_n , x , y ) ) {
free ( final ) ;
return 0 ;
}
for ( j = 0 ; j < y ; + + j )
for ( i = 0 ; i < x ; + + i )
memcpy ( final + ( j * yspc [ p ] + yorig [ p ] ) * a - > s . img_x * out_n + ( i * xspc [ p ] + xorig [ p ] ) * out_n ,
a - > out + ( j * x + i ) * out_n , out_n ) ;
free ( a - > out ) ;
raw + = ( x * out_n + 1 ) * y ;
raw_len - = ( x * out_n + 1 ) * y ;
}
}
a - > out = final ;
stbi_png_partial = save ;
return 1 ;
}
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
static int compute_transparency ( png * z , uint8_t tc [ 3 ] , int out_n )
2010-01-05 13:02:29 -05:00
{
2010-03-03 12:02:51 -05:00
stbi * s = & z - > s ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint32_t i , pixel_count = s - > img_x * s - > img_y ;
uint8_t * p = z - > out ;
2010-01-05 13:02:29 -05:00
// compute color-based transparency, assuming we've
// already got 255 as the alpha value in the output
assert ( out_n = = 2 | | out_n = = 4 ) ;
if ( out_n = = 2 ) {
for ( i = 0 ; i < pixel_count ; + + i ) {
p [ 1 ] = ( p [ 0 ] = = tc [ 0 ] ? 0 : 255 ) ;
p + = 2 ;
}
} else {
for ( i = 0 ; i < pixel_count ; + + i ) {
if ( p [ 0 ] = = tc [ 0 ] & & p [ 1 ] = = tc [ 1 ] & & p [ 2 ] = = tc [ 2 ] )
p [ 3 ] = 0 ;
p + = 4 ;
}
}
return 1 ;
}
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
static int expand_palette ( png * a , uint8_t * palette , int len , int pal_img_n )
2010-01-05 13:02:29 -05:00
{
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint32_t i , pixel_count = a - > s . img_x * a - > s . img_y ;
uint8_t * p , * temp_out , * orig = a - > out ;
2010-01-05 13:02:29 -05:00
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
p = ( uint8_t * ) malloc ( pixel_count * pal_img_n ) ;
2010-01-05 13:02:29 -05:00
if ( p = = NULL ) return e ( " outofmem " , " Out of memory " ) ;
// between here and free(out) below, exitting would leak
temp_out = p ;
if ( pal_img_n = = 3 ) {
for ( i = 0 ; i < pixel_count ; + + i ) {
int n = orig [ i ] * 4 ;
p [ 0 ] = palette [ n ] ;
p [ 1 ] = palette [ n + 1 ] ;
p [ 2 ] = palette [ n + 2 ] ;
p + = 3 ;
}
} else {
for ( i = 0 ; i < pixel_count ; + + i ) {
int n = orig [ i ] * 4 ;
p [ 0 ] = palette [ n ] ;
p [ 1 ] = palette [ n + 1 ] ;
p [ 2 ] = palette [ n + 2 ] ;
p [ 3 ] = palette [ n + 3 ] ;
p + = 4 ;
}
}
2010-03-03 12:02:51 -05:00
free ( a - > out ) ;
a - > out = temp_out ;
2010-01-05 13:02:29 -05:00
return 1 ;
}
2010-03-03 12:02:51 -05:00
static int parse_png_file ( png * z , int scan , int req_comp )
2010-01-05 13:02:29 -05:00
{
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint8_t palette [ 1024 ] , pal_img_n = 0 ;
uint8_t has_trans = 0 , tc [ 3 ] ;
uint32_t ioff = 0 , idata_limit = 0 , i , pal_len = 0 ;
2010-03-03 12:02:51 -05:00
int first = 1 , k , interlace = 0 ;
stbi * s = & z - > s ;
2010-01-05 13:02:29 -05:00
2010-03-03 12:02:51 -05:00
if ( ! check_png_header ( s ) ) return 0 ;
2010-01-05 13:02:29 -05:00
if ( scan = = SCAN_type ) return 1 ;
for ( ; ; first = 0 ) {
2010-03-03 12:02:51 -05:00
chunk c = get_chunk_header ( s ) ;
2010-01-05 13:02:29 -05:00
if ( first & & c . type ! = PNG_TYPE ( ' I ' , ' H ' , ' D ' , ' R ' ) )
return e ( " first not IHDR " , " Corrupt PNG " ) ;
switch ( c . type ) {
case PNG_TYPE ( ' I ' , ' H ' , ' D ' , ' R ' ) : {
2010-03-03 12:02:51 -05:00
int depth , color , comp , filter ;
2010-01-05 13:02:29 -05:00
if ( ! first ) return e ( " multiple IHDR " , " Corrupt PNG " ) ;
if ( c . length ! = 13 ) return e ( " bad IHDR len " , " Corrupt PNG " ) ;
2010-03-03 12:02:51 -05:00
s - > img_x = get32 ( s ) ; if ( s - > img_x > ( 1 < < 24 ) ) return e ( " too large " , " Very large image (corrupt?) " ) ;
s - > img_y = get32 ( s ) ; if ( s - > img_y > ( 1 < < 24 ) ) return e ( " too large " , " Very large image (corrupt?) " ) ;
depth = get8 ( s ) ; if ( depth ! = 8 ) return e ( " 8bit only " , " PNG not supported: 8-bit only " ) ;
color = get8 ( s ) ; if ( color > 6 ) return e ( " bad ctype " , " Corrupt PNG " ) ;
2010-01-05 13:02:29 -05:00
if ( color = = 3 ) pal_img_n = 3 ; else if ( color & 1 ) return e ( " bad ctype " , " Corrupt PNG " ) ;
2010-03-03 12:02:51 -05:00
comp = get8 ( s ) ; if ( comp ) return e ( " bad comp method " , " Corrupt PNG " ) ;
filter = get8 ( s ) ; if ( filter ) return e ( " bad filter method " , " Corrupt PNG " ) ;
interlace = get8 ( s ) ; if ( interlace > 1 ) return e ( " bad interlace method " , " Corrupt PNG " ) ;
if ( ! s - > img_x | | ! s - > img_y ) return e ( " 0-pixel image " , " Corrupt PNG " ) ;
2010-01-05 13:02:29 -05:00
if ( ! pal_img_n ) {
2010-03-03 12:02:51 -05:00
s - > img_n = ( color & 2 ? 3 : 1 ) + ( color & 4 ? 1 : 0 ) ;
if ( ( 1 < < 30 ) / s - > img_x / s - > img_n < s - > img_y ) return e ( " too large " , " Image too large to decode " ) ;
2010-01-05 13:02:29 -05:00
if ( scan = = SCAN_header ) return 1 ;
} else {
// if paletted, then pal_n is our final components, and
// img_n is # components to decompress/filter.
