2015-04-04 16:26:16 -04:00
|
|
|
/*
|
|
|
|
* Copyright (C) 2010 The Android Open Source Project
|
|
|
|
*
|
|
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
* you may not use this file except in compliance with the License.
|
|
|
|
* You may obtain a copy of the License at
|
|
|
|
*
|
|
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
* See the License for the specific language governing permissions and
|
|
|
|
* limitations under the License.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <sys/stat.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
|
|
|
|
#ifdef HAVE_ANDROID_OS
|
|
|
|
#include <linux/capability.h>
|
|
|
|
#else
|
|
|
|
#include <private/android_filesystem_capability.h>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#define XATTR_SELINUX_SUFFIX "selinux"
|
|
|
|
#define XATTR_CAPS_SUFFIX "capability"
|
|
|
|
|
|
|
|
#include "ext4_utils.h"
|
|
|
|
#include "make_ext4fs.h"
|
|
|
|
#include "allocate.h"
|
|
|
|
#include "contents.h"
|
|
|
|
#include "extent.h"
|
|
|
|
#include "indirect.h"
|
|
|
|
|
|
|
|
#ifdef USE_MINGW
|
|
|
|
#define S_IFLNK 0 /* used by make_link, not needed under mingw */
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static struct block_allocation* saved_allocation_head = NULL;
|
|
|
|
|
|
|
|
struct block_allocation* get_saved_allocation_chain() {
|
|
|
|
return saved_allocation_head;
|
|
|
|
}
|
|
|
|
|
|
|
|
static u32 dentry_size(u32 entries, struct dentry *dentries)
|
|
|
|
{
|
|
|
|
u32 len = 24;
|
|
|
|
unsigned int i;
|
|
|
|
unsigned int dentry_len;
|
|
|
|
|
|
|
|
for (i = 0; i < entries; i++) {
|
|
|
|
dentry_len = 8 + EXT4_ALIGN(strlen(dentries[i].filename), 4);
|
|
|
|
if (len % info.block_size + dentry_len > info.block_size)
|
|
|
|
len += info.block_size - (len % info.block_size);
|
|
|
|
len += dentry_len;
|
|
|
|
}
|
|
|
|
|
|
|
|
return len;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct ext4_dir_entry_2 *add_dentry(u8 *data, u32 *offset,
|
|
|
|
struct ext4_dir_entry_2 *prev, u32 inode, const char *name,
|
|
|
|
u8 file_type)
|
|
|
|
{
|
|
|
|
u8 name_len = strlen(name);
|
|
|
|
u16 rec_len = 8 + EXT4_ALIGN(name_len, 4);
|
|
|
|
struct ext4_dir_entry_2 *dentry;
|
|
|
|
|
|
|
|
u32 start_block = *offset / info.block_size;
|
|
|
|
u32 end_block = (*offset + rec_len - 1) / info.block_size;
|
|
|
|
if (start_block != end_block) {
|
|
|
|
/* Adding this dentry will cross a block boundary, so pad the previous
|
|
|
|
dentry to the block boundary */
|
|
|
|
if (!prev)
|
|
|
|
critical_error("no prev");
|
|
|
|
prev->rec_len += end_block * info.block_size - *offset;
|
|
|
|
*offset = end_block * info.block_size;
|
|
|
|
}
|
|
|
|
|
|
|
|
dentry = (struct ext4_dir_entry_2 *)(data + *offset);
|
|
|
|
dentry->inode = inode;
|
|
|
|
dentry->rec_len = rec_len;
|
|
|
|
dentry->name_len = name_len;
|
|
|
|
dentry->file_type = file_type;
|
|
|
|
memcpy(dentry->name, name, name_len);
|
|
|
|
|
|
|
|
*offset += rec_len;
|
|
|
|
return dentry;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Creates a directory structure for an array of directory entries, dentries,
|
|
|
|
and stores the location of the structure in an inode. The new inode's
|
|
|
|
.. link is set to dir_inode_num. Stores the location of the inode number
|
|
|
|
of each directory entry into dentries[i].inode, to be filled in later
|
|
|
|
when the inode for the entry is allocated. Returns the inode number of the
|
|
|
|
new directory */
|
|
|
|
u32 make_directory(u32 dir_inode_num, u32 entries, struct dentry *dentries,
|
|
|
|
u32 dirs)
|
|
|
|
{
|
|
|
|
struct ext4_inode *inode;
|
|
|
|
u32 blocks;
|
|
|
|
u32 len;
|
|
|
|
u32 offset = 0;
|
|
|
|
u32 inode_num;
|
|
|
|
u8 *data;
|
|
|
|
unsigned int i;
|
|
|
|
struct ext4_dir_entry_2 *dentry;
|
|
|
|
|
|
|
|
blocks = DIV_ROUND_UP(dentry_size(entries, dentries), info.block_size);
|
|
|
|
len = blocks * info.block_size;
|
|
|
|
|
|
|
|