2010-03-03 12:02:51 -05:00
s - > img_n = 1 ;
if ( ( 1 < < 30 ) / s - > img_x / 4 < s - > img_y ) return e ( " too large " , " Corrupt PNG " ) ;
2010-01-05 13:02:29 -05:00
// if SCAN_header, have to scan to see if we have a tRNS
}
break ;
}
case PNG_TYPE ( ' P ' , ' L ' , ' T ' , ' E ' ) : {
if ( c . length > 256 * 3 ) return e ( " invalid PLTE " , " Corrupt PNG " ) ;
pal_len = c . length / 3 ;
if ( pal_len * 3 ! = c . length ) return e ( " invalid PLTE " , " Corrupt PNG " ) ;
for ( i = 0 ; i < pal_len ; + + i ) {
2010-03-03 12:02:51 -05:00
palette [ i * 4 + 0 ] = get8u ( s ) ;
palette [ i * 4 + 1 ] = get8u ( s ) ;
palette [ i * 4 + 2 ] = get8u ( s ) ;
2010-01-05 13:02:29 -05:00
palette [ i * 4 + 3 ] = 255 ;
}
break ;
}
case PNG_TYPE ( ' t ' , ' R ' , ' N ' , ' S ' ) : {
2010-03-03 12:02:51 -05:00
if ( z - > idata ) return e ( " tRNS after IDAT " , " Corrupt PNG " ) ;
2010-01-05 13:02:29 -05:00
if ( pal_img_n ) {
2010-03-03 12:02:51 -05:00
if ( scan = = SCAN_header ) { s - > img_n = 4 ; return 1 ; }
2010-01-05 13:02:29 -05:00
if ( pal_len = = 0 ) return e ( " tRNS before PLTE " , " Corrupt PNG " ) ;
if ( c . length > pal_len ) return e ( " bad tRNS len " , " Corrupt PNG " ) ;
pal_img_n = 4 ;
for ( i = 0 ; i < c . length ; + + i )
2010-03-03 12:02:51 -05:00
palette [ i * 4 + 3 ] = get8u ( s ) ;
2010-01-05 13:02:29 -05:00
} else {
2010-03-03 12:02:51 -05:00
if ( ! ( s - > img_n & 1 ) ) return e ( " tRNS with alpha " , " Corrupt PNG " ) ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
if ( c . length ! = ( uint32_t ) s - > img_n * 2 ) return e ( " bad tRNS len " , " Corrupt PNG " ) ;
2010-01-05 13:02:29 -05:00
has_trans = 1 ;
2010-03-03 12:02:51 -05:00
for ( k = 0 ; k < s - > img_n ; + + k )
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
tc [ k ] = ( uint8_t ) get16 ( s ) ; // non 8-bit images will be larger
2010-01-05 13:02:29 -05:00
}
break ;
}
case PNG_TYPE ( ' I ' , ' D ' , ' A ' , ' T ' ) : {
if ( pal_img_n & & ! pal_len ) return e ( " no PLTE " , " Corrupt PNG " ) ;
2010-03-03 12:02:51 -05:00
if ( scan = = SCAN_header ) { s - > img_n = pal_img_n ; return 1 ; }
2010-01-05 13:02:29 -05:00
if ( ioff + c . length > idata_limit ) {
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint8_t * p ;
2010-01-05 13:02:29 -05:00
if ( idata_limit = = 0 ) idata_limit = c . length > 4096 ? c . length : 4096 ;
while ( ioff + c . length > idata_limit )
idata_limit * = 2 ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
p = ( uint8_t * ) realloc ( z - > idata , idata_limit ) ; if ( p = = NULL ) return e ( " outofmem " , " Out of memory " ) ;
2010-03-03 12:02:51 -05:00
z - > idata = p ;
2010-01-05 13:02:29 -05:00
}
# ifndef STBI_NO_STDIO
2010-03-03 12:02:51 -05:00
if ( s - > img_file )
2010-01-05 13:02:29 -05:00
{
2010-03-03 12:02:51 -05:00
if ( fread ( z - > idata + ioff , 1 , c . length , s - > img_file ) ! = c . length ) return e ( " outofdata " , " Corrupt PNG " ) ;
2010-01-05 13:02:29 -05:00
}
else
# endif
{
2010-03-03 12:02:51 -05:00
memcpy ( z - > idata + ioff , s - > img_buffer , c . length ) ;
s - > img_buffer + = c . length ;
2010-01-05 13:02:29 -05:00
}
ioff + = c . length ;
break ;
}
case PNG_TYPE ( ' I ' , ' E ' , ' N ' , ' D ' ) : {
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint32_t raw_len ;
2010-01-05 13:02:29 -05:00
if ( scan ! = SCAN_load ) return 1 ;
2010-03-03 12:02:51 -05:00
if ( z - > idata = = NULL ) return e ( " no IDAT " , " Corrupt PNG " ) ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
z - > expanded = ( uint8_t * ) stbi_zlib_decode_malloc ( ( char * ) z - > idata , ioff , ( int * ) & raw_len ) ;
2010-03-03 12:02:51 -05:00
if ( z - > expanded = = NULL ) return 0 ; // zlib should set error
free ( z - > idata ) ; z - > idata = NULL ;
if ( ( req_comp = = s - > img_n + 1 & & req_comp ! = 3 & & ! pal_img_n ) | | has_trans )
s - > img_out_n = s - > img_n + 1 ;
2010-01-05 13:02:29 -05:00
else
2010-03-03 12:02:51 -05:00
s - > img_out_n = s - > img_n ;
if ( ! create_png_image ( z , z - > expanded , raw_len , s - > img_out_n , interlace ) ) return 0 ;
2010-01-05 13:02:29 -05:00
if ( has_trans )
2010-03-03 12:02:51 -05:00
if ( ! compute_transparency ( z , tc , s - > img_out_n ) ) return 0 ;
2010-01-05 13:02:29 -05:00
if ( pal_img_n ) {
// pal_img_n == 3 or 4
2010-03-03 12:02:51 -05:00
s - > img_n = pal_img_n ; // record the actual colors we had
s - > img_out_n = pal_img_n ;
if ( req_comp > = 3 ) s - > img_out_n = req_comp ;
if ( ! expand_palette ( z , palette , pal_len , s - > img_out_n ) )
2010-01-05 13:02:29 -05:00
return 0 ;
}
2010-03-03 12:02:51 -05:00
free ( z - > expanded ) ; z - > expanded = NULL ;
2010-01-05 13:02:29 -05:00
return 1 ;
}
default :
// if critical, fail
if ( ( c . type & ( 1 < < 29 ) ) = = 0 ) {
# ifndef STBI_NO_FAILURE_STRINGS
2010-03-03 12:02:51 -05:00
// not threadsafe
2010-01-05 13:02:29 -05:00
static char invalid_chunk [ ] = " XXXX chunk not known " ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
invalid_chunk [ 0 ] = ( uint8_t ) ( c . type > > 24 ) ;
invalid_chunk [ 1 ] = ( uint8_t ) ( c . type > > 16 ) ;
invalid_chunk [ 2 ] = ( uint8_t ) ( c . type > > 8 ) ;
invalid_chunk [ 3 ] = ( uint8_t ) ( c . type > > 0 ) ;
2010-01-05 13:02:29 -05:00
# endif
return e ( invalid_chunk , " PNG not supported: unknown chunk type " ) ;
}
2010-03-03 12:02:51 -05:00
skip ( s , c . length ) ;
2010-01-05 13:02:29 -05:00
break ;
}
// end of chunk, read and skip CRC
2010-03-03 12:02:51 -05:00
get32 ( s ) ;
2010-01-05 13:02:29 -05:00
}
}
2010-03-03 12:02:51 -05:00
static unsigned char * do_png ( png * p , int * x , int * y , int * n , int req_comp )
2010-01-05 13:02:29 -05:00
{
unsigned char * result = NULL ;
2010-03-03 12:02:51 -05:00
p - > expanded = NULL ;
p - > idata = NULL ;
p - > out = NULL ;
2010-01-05 13:02:29 -05:00
if ( req_comp < 0 | | req_comp > 4 ) return epuc ( " bad req_comp " , " Internal error " ) ;
2010-03-03 12:02:51 -05:00
if ( parse_png_file ( p , SCAN_load , req_comp ) ) {
result = p - > out ;
p - > out = NULL ;
if ( req_comp & & req_comp ! = p - > s . img_out_n ) {
result = convert_format ( result , p - > s . img_out_n , req_comp , p - > s . img_x , p - > s . img_y ) ;
p - > s . img_out_n = req_comp ;
2010-01-05 13:02:29 -05:00
if ( result = = NULL ) return result ;
}
2010-03-03 12:02:51 -05:00
* x = p - > s . img_x ;
* y = p - > s . img_y ;
if ( n ) * n = p - > s . img_n ;
2010-01-05 13:02:29 -05:00
}
2010-03-03 12:02:51 -05:00
free ( p - > out ) ; p - > out = NULL ;
free ( p - > expanded ) ; p - > expanded = NULL ;
free ( p - > idata ) ; p - > idata = NULL ;
2010-01-05 13:02:29 -05:00
return result ;
}
# ifndef STBI_NO_STDIO
unsigned char * stbi_png_load_from_file ( FILE * f , int * x , int * y , int * comp , int req_comp )
{
2010-03-03 12:02:51 -05:00
png p ;
start_file ( & p . s , f ) ;
return do_png ( & p , x , y , comp , req_comp ) ;
2010-01-05 13:02:29 -05:00
}
unsigned char * stbi_png_load ( char const * filename , int * x , int * y , int * comp , int req_comp )
{
unsigned char * data ;
FILE * f = fopen ( filename , " rb " ) ;
if ( ! f ) return NULL ;
data = stbi_png_load_from_file ( f , x , y , comp , req_comp ) ;
fclose ( f ) ;
return data ;
}
# endif
unsigned char * stbi_png_load_from_memory ( stbi_uc const * buffer , int len , int * x , int * y , int * comp , int req_comp )
{
2010-03-03 12:02:51 -05:00
png p ;
start_mem ( & p . s , buffer , len ) ;
return do_png ( & p , x , y , comp , req_comp ) ;
2010-01-05 13:02:29 -05:00
}
# ifndef STBI_NO_STDIO
int stbi_png_test_file ( FILE * f )
{
2010-03-03 12:02:51 -05:00
png p ;
2010-01-05 13:02:29 -05:00
int n , r ;
n = ftell ( f ) ;
2010-03-03 12:02:51 -05:00
start_file ( & p . s , f ) ;
r = parse_png_file ( & p , SCAN_type , STBI_default ) ;
2010-01-05 13:02:29 -05:00
fseek ( f , n , SEEK_SET ) ;
return r ;
}
# endif
int stbi_png_test_memory ( stbi_uc const * buffer , int len )
{
2010-03-03 12:02:51 -05:00
png p ;
start_mem ( & p . s , buffer , len ) ;
return parse_png_file ( & p , SCAN_type , STBI_default ) ;
2010-01-05 13:02:29 -05:00
}
// TODO: load header from png
# ifndef STBI_NO_STDIO
2010-03-03 12:02:51 -05:00
int stbi_png_info ( char const * filename , int * x , int * y , int * comp )
{
png p ;
FILE * f = fopen ( filename , " rb " ) ;
if ( ! f ) return 0 ;
start_file ( & p . s , f ) ;
if ( parse_png_file ( & p , SCAN_header , 0 ) ) {
if ( x ) * x = p . s . img_x ;
if ( y ) * y = p . s . img_y ;
if ( comp ) * comp = p . s . img_n ;
fclose ( f ) ;
return 1 ;
}
fclose ( f ) ;
return 0 ;
}
2010-01-05 13:02:29 -05:00
extern int stbi_png_info_from_file ( FILE * f , int * x , int * y , int * comp ) ;
# endif
extern int stbi_png_info_from_memory ( stbi_uc const * buffer , int len , int * x , int * y , int * comp ) ;
// Microsoft/Windows BMP image
2010-03-03 12:02:51 -05:00
static int bmp_test ( stbi * s )
2010-01-05 13:02:29 -05:00
{
int sz ;
2010-03-03 12:02:51 -05:00
if ( get8 ( s ) ! = ' B ' ) return 0 ;
if ( get8 ( s ) ! = ' M ' ) return 0 ;
get32le ( s ) ; // discard filesize
get16le ( s ) ; // discard reserved
get16le ( s ) ; // discard reserved
get32le ( s ) ; // discard data offset
sz = get32le ( s ) ;
2010-01-05 13:02:29 -05:00
if ( sz = = 12 | | sz = = 40 | | sz = = 56 | | sz = = 108 ) return 1 ;
return 0 ;
}
# ifndef STBI_NO_STDIO
int stbi_bmp_test_file ( FILE * f )
{
2010-03-03 12:02:51 -05:00
stbi s ;
2010-01-05 13:02:29 -05:00
int r , n = ftell ( f ) ;
2010-03-03 12:02:51 -05:00
start_file ( & s , f ) ;
r = bmp_test ( & s ) ;
2010-01-05 13:02:29 -05:00
fseek ( f , n , SEEK_SET ) ;
return r ;
}
# endif
int stbi_bmp_test_memory ( stbi_uc const * buffer , int len )
{
2010-03-03 12:02:51 -05:00
stbi s ;
start_mem ( & s , buffer , len ) ;
return bmp_test ( & s ) ;
2010-01-05 13:02:29 -05:00
}
// returns 0..31 for the highest set bit
static int high_bit ( unsigned int z )
{
int n = 0 ;
if ( z = = 0 ) return - 1 ;
if ( z > = 0x10000 ) n + = 16 , z > > = 16 ;
if ( z > = 0x00100 ) n + = 8 , z > > = 8 ;
if ( z > = 0x00010 ) n + = 4 , z > > = 4 ;
if ( z > = 0x00004 ) n + = 2 , z > > = 2 ;
if ( z > = 0x00002 ) n + = 1 , z > > = 1 ;
return n ;
}
static int bitcount ( unsigned int a )
{
a = ( a & 0x55555555 ) + ( ( a > > 1 ) & 0x55555555 ) ; // max 2
a = ( a & 0x33333333 ) + ( ( a > > 2 ) & 0x33333333 ) ; // max 4
a = ( a + ( a > > 4 ) ) & 0x0f0f0f0f ; // max 8 per 4, now 8 bits
a = ( a + ( a > > 8 ) ) ; // max 16 per 8 bits
a = ( a + ( a > > 16 ) ) ; // max 32 per 8 bits
return a & 0xff ;
}
static int shiftsigned ( int v , int shift , int bits )
{
int result ;
int z = 0 ;
if ( shift < 0 ) v < < = - shift ;
else v > > = shift ;
result = v ;
z = bits ;
while ( z < 8 ) {
result + = v > > z ;
z + = bits ;
}
return result ;
}
2010-03-03 12:02:51 -05:00
static stbi_uc * bmp_load ( stbi * s , int * x , int * y , int * comp , int req_comp )
2010-01-05 13:02:29 -05:00
{
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint8_t * out ;
2010-03-03 12:02:51 -05:00
unsigned int mr = 0 , mg = 0 , mb = 0 , ma = 0 , fake_a = 0 ;
2010-01-05 13:02:29 -05:00
stbi_uc pal [ 256 ] [ 4 ] ;
int psize = 0 , i , j , compress = 0 , width ;
int bpp , flip_vertically , pad , target , offset , hsz ;
2010-03-03 12:02:51 -05:00
if ( get8 ( s ) ! = ' B ' | | get8 ( s ) ! = ' M ' ) return epuc ( " not BMP " , " Corrupt BMP " ) ;
get32le ( s ) ; // discard filesize
get16le ( s ) ; // discard reserved
get16le ( s ) ; // discard reserved
offset = get32le ( s ) ;
hsz = get32le ( s ) ;
2010-01-05 13:02:29 -05:00
if ( hsz ! = 12 & & hsz ! = 40 & & hsz ! = 56 & & hsz ! = 108 ) return epuc ( " unknown BMP " , " BMP type not supported: unknown " ) ;
failure_reason = " bad BMP " ;
if ( hsz = = 12 ) {
2010-03-03 12:02:51 -05:00
s - > img_x = get16le ( s ) ;
s - > img_y = get16le ( s ) ;
2010-01-05 13:02:29 -05:00
} else {
2010-03-03 12:02:51 -05:00
s - > img_x = get32le ( s ) ;
s - > img_y = get32le ( s ) ;
2010-01-05 13:02:29 -05:00
}
2010-03-03 12:02:51 -05:00
if ( get16le ( s ) ! = 1 ) return 0 ;
bpp = get16le ( s ) ;
2010-01-05 13:02:29 -05:00
if ( bpp = = 1 ) return epuc ( " monochrome " , " BMP type not supported: 1-bit " ) ;
2010-03-03 12:02:51 -05:00
flip_vertically = ( ( int ) s - > img_y ) > 0 ;
s - > img_y = abs ( ( int ) s - > img_y ) ;
2010-01-05 13:02:29 -05:00
if ( hsz = = 12 ) {
if ( bpp < 24 )
psize = ( offset - 14 - 24 ) / 3 ;
} else {
2010-03-03 12:02:51 -05:00
compress = get32le ( s ) ;
2010-01-05 13:02:29 -05:00
if ( compress = = 1 | | compress = = 2 ) return epuc ( " BMP RLE " , " BMP type not supported: RLE " ) ;
2010-03-03 12:02:51 -05:00
get32le ( s ) ; // discard sizeof
get32le ( s ) ; // discard hres
get32le ( s ) ; // discard vres
get32le ( s ) ; // discard colorsused
get32le ( s ) ; // discard max important
2010-01-05 13:02:29 -05:00
if ( hsz = = 40 | | hsz = = 56 ) {
if ( hsz = = 56 ) {
2010-03-03 12:02:51 -05:00
get32le ( s ) ;
get32le ( s ) ;
get32le ( s ) ;
get32le ( s ) ;
2010-01-05 13:02:29 -05:00
}
if ( bpp = = 16 | | bpp = = 32 ) {
mr = mg = mb = 0 ;
if ( compress = = 0 ) {
if ( bpp = = 32 ) {
mr = 0xff < < 16 ;
mg = 0xff < < 8 ;
mb = 0xff < < 0 ;
2010-03-03 12:02:51 -05:00
ma = 0xff < < 24 ;
fake_a = 1 ; // @TODO: check for cases like alpha value is all 0 and switch it to 255
2010-01-05 13:02:29 -05:00
} else {
mr = 31 < < 10 ;
mg = 31 < < 5 ;
mb = 31 < < 0 ;
}
} else if ( compress = = 3 ) {
2010-03-03 12:02:51 -05:00
mr = get32le ( s ) ;
mg = get32le ( s ) ;
mb = get32le ( s ) ;
2010-01-05 13:02:29 -05:00
// not documented, but generated by photoshop and handled by mspaint
if ( mr = = mg & & mg = = mb ) {
// ?!?!?
return NULL ;
}
} else
return NULL ;
}
} else {
assert ( hsz = = 108 ) ;
2010-03-03 12:02:51 -05:00
mr = get32le ( s ) ;
mg = get32le ( s ) ;
mb = get32le ( s ) ;
ma = get32le ( s ) ;
get32le ( s ) ; // discard color space
2010-01-05 13:02:29 -05:00
for ( i = 0 ; i < 12 ; + + i )
2010-03-03 12:02:51 -05:00
get32le ( s ) ; // discard color space parameters
2010-01-05 13:02:29 -05:00
}
if ( bpp < 16 )
psize = ( offset - 14 - hsz ) > > 2 ;
}
2010-03-03 12:02:51 -05:00
s - > img_n = ma ? 4 : 3 ;
2010-01-05 13:02:29 -05:00
if ( req_comp & & req_comp > = 3 ) // we can directly decode 3 or 4
target = req_comp ;
else
2010-03-03 12:02:51 -05:00
target = s - > img_n ; // if they want monochrome, we'll post-convert
out = ( stbi_uc * ) malloc ( target * s - > img_x * s - > img_y ) ;
2010-01-05 13:02:29 -05:00
if ( ! out ) return epuc ( " outofmem " , " Out of memory " ) ;
if ( bpp < 16 ) {
int z = 0 ;
2010-03-03 12:02:51 -05:00
if ( psize = = 0 | | psize > 256 ) { free ( out ) ; return epuc ( " invalid " , " Corrupt BMP " ) ; }
2010-01-05 13:02:29 -05:00
for ( i = 0 ; i < psize ; + + i ) {
2010-03-03 12:02:51 -05:00
pal [ i ] [ 2 ] = get8 ( s ) ;
pal [ i ] [ 1 ] = get8 ( s ) ;
pal [ i ] [ 0 ] = get8 ( s ) ;
if ( hsz ! = 12 ) get8 ( s ) ;
2010-01-05 13:02:29 -05:00
pal [ i ] [ 3 ] = 255 ;
}
2010-03-03 12:02:51 -05:00
skip ( s , offset - 14 - hsz - psize * ( hsz = = 12 ? 3 : 4 ) ) ;
if ( bpp = = 4 ) width = ( s - > img_x + 1 ) > > 1 ;
else if ( bpp = = 8 ) width = s - > img_x ;
else { free ( out ) ; return epuc ( " bad bpp " , " Corrupt BMP " ) ; }
2010-01-05 13:02:29 -05:00
pad = ( - width ) & 3 ;
2010-03-03 12:02:51 -05:00
for ( j = 0 ; j < ( int ) s - > img_y ; + + j ) {
for ( i = 0 ; i < ( int ) s - > img_x ; i + = 2 ) {
int v = get8 ( s ) , v2 = 0 ;
2010-01-05 13:02:29 -05:00
if ( bpp = = 4 ) {
v2 = v & 15 ;
v > > = 4 ;
}
out [ z + + ] = pal [ v ] [ 0 ] ;
out [ z + + ] = pal [ v ] [ 1 ] ;
out [ z + + ] = pal [ v ] [ 2 ] ;
if ( target = = 4 ) out [ z + + ] = 255 ;
2010-03-03 12:02:51 -05:00
if ( i + 1 = = ( int ) s - > img_x ) break ;
v = ( bpp = = 8 ) ? get8 ( s ) : v2 ;
2010-01-05 13:02:29 -05:00
out [ z + + ] = pal [ v ] [ 0 ] ;
out [ z + + ] = pal [ v ] [ 1 ] ;
out [ z + + ] = pal [ v ] [ 2 ] ;
if ( target = = 4 ) out [ z + + ] = 255 ;
}
2010-03-03 12:02:51 -05:00
skip ( s , pad ) ;
2010-01-05 13:02:29 -05:00
}
} else {
int rshift = 0 , gshift = 0 , bshift = 0 , ashift = 0 , rcount = 0 , gcount = 0 , bcount = 0 , acount = 0 ;
int z = 0 ;
int easy = 0 ;
2010-03-03 12:02:51 -05:00
skip ( s , offset - 14 - hsz ) ;
if ( bpp = = 24 ) width = 3 * s - > img_x ;
else if ( bpp = = 16 ) width = 2 * s - > img_x ;
2010-01-05 13:02:29 -05:00
else /* bpp = 32 and pad = 0 */ width = 0 ;
pad = ( - width ) & 3 ;
if ( bpp = = 24 ) {
easy = 1 ;
} else if ( bpp = = 32 ) {
if ( mb = = 0xff & & mg = = 0xff00 & & mr = = 0xff000000 & & ma = = 0xff000000 )
easy = 2 ;
}
if ( ! easy ) {
if ( ! mr | | ! mg | | ! mb ) return epuc ( " bad masks " , " Corrupt BMP " ) ;
// right shift amt to put high bit in position #7
rshift = high_bit ( mr ) - 7 ; rcount = bitcount ( mr ) ;
gshift = high_bit ( mg ) - 7 ; gcount = bitcount ( mr ) ;
bshift = high_bit ( mb ) - 7 ; bcount = bitcount ( mr ) ;
ashift = high_bit ( ma ) - 7 ; acount = bitcount ( mr ) ;
}
2010-03-03 12:02:51 -05:00
for ( j = 0 ; j < ( int ) s - > img_y ; + + j ) {
2010-01-05 13:02:29 -05:00
if ( easy ) {
2010-03-03 12:02:51 -05:00
for ( i = 0 ; i < ( int ) s - > img_x ; + + i ) {
2010-01-05 13:02:29 -05:00
int a ;
2010-03-03 12:02:51 -05:00
out [ z + 2 ] = get8 ( s ) ;
out [ z + 1 ] = get8 ( s ) ;
out [ z + 0 ] = get8 ( s ) ;
2010-01-05 13:02:29 -05:00
z + = 3 ;
2010-03-03 12:02:51 -05:00
a = ( easy = = 2 ? get8 ( s ) : 255 ) ;
2010-01-05 13:02:29 -05:00
if ( target = = 4 ) out [ z + + ] = a ;
}
} else {
2010-03-03 12:02:51 -05:00
for ( i = 0 ; i < ( int ) s - > img_x ; + + i ) {
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint32_t v = ( bpp = = 16 ? get16le ( s ) : get32le ( s ) ) ;
2010-01-05 13:02:29 -05:00
int a ;
out [ z + + ] = shiftsigned ( v & mr , rshift , rcount ) ;
out [ z + + ] = shiftsigned ( v & mg , gshift , gcount ) ;
out [ z + + ] = shiftsigned ( v & mb , bshift , bcount ) ;
a = ( ma ? shiftsigned ( v & ma , ashift , acount ) : 255 ) ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
if ( target = = 4 ) out [ z + + ] = a ;
2010-01-05 13:02:29 -05:00
}
}
2010-03-03 12:02:51 -05:00
skip ( s , pad ) ;
2010-01-05 13:02:29 -05:00
}
}
if ( flip_vertically ) {
stbi_uc t ;
2010-03-03 12:02:51 -05:00
for ( j = 0 ; j < ( int ) s - > img_y > > 1 ; + + j ) {
stbi_uc * p1 = out + j * s - > img_x * target ;
stbi_uc * p2 = out + ( s - > img_y - 1 - j ) * s - > img_x * target ;
for ( i = 0 ; i < ( int ) s - > img_x * target ; + + i ) {
2010-01-05 13:02:29 -05:00
t = p1 [ i ] , p1 [ i ] = p2 [ i ] , p2 [ i ] = t ;
}
}
}
if ( req_comp & & req_comp ! = target ) {
2010-03-03 12:02:51 -05:00
out = convert_format ( out , target , req_comp , s - > img_x , s - > img_y ) ;
2010-01-05 13:02:29 -05:00
if ( out = = NULL ) return out ; // convert_format frees input on failure
}
2010-03-03 12:02:51 -05:00
* x = s - > img_x ;
* y = s - > img_y ;
2010-01-05 13:02:29 -05:00
if ( comp ) * comp = target ;
return out ;
}
# ifndef STBI_NO_STDIO
stbi_uc * stbi_bmp_load ( char const * filename , int * x , int * y , int * comp , int req_comp )
{
stbi_uc * data ;
FILE * f = fopen ( filename , " rb " ) ;
if ( ! f ) return NULL ;
data = stbi_bmp_load_from_file ( f , x , y , comp , req_comp ) ;
fclose ( f ) ;
return data ;
}
stbi_uc * stbi_bmp_load_from_file ( FILE * f , int * x , int * y , int * comp , int req_comp )
{
2010-03-03 12:02:51 -05:00
stbi s ;
start_file ( & s , f ) ;
return bmp_load ( & s , x , y , comp , req_comp ) ;
2010-01-05 13:02:29 -05:00
}
# endif
stbi_uc * stbi_bmp_load_from_memory ( stbi_uc const * buffer , int len , int * x , int * y , int * comp , int req_comp )
{
2010-03-03 12:02:51 -05:00
stbi s ;
start_mem ( & s , buffer , len ) ;
return bmp_load ( & s , x , y , comp , req_comp ) ;
2010-01-05 13:02:29 -05:00
}
// Targa Truevision - TGA
// by Jonathan Dummer
2010-03-03 12:02:51 -05:00
static int tga_test ( stbi * s )
2010-01-05 13:02:29 -05:00
{
int sz ;
2010-03-03 12:02:51 -05:00
get8u ( s ) ; // discard Offset
sz = get8u ( s ) ; // color type
2010-01-05 13:02:29 -05:00
if ( sz > 1 ) return 0 ; // only RGB or indexed allowed
2010-03-03 12:02:51 -05:00
sz = get8u ( s ) ; // image type
2010-01-05 13:02:29 -05:00
if ( ( sz ! = 1 ) & & ( sz ! = 2 ) & & ( sz ! = 3 ) & & ( sz ! = 9 ) & & ( sz ! = 10 ) & & ( sz ! = 11 ) ) return 0 ; // only RGB or grey allowed, +/- RLE
2010-03-03 12:02:51 -05:00
get16 ( s ) ; // discard palette start
get16 ( s ) ; // discard palette length
get8 ( s ) ; // discard bits per palette color entry
get16 ( s ) ; // discard x origin
get16 ( s ) ; // discard y origin
if ( get16 ( s ) < 1 ) return 0 ; // test width
if ( get16 ( s ) < 1 ) return 0 ; // test height
sz = get8 ( s ) ; // bits per pixel
2010-01-05 13:02:29 -05:00
if ( ( sz ! = 8 ) & & ( sz ! = 16 ) & & ( sz ! = 24 ) & & ( sz ! = 32 ) ) return 0 ; // only RGB or RGBA or grey allowed
return 1 ; // seems to have passed everything
}
# ifndef STBI_NO_STDIO
int stbi_tga_test_file ( FILE * f )
{
2010-03-03 12:02:51 -05:00
stbi s ;
2010-01-05 13:02:29 -05:00
int r , n = ftell ( f ) ;
2010-03-03 12:02:51 -05:00
start_file ( & s , f ) ;
r = tga_test ( & s ) ;
2010-01-05 13:02:29 -05:00
fseek ( f , n , SEEK_SET ) ;
return r ;
}
# endif
int stbi_tga_test_memory ( stbi_uc const * buffer , int len )
{
2010-03-03 12:02:51 -05:00
stbi s ;
start_mem ( & s , buffer , len ) ;
return tga_test ( & s ) ;
2010-01-05 13:02:29 -05:00
}
2010-03-03 12:02:51 -05:00
static stbi_uc * tga_load ( stbi * s , int * x , int * y , int * comp , int req_comp )
2010-01-05 13:02:29 -05:00
{
// read in the TGA header stuff
2010-03-03 12:02:51 -05:00
int tga_offset = get8u ( s ) ;
int tga_indexed = get8u ( s ) ;
int tga_image_type = get8u ( s ) ;
2010-01-05 13:02:29 -05:00
int tga_is_RLE = 0 ;
2010-03-03 12:02:51 -05:00
int tga_palette_start = get16le ( s ) ;
int tga_palette_len = get16le ( s ) ;
int tga_palette_bits = get8u ( s ) ;
int tga_x_origin = get16le ( s ) ;
int tga_y_origin = get16le ( s ) ;
int tga_width = get16le ( s ) ;
int tga_height = get16le ( s ) ;
int tga_bits_per_pixel = get8u ( s ) ;
int tga_inverted = get8u ( s ) ;
2010-01-05 13:02:29 -05:00
// image data
unsigned char * tga_data ;
unsigned char * tga_palette = NULL ;
int i , j ;
unsigned char raw_data [ 4 ] ;
unsigned char trans_data [ 4 ] ;
int RLE_count = 0 ;
int RLE_repeating = 0 ;
int read_next_pixel = 1 ;
// do a tiny bit of precessing
if ( tga_image_type > = 8 )
{
tga_image_type - = 8 ;
tga_is_RLE = 1 ;
}
/* int tga_alpha_bits = tga_inverted & 15; */
tga_inverted = 1 - ( ( tga_inverted > > 5 ) & 1 ) ;
// error check
if ( //(tga_indexed) ||
( tga_width < 1 ) | | ( tga_height < 1 ) | |
( tga_image_type < 1 ) | | ( tga_image_type > 3 ) | |
( ( tga_bits_per_pixel ! = 8 ) & & ( tga_bits_per_pixel ! = 16 ) & &
( tga_bits_per_pixel ! = 24 ) & & ( tga_bits_per_pixel ! = 32 ) )
)
{
return NULL ;
}
// If I'm paletted, then I'll use the number of bits from the palette
if ( tga_indexed )
{
tga_bits_per_pixel = tga_palette_bits ;
}
// tga info
* x = tga_width ;
* y = tga_height ;
if ( ( req_comp < 1 ) | | ( req_comp > 4 ) )
{
// just use whatever the file was
req_comp = tga_bits_per_pixel / 8 ;
* comp = req_comp ;
} else
{
// force a new number of components
* comp = tga_bits_per_pixel / 8 ;
}
tga_data = ( unsigned char * ) malloc ( tga_width * tga_height * req_comp ) ;
// skip to the data's starting position (offset usually = 0)
2010-03-03 12:02:51 -05:00
skip ( s , tga_offset ) ;
2010-01-05 13:02:29 -05:00
// do I need to load a palette?
if ( tga_indexed )
{
// any data to skip? (offset usually = 0)
2010-03-03 12:02:51 -05:00
skip ( s , tga_palette_start ) ;
2010-01-05 13:02:29 -05:00
// load the palette
tga_palette = ( unsigned char * ) malloc ( tga_palette_len * tga_palette_bits / 8 ) ;
2010-03-03 12:02:51 -05:00
getn ( s , tga_palette , tga_palette_len * tga_palette_bits / 8 ) ;
2010-01-05 13:02:29 -05:00
}
// load the data
for ( i = 0 ; i < tga_width * tga_height ; + + i )
{
// if I'm in RLE mode, do I need to get a RLE chunk?
if ( tga_is_RLE )
{
if ( RLE_count = = 0 )
{
// yep, get the next byte as a RLE command
2010-03-03 12:02:51 -05:00
int RLE_cmd = get8u ( s ) ;
2010-01-05 13:02:29 -05:00
RLE_count = 1 + ( RLE_cmd & 127 ) ;
RLE_repeating = RLE_cmd > > 7 ;
read_next_pixel = 1 ;
} else if ( ! RLE_repeating )
{
read_next_pixel = 1 ;
}
} else
{
read_next_pixel = 1 ;
}
// OK, if I need to read a pixel, do it now
if ( read_next_pixel )
{
// load however much data we did have
if ( tga_indexed )
{
// read in 1 byte, then perform the lookup
2010-03-03 12:02:51 -05:00
int pal_idx = get8u ( s ) ;
2010-01-05 13:02:29 -05:00
if ( pal_idx > = tga_palette_len )
{
// invalid index
pal_idx = 0 ;
}
pal_idx * = tga_bits_per_pixel / 8 ;
for ( j = 0 ; j * 8 < tga_bits_per_pixel ; + + j )
{
raw_data [ j ] = tga_palette [ pal_idx + j ] ;
}
} else
{
// read in the data raw
for ( j = 0 ; j * 8 < tga_bits_per_pixel ; + + j )
{
2010-03-03 12:02:51 -05:00
raw_data [ j ] = get8u ( s ) ;
2010-01-05 13:02:29 -05:00
}
}
// convert raw to the intermediate format
switch ( tga_bits_per_pixel )
{
case 8 :
// Luminous => RGBA
trans_data [ 0 ] = raw_data [ 0 ] ;
trans_data [ 1 ] = raw_data [ 0 ] ;
trans_data [ 2 ] = raw_data [ 0 ] ;
trans_data [ 3 ] = 255 ;
break ;
case 16 :
// Luminous,Alpha => RGBA
trans_data [ 0 ] = raw_data [ 0 ] ;
trans_data [ 1 ] = raw_data [ 0 ] ;
trans_data [ 2 ] = raw_data [ 0 ] ;
trans_data [ 3 ] = raw_data [ 1 ] ;
break ;
case 24 :
// BGR => RGBA
trans_data [ 0 ] = raw_data [ 2 ] ;
trans_data [ 1 ] = raw_data [ 1 ] ;
trans_data [ 2 ] = raw_data [ 0 ] ;
trans_data [ 3 ] = 255 ;
break ;
case 32 :
// BGRA => RGBA
trans_data [ 0 ] = raw_data [ 2 ] ;
trans_data [ 1 ] = raw_data [ 1 ] ;
trans_data [ 2 ] = raw_data [ 0 ] ;
trans_data [ 3 ] = raw_data [ 3 ] ;
break ;
}
// clear the reading flag for the next pixel
read_next_pixel = 0 ;
} // end of reading a pixel
// convert to final format
switch ( req_comp )
{
case 1 :
// RGBA => Luminance
tga_data [ i * req_comp + 0 ] = compute_y ( trans_data [ 0 ] , trans_data [ 1 ] , trans_data [ 2 ] ) ;
break ;
case 2 :
// RGBA => Luminance,Alpha
tga_data [ i * req_comp + 0 ] = compute_y ( trans_data [ 0 ] , trans_data [ 1 ] , trans_data [ 2 ] ) ;
tga_data [ i * req_comp + 1 ] = trans_data [ 3 ] ;
break ;
case 3 :
// RGBA => RGB
tga_data [ i * req_comp + 0 ] = trans_data [ 0 ] ;
tga_data [ i * req_comp + 1 ] = trans_data [ 1 ] ;
tga_data [ i * req_comp + 2 ] = trans_data [ 2 ] ;
break ;
case 4 :
// RGBA => RGBA
tga_data [ i * req_comp + 0 ] = trans_data [ 0 ] ;
tga_data [ i * req_comp + 1 ] = trans_data [ 1 ] ;
tga_data [ i * req_comp + 2 ] = trans_data [ 2 ] ;
tga_data [ i * req_comp + 3 ] = trans_data [ 3 ] ;
break ;
}
// in case we're in RLE mode, keep counting down
- - RLE_count ;
}
// do I need to invert the image?
if ( tga_inverted )
{
for ( j = 0 ; j * 2 < tga_height ; + + j )
{
int index1 = j * tga_width * req_comp ;
int index2 = ( tga_height - 1 - j ) * tga_width * req_comp ;
for ( i = tga_width * req_comp ; i > 0 ; - - i )
{
unsigned char temp = tga_data [ index1 ] ;
tga_data [ index1 ] = tga_data [ index2 ] ;
tga_data [ index2 ] = temp ;
+ + index1 ;
+ + index2 ;
}
}
}
// clear my palette, if I had one
if ( tga_palette ! = NULL )
{
free ( tga_palette ) ;
}
// the things I do to get rid of an error message, and yet keep
// Microsoft's C compilers happy... [8^(
tga_palette_start = tga_palette_len = tga_palette_bits =
tga_x_origin = tga_y_origin = 0 ;
// OK, done
return tga_data ;
}
# ifndef STBI_NO_STDIO
stbi_uc * stbi_tga_load ( char const * filename , int * x , int * y , int * comp , int req_comp )
{
stbi_uc * data ;
FILE * f = fopen ( filename , " rb " ) ;
if ( ! f ) return NULL ;
data = stbi_tga_load_from_file ( f , x , y , comp , req_comp ) ;
fclose ( f ) ;
return data ;
}
stbi_uc * stbi_tga_load_from_file ( FILE * f , int * x , int * y , int * comp , int req_comp )
{
2010-03-03 12:02:51 -05:00
stbi s ;
start_file ( & s , f ) ;
return tga_load ( & s , x , y , comp , req_comp ) ;
2010-01-05 13:02:29 -05:00
}
# endif
stbi_uc * stbi_tga_load_from_memory ( stbi_uc const * buffer , int len , int * x , int * y , int * comp , int req_comp )
{
2010-03-03 12:02:51 -05:00
stbi s ;
start_mem ( & s , buffer , len ) ;
return tga_load ( & s , x , y , comp , req_comp ) ;
2010-01-05 13:02:29 -05:00
}
// *************************************************************************************************
// Photoshop PSD loader -- PD by Thatcher Ulrich, integration by Nicholas Schulz, tweaked by STB
2010-03-03 12:02:51 -05:00
static int psd_test ( stbi * s )
2010-01-05 13:02:29 -05:00
{
2010-03-03 12:02:51 -05:00
if ( get32 ( s ) ! = 0x38425053 ) return 0 ; // "8BPS"
2010-01-05 13:02:29 -05:00
else return 1 ;
}
# ifndef STBI_NO_STDIO
int stbi_psd_test_file ( FILE * f )
{
2010-03-03 12:02:51 -05:00
stbi s ;
2010-01-05 13:02:29 -05:00
int r , n = ftell ( f ) ;
2010-03-03 12:02:51 -05:00
start_file ( & s , f ) ;
r = psd_test ( & s ) ;
2010-01-05 13:02:29 -05:00
fseek ( f , n , SEEK_SET ) ;
return r ;
}
# endif
int stbi_psd_test_memory ( stbi_uc const * buffer , int len )
{
2010-03-03 12:02:51 -05:00
stbi s ;
start_mem ( & s , buffer , len ) ;
return psd_test ( & s ) ;
2010-01-05 13:02:29 -05:00
}
2010-03-03 12:02:51 -05:00
static stbi_uc * psd_load ( stbi * s , int * x , int * y , int * comp , int req_comp )
2010-01-05 13:02:29 -05:00
{
int pixelCount ;
int channelCount , compression ;
int channel , i , count , len ;
int w , h ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint8_t * out ;
2010-01-05 13:02:29 -05:00
// Check identifier
2010-03-03 12:02:51 -05:00
if ( get32 ( s ) ! = 0x38425053 ) // "8BPS"
2010-01-05 13:02:29 -05:00
return epuc ( " not PSD " , " Corrupt PSD image " ) ;
// Check file type version.
2010-03-03 12:02:51 -05:00
if ( get16 ( s ) ! = 1 )
2010-01-05 13:02:29 -05:00
return epuc ( " wrong version " , " Unsupported version of PSD image " ) ;
// Skip 6 reserved bytes.
2010-03-03 12:02:51 -05:00
skip ( s , 6 ) ;
2010-01-05 13:02:29 -05:00
// Read the number of channels (R, G, B, A, etc).
2010-03-03 12:02:51 -05:00
channelCount = get16 ( s ) ;
2010-01-05 13:02:29 -05:00
if ( channelCount < 0 | | channelCount > 16 )
return epuc ( " wrong channel count " , " Unsupported number of channels in PSD image " ) ;
// Read the rows and columns of the image.
2010-03-03 12:02:51 -05:00
h = get32 ( s ) ;
w = get32 ( s ) ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
2010-01-05 13:02:29 -05:00
// Make sure the depth is 8 bits.
2010-03-03 12:02:51 -05:00
if ( get16 ( s ) ! = 8 )
2010-01-05 13:02:29 -05:00
return epuc ( " unsupported bit depth " , " PSD bit depth is not 8 bit " ) ;
// Make sure the color mode is RGB.
// Valid options are:
// 0: Bitmap
// 1: Grayscale
// 2: Indexed color
// 3: RGB color
// 4: CMYK color
// 7: Multichannel
// 8: Duotone
// 9: Lab color
2010-03-03 12:02:51 -05:00
if ( get16 ( s ) ! = 3 )
2010-01-05 13:02:29 -05:00
return epuc ( " wrong color format " , " PSD is not in RGB color format " ) ;
// Skip the Mode Data. (It's the palette for indexed color; other info for other modes.)
2010-03-03 12:02:51 -05:00
skip ( s , get32 ( s ) ) ;
2010-01-05 13:02:29 -05:00
// Skip the image resources. (resolution, pen tool paths, etc)
2010-03-03 12:02:51 -05:00
skip ( s , get32 ( s ) ) ;
2010-01-05 13:02:29 -05:00
// Skip the reserved data.
2010-03-03 12:02:51 -05:00
skip ( s , get32 ( s ) ) ;
2010-01-05 13:02:29 -05:00
// Find out if the data is compressed.
// Known values:
// 0: no compression
// 1: RLE compressed
2010-03-03 12:02:51 -05:00
compression = get16 ( s ) ;
2010-01-05 13:02:29 -05:00
if ( compression > 1 )
2010-03-03 12:02:51 -05:00
return epuc ( " bad compression " , " PSD has an unknown compression format " ) ;
2010-01-05 13:02:29 -05:00
// Create the destination image.
out = ( stbi_uc * ) malloc ( 4 * w * h ) ;
if ( ! out ) return epuc ( " outofmem " , " Out of memory " ) ;
pixelCount = w * h ;
// Initialize the data to zero.
//memset( out, 0, pixelCount * 4 );
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
2010-01-05 13:02:29 -05:00
// Finally, the image data.
if ( compression ) {
// RLE as used by .PSD and .TIFF
// Loop until you get the number of unpacked bytes you are expecting:
// Read the next source byte into n.
// If n is between 0 and 127 inclusive, copy the next n+1 bytes literally.
// Else if n is between -127 and -1 inclusive, copy the next byte -n+1 times.
// Else if n is 128, noop.
// Endloop
// The RLE-compressed data is preceeded by a 2-byte data count for each row in the data,
// which we're going to just skip.
2010-03-03 12:02:51 -05:00
skip ( s , h * channelCount * 2 ) ;
2010-01-05 13:02:29 -05:00
// Read the RLE data by channel.
for ( channel = 0 ; channel < 4 ; channel + + ) {
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint8_t * p ;
2010-01-05 13:02:29 -05:00
p = out + channel ;
if ( channel > = channelCount ) {
// Fill this channel with default data.
for ( i = 0 ; i < pixelCount ; i + + ) * p = ( channel = = 3 ? 255 : 0 ) , p + = 4 ;
} else {
// Read the RLE data.
count = 0 ;
while ( count < pixelCount ) {
2010-03-03 12:02:51 -05:00
len = get8 ( s ) ;
2010-01-05 13:02:29 -05:00
if ( len = = 128 ) {
// No-op.
} else if ( len < 128 ) {
// Copy next len+1 bytes literally.
len + + ;
count + = len ;
while ( len ) {
2010-03-03 12:02:51 -05:00
* p = get8 ( s ) ;
2010-01-05 13:02:29 -05:00
p + = 4 ;
len - - ;
}
} else if ( len > 128 ) {
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint32_t val ;
2010-01-05 13:02:29 -05:00
// Next -len+1 bytes in the dest are replicated from next source byte.
// (Interpret len as a negative 8-bit int.)
len ^ = 0x0FF ;
len + = 2 ;
2010-03-03 12:02:51 -05:00
val = get8 ( s ) ;
2010-01-05 13:02:29 -05:00
count + = len ;
while ( len ) {
* p = val ;
p + = 4 ;
len - - ;
}
}
}
}
}
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
2010-01-05 13:02:29 -05:00
} else {
// We're at the raw image data. It's each channel in order (Red, Green, Blue, Alpha, ...)
// where each channel consists of an 8-bit value for each pixel in the image.
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
2010-01-05 13:02:29 -05:00
// Read the data by channel.
for ( channel = 0 ; channel < 4 ; channel + + ) {
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint8_t * p ;
2010-01-05 13:02:29 -05:00
p = out + channel ;
if ( channel > channelCount ) {
// Fill this channel with default data.
for ( i = 0 ; i < pixelCount ; i + + ) * p = channel = = 3 ? 255 : 0 , p + = 4 ;
} else {
// Read the data.
count = 0 ;
for ( i = 0 ; i < pixelCount ; i + + )
2010-03-03 12:02:51 -05:00
* p = get8 ( s ) , p + = 4 ;
2010-01-05 13:02:29 -05:00
}
}
}
if ( req_comp & & req_comp ! = 4 ) {
2010-03-03 12:02:51 -05:00
out = convert_format ( out , 4 , req_comp , w , h ) ;
2010-01-05 13:02:29 -05:00
if ( out = = NULL ) return out ; // convert_format frees input on failure
}
if ( comp ) * comp = channelCount ;
* y = h ;
* x = w ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
2010-01-05 13:02:29 -05:00
return out ;
}
# ifndef STBI_NO_STDIO
stbi_uc * stbi_psd_load ( char const * filename , int * x , int * y , int * comp , int req_comp )
{
stbi_uc * data ;
FILE * f = fopen ( filename , " rb " ) ;
if ( ! f ) return NULL ;
data = stbi_psd_load_from_file ( f , x , y , comp , req_comp ) ;
fclose ( f ) ;
return data ;
}
stbi_uc * stbi_psd_load_from_file ( FILE * f , int * x , int * y , int * comp , int req_comp )
{
2010-03-03 12:02:51 -05:00
stbi s ;
start_file ( & s , f ) ;
return psd_load ( & s , x , y , comp , req_comp ) ;
2010-01-05 13:02:29 -05:00
}
# endif
stbi_uc * stbi_psd_load_from_memory ( stbi_uc const * buffer , int len , int * x , int * y , int * comp , int req_comp )
{
2010-03-03 12:02:51 -05:00
stbi s ;
start_mem ( & s , buffer , len ) ;
return psd_load ( & s , x , y , comp , req_comp ) ;
2010-01-05 13:02:29 -05:00
}
// *************************************************************************************************
// Radiance RGBE HDR loader
// originally by Nicolas Schulz
# ifndef STBI_NO_HDR
2010-03-03 12:02:51 -05:00
static int hdr_test ( stbi * s )
2010-01-05 13:02:29 -05:00
{
char * signature = " #?RADIANCE \n " ;
int i ;
for ( i = 0 ; signature [ i ] ; + + i )
2010-03-03 12:02:51 -05:00
if ( get8 ( s ) ! = signature [ i ] )
2010-01-05 13:02:29 -05:00
return 0 ;
return 1 ;
}
int stbi_hdr_test_memory ( stbi_uc const * buffer , int len )
{
2010-03-03 12:02:51 -05:00
stbi s ;
start_mem ( & s , buffer , len ) ;
return hdr_test ( & s ) ;
2010-01-05 13:02:29 -05:00
}
# ifndef STBI_NO_STDIO
int stbi_hdr_test_file ( FILE * f )
{
2010-03-03 12:02:51 -05:00
stbi s ;
2010-01-05 13:02:29 -05:00
int r , n = ftell ( f ) ;
2010-03-03 12:02:51 -05:00
start_file ( & s , f ) ;
r = hdr_test ( & s ) ;
2010-01-05 13:02:29 -05:00
fseek ( f , n , SEEK_SET ) ;
return r ;
}
# endif
# define HDR_BUFLEN 1024
2010-03-03 12:02:51 -05:00
static char * hdr_gettoken ( stbi * z , char * buffer )
2010-01-05 13:02:29 -05:00
{
int len = 0 ;
char * s = buffer , c = ' \0 ' ;
2010-03-03 12:02:51 -05:00
c = get8 ( z ) ;
2010-01-05 13:02:29 -05:00
2010-03-03 12:02:51 -05:00
while ( ! at_eof ( z ) & & c ! = ' \n ' ) {
2010-01-05 13:02:29 -05:00
buffer [ len + + ] = c ;
if ( len = = HDR_BUFLEN - 1 ) {
// flush to end of line
2010-03-03 12:02:51 -05:00
while ( ! at_eof ( z ) & & get8 ( z ) ! = ' \n ' )
2010-01-05 13:02:29 -05:00
;
break ;
}
2010-03-03 12:02:51 -05:00
c = get8 ( z ) ;
2010-01-05 13:02:29 -05:00
}
buffer [ len ] = 0 ;
return buffer ;
}
static void hdr_convert ( float * output , stbi_uc * input , int req_comp )
{
if ( input [ 3 ] ! = 0 ) {
float f1 ;
// Exponent
f1 = ( float ) ldexp ( 1.0f , input [ 3 ] - ( int ) ( 128 + 8 ) ) ;
if ( req_comp < = 2 )
output [ 0 ] = ( input [ 0 ] + input [ 1 ] + input [ 2 ] ) * f1 / 3 ;
else {
output [ 0 ] = input [ 0 ] * f1 ;
output [ 1 ] = input [ 1 ] * f1 ;
output [ 2 ] = input [ 2 ] * f1 ;
}
if ( req_comp = = 2 ) output [ 1 ] = 1 ;
if ( req_comp = = 4 ) output [ 3 ] = 1 ;
} else {
switch ( req_comp ) {
case 4 : output [ 3 ] = 1 ; /* fallthrough */
case 3 : output [ 0 ] = output [ 1 ] = output [ 2 ] = 0 ;
break ;
case 2 : output [ 1 ] = 1 ; /* fallthrough */
case 1 : output [ 0 ] = 0 ;
break ;
}
}
}
2010-03-03 12:02:51 -05:00
static float * hdr_load ( stbi * s , int * x , int * y , int * comp , int req_comp )
2010-01-05 13:02:29 -05:00
{
char buffer [ HDR_BUFLEN ] ;
char * token ;
int valid = 0 ;
int width , height ;
stbi_uc * scanline ;
float * hdr_data ;
int len ;
unsigned char count , value ;
int i , j , k , c1 , c2 , z ;
// Check identifier
2010-03-03 12:02:51 -05:00
if ( strcmp ( hdr_gettoken ( s , buffer ) , " #?RADIANCE " ) ! = 0 )
2010-01-05 13:02:29 -05:00
return epf ( " not HDR " , " Corrupt HDR image " ) ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
2010-01-05 13:02:29 -05:00
// Parse header
while ( 1 ) {
2010-03-03 12:02:51 -05:00
token = hdr_gettoken ( s , buffer ) ;
2010-01-05 13:02:29 -05:00
if ( token [ 0 ] = = 0 ) break ;
if ( strcmp ( token , " FORMAT=32-bit_rle_rgbe " ) = = 0 ) valid = 1 ;
}
if ( ! valid ) return epf ( " unsupported format " , " Unsupported HDR format " ) ;
// Parse width and height
// can't use sscanf() if we're not using stdio!
2010-03-03 12:02:51 -05:00
token = hdr_gettoken ( s , buffer ) ;
2010-01-05 13:02:29 -05:00
if ( strncmp ( token , " -Y " , 3 ) ) return epf ( " unsupported data layout " , " Unsupported HDR format " ) ;
token + = 3 ;
height = strtol ( token , & token , 10 ) ;
while ( * token = = ' ' ) + + token ;
if ( strncmp ( token , " +X " , 3 ) ) return epf ( " unsupported data layout " , " Unsupported HDR format " ) ;
token + = 3 ;
width = strtol ( token , NULL , 10 ) ;
* x = width ;
* y = height ;
* comp = 3 ;
if ( req_comp = = 0 ) req_comp = 3 ;
// Read data
hdr_data = ( float * ) malloc ( height * width * req_comp * sizeof ( float ) ) ;
// Load image data
// image data is stored as some number of sca
if ( width < 8 | | width > = 32768 ) {
// Read flat data
for ( j = 0 ; j < height ; + + j ) {
for ( i = 0 ; i < width ; + + i ) {
stbi_uc rgbe [ 4 ] ;
main_decode_loop :
2010-03-03 12:02:51 -05:00
getn ( s , rgbe , 4 ) ;
2010-01-05 13:02:29 -05:00
hdr_convert ( hdr_data + j * width * req_comp + i * req_comp , rgbe , req_comp ) ;
}
}
} else {
// Read RLE-encoded data
scanline = NULL ;
for ( j = 0 ; j < height ; + + j ) {
2010-03-03 12:02:51 -05:00
c1 = get8 ( s ) ;
c2 = get8 ( s ) ;
len = get8 ( s ) ;
2010-01-05 13:02:29 -05:00
if ( c1 ! = 2 | | c2 ! = 2 | | ( len & 0x80 ) ) {
// not run-length encoded, so we have to actually use THIS data as a decoded
// pixel (note this can't be a valid pixel--one of RGB must be >= 128)
2010-03-03 12:02:51 -05:00
stbi_uc rgbe [ 4 ] = { c1 , c2 , len , get8 ( s ) } ;
2010-01-05 13:02:29 -05:00
hdr_convert ( hdr_data , rgbe , req_comp ) ;
i = 1 ;
j = 0 ;
free ( scanline ) ;
goto main_decode_loop ; // yes, this is fucking insane; blame the fucking insane format
}
len < < = 8 ;
2010-03-03 12:02:51 -05:00
len | = get8 ( s ) ;
2010-01-05 13:02:29 -05:00
if ( len ! = width ) { free ( hdr_data ) ; free ( scanline ) ; return epf ( " invalid decoded scanline length " , " corrupt HDR " ) ; }
if ( scanline = = NULL ) scanline = ( stbi_uc * ) malloc ( width * 4 ) ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
2010-01-05 13:02:29 -05:00
for ( k = 0 ; k < 4 ; + + k ) {
i = 0 ;
while ( i < width ) {
2010-03-03 12:02:51 -05:00
count = get8 ( s ) ;
2010-01-05 13:02:29 -05:00
if ( count > 128 ) {
// Run
2010-03-03 12:02:51 -05:00
value = get8 ( s ) ;
2010-01-05 13:02:29 -05:00
count - = 128 ;
for ( z = 0 ; z < count ; + + z )
scanline [ i + + * 4 + k ] = value ;
} else {
// Dump
for ( z = 0 ; z < count ; + + z )
2010-03-03 12:02:51 -05:00
scanline [ i + + * 4 + k ] = get8 ( s ) ;
2010-01-05 13:02:29 -05:00
}
}
}
for ( i = 0 ; i < width ; + + i )
hdr_convert ( hdr_data + ( j * width + i ) * req_comp , scanline + i * 4 , req_comp ) ;
}
free ( scanline ) ;
}
return hdr_data ;
}
# ifndef STBI_NO_STDIO
float * stbi_hdr_load_from_file ( FILE * f , int * x , int * y , int * comp , int req_comp )
{
2010-03-03 12:02:51 -05:00
stbi s ;
start_file ( & s , f ) ;
return hdr_load ( & s , x , y , comp , req_comp ) ;
2010-01-05 13:02:29 -05:00
}
# endif
float * stbi_hdr_load_from_memory ( stbi_uc const * buffer , int len , int * x , int * y , int * comp , int req_comp )
{
2010-03-03 12:02:51 -05:00
stbi s ;
start_mem ( & s , buffer , len ) ;
return hdr_load ( & s , x , y , comp , req_comp ) ;
2010-01-05 13:02:29 -05:00
}
# endif // STBI_NO_HDR
/////////////////////// write image ///////////////////////
# ifndef STBI_NO_WRITE
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
static void write8 ( FILE * f , int x ) { uint8_t z = ( uint8_t ) x ; fwrite ( & z , 1 , 1 , f ) ; }
2010-01-05 13:02:29 -05:00
static void writefv ( FILE * f , char * fmt , va_list v )
{
while ( * fmt ) {
switch ( * fmt + + ) {
case ' ' : break ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
case ' 1 ' : { uint8_t x = va_arg ( v , int ) ; write8 ( f , x ) ; break ; }
case ' 2 ' : { int16_t x = va_arg ( v , int ) ; write8 ( f , x ) ; write8 ( f , x > > 8 ) ; break ; }
case ' 4 ' : { int32_t x = va_arg ( v , int ) ; write8 ( f , x ) ; write8 ( f , x > > 8 ) ; write8 ( f , x > > 16 ) ; write8 ( f , x > > 24 ) ; break ; }
2010-01-05 13:02:29 -05:00
default :
assert ( 0 ) ;
va_end ( v ) ;
return ;
}
}
}
static void writef ( FILE * f , char * fmt , . . . )
{
va_list v ;
va_start ( v , fmt ) ;
writefv ( f , fmt , v ) ;
va_end ( v ) ;
}
static void write_pixels ( FILE * f , int rgb_dir , int vdir , int x , int y , int comp , void * data , int write_alpha , int scanline_pad )
{
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint8_t bg [ 3 ] = { 255 , 0 , 255 } , px [ 3 ] ;
uint32_t zero = 0 ;
2010-01-05 13:02:29 -05:00
int i , j , k , j_end ;
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
if ( vdir < 0 )
2010-01-05 13:02:29 -05:00
j_end = - 1 , j = y - 1 ;
else
j_end = y , j = 0 ;
for ( ; j ! = j_end ; j + = vdir ) {
for ( i = 0 ; i < x ; + + i ) {
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 16:56:40 -04:00
uint8_t * d = ( uint8_t * ) data + ( j * x + i ) * comp ;
2010-01-05 13:02:29 -05:00
if ( write_alpha < 0 )
fwrite ( & d [ comp - 1 ] , 1 , 1 , f ) ;
switch ( comp ) {
case 1 :
case 2 : writef ( f , " 111 " , d [ 0 ] , d [ 0 ] , d [ 0 ] ) ;
break ;
case 4 :
if ( ! write_alpha ) {
for ( k = 0 ; k < 3 ; + + k )
px [ k ] = bg [ k ] + ( ( d [ k ] - bg [ k ] ) * d [ 3 ] ) / 255 ;
writef ( f , " 111 " , px [ 1 - rgb_dir ] , px [ 1 ] , px [ 1 + rgb_dir ] ) ;
break ;
}
/* FALLTHROUGH */
case 3 :
writef ( f , " 111 " , d [ 1 - rgb_dir ] , d [ 1 ] , d [ 1 + rgb_dir ] ) ;
break ;
}
if ( write_alpha > 0 )
fwrite ( & d [ comp - 1 ] , 1 , 1 , f ) ;
}
fwrite ( & zero , scanline_pad , 1 , f ) ;
}
}
static int outfile ( char const * filename , int rgb_dir , int vdir , int x , int y , int comp , void * data , int alpha , int pad , char * fmt , . . . )
{
FILE * f = fopen ( filename , " wb " ) ;
if ( f ) {
va_list v ;
va_start ( v , fmt ) ;
writefv ( f , fmt , v ) ;
va_end ( v ) ;
write_pixels ( f , rgb_dir , vdir , x , y , comp , data , alpha , pad ) ;
fclose ( f ) ;
}
return f ! = NULL ;
}
int stbi_write_bmp ( char const * filename , int x , int y , int comp , void * data )
{
int pad = ( - x * 3 ) & 3 ;
return outfile ( filename , - 1 , - 1 , x , y , comp , data , 0 , pad ,
" 11 4 22 4 " " 4 44 22 444444 " ,
' B ' , ' M ' , 14 + 40 + ( x * 3 + pad ) * y , 0 , 0 , 14 + 40 , // file header
40 , x , y , 1 , 24 , 0 , 0 , 0 , 0 , 0 , 0 ) ; // bitmap header
}
int stbi_write_tga ( char const * filename , int x , int y , int comp , void * data )
{
int has_alpha = ! ( comp & 1 ) ;
return outfile ( filename , - 1 , - 1 , x , y , comp , data , has_alpha , 0 ,
" 111 221 2222 11 " , 0 , 0 , 2 , 0 , 0 , 0 , 0 , 0 , x , y , 24 + 8 * has_alpha , 8 * has_alpha ) ;
}
// any other image formats that do interleaved rgb data?
// PNG: requires adler32,crc32 -- significant amount of code
// PSD: no, channels output separately
// TIFF: no, stripwise-interleaved... i think
# endif // STBI_NO_WRITE
2010-03-03 12:02:51 -05:00
# endif // STBI_HEADER_FILE_ONLY