if (dir_inode_num) {
|
|
|
|
inode_num = allocate_inode(info);
|
|
|
|
} else {
|
|
|
|
dir_inode_num = EXT4_ROOT_INO;
|
|
|
|
inode_num = EXT4_ROOT_INO;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (inode_num == EXT4_ALLOCATE_FAILED) {
|
|
|
|
error("failed to allocate inode\n");
|
|
|
|
return EXT4_ALLOCATE_FAILED;
|
|
|
|
}
|
|
|
|
|
|
|
|
add_directory(inode_num);
|
|
|
|
|
|
|
|
inode = get_inode(inode_num);
|
|
|
|
if (inode == NULL) {
|
|
|
|
error("failed to get inode %u", inode_num);
|
|
|
|
return EXT4_ALLOCATE_FAILED;
|
|
|
|
}
|
|
|
|
|
|
|
|
data = inode_allocate_data_extents(inode, len, len);
|
|
|
|
if (data == NULL) {
|
|
|
|
error("failed to allocate %u extents", len);
|
|
|
|
return EXT4_ALLOCATE_FAILED;
|
|
|
|
}
|
|
|
|
|
|
|
|
inode->i_mode = S_IFDIR;
|
|
|
|
inode->i_links_count = dirs + 2;
|
|
|
|
inode->i_flags |= aux_info.default_i_flags;
|
|
|
|
|
|
|
|
dentry = NULL;
|
|
|
|
|
|
|
|
dentry = add_dentry(data, &offset, NULL, inode_num, ".", EXT4_FT_DIR);
|
|
|
|
if (!dentry) {
|
|
|
|
error("failed to add . directory");
|
|
|
|
return EXT4_ALLOCATE_FAILED;
|
|
|
|
}
|
|
|
|
|
|
|
|
dentry = add_dentry(data, &offset, dentry, dir_inode_num, "..", EXT4_FT_DIR);
|
|
|
|
if (!dentry) {
|
|
|
|
error("failed to add .. directory");
|
|
|
|
return EXT4_ALLOCATE_FAILED;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < entries; i++) {
|
|
|
|
dentry = add_dentry(data, &offset, dentry, 0,
|
|
|
|
dentries[i].filename, dentries[i].file_type);
|
|
|
|
if (offset > len || (offset == len && i != entries - 1))
|
|
|
|
critical_error("internal error: dentry for %s ends at %d, past %d\n",
|
|
|
|
dentries[i].filename, offset, len);
|
|
|
|
dentries[i].inode = &dentry->inode;
|
|
|
|
if (!dentry) {
|
|
|
|
error("failed to add directory");
|
|
|
|
return EXT4_ALLOCATE_FAILED;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* pad the last dentry out to the end of the block */
|
|
|
|
dentry->rec_len += len - offset;
|
|
|
|
|
|
|
|
return inode_num;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Creates a file on disk. Returns the inode number of the new file */
|
|
|
|
u32 make_file(const char *filename, u64 len)
|
|
|
|
{
|
|
|
|
struct ext4_inode *inode;
|
|
|
|
u32 inode_num;
|
|
|
|
|
|
|
|
inode_num = allocate_inode(info);
|
|
|
|
if (inode_num == EXT4_ALLOCATE_FAILED) {
|
|
|
|
error("failed to allocate inode\n");
|
|
|
|
return EXT4_ALLOCATE_FAILED;
|
|
|
|
}
|
|
|
|
|
|
|
|
inode = get_inode(inode_num);
|
|
|
|
if (inode == NULL) {
|
|
|
|
error("failed to get inode %u", inode_num);
|
|
|
|
return EXT4_ALLOCATE_FAILED;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (len > 0) {
|
|
|
|
struct block_allocation* alloc = inode_allocate_file_extents(inode, len, filename);
|
|
|
|
if (alloc) {
|
|
|
|
alloc->filename = strdup(filename);
|
|
|
|
alloc->next = saved_allocation_head;
|
|
|
|
saved_allocation_head = alloc;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
inode->i_mode = S_IFREG;
|
|
|
|
inode->i_links_count = 1;
|
|
|
|
inode->i_flags |= aux_info.default_i_flags;
|
|
|
|
|
|
|
|
return inode_num;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Creates a file on disk. Returns the inode number of the new file */
|
|
|
|
u32 make_link(const char *link)
|
|
|
|
{
|
|
|
|
struct ext4_inode *inode;
|
|
|
|
u32 inode_num;
|
|
|
|
u32 len = strlen(link);
|
|
|
|
|
|
|
|
inode_num = allocate_inode(info);
|
|
|
|
if (inode_num == EXT4_ALLOCATE_FAILED) {
|
|
|
|
error("failed to allocate inode\n");
|
|
|
|
return EXT4_ALLOCATE_FAILED;
|
|
|
|
}
|
|
|
|
|
|
|
|
inode = get_inode(inode_num);
|
|
|
|
if (inode == NULL) {
|
|
|
|
error("failed to get inode %u", inode_num);
|
|
|
|
return EXT4_ALLOCATE_FAILED;
|
|
|
|
}
|
|
|
|
|
|
|
|
inode->i_mode = S_IFLNK;
|
|
|
|
inode->i_links_count = 1;
|
|
|
|
inode->i_flags |= aux_info.default_i_flags;
|
|
|
|
inode->i_size_lo = len;
|
|
|
|
|
|
|
|
if (len + 1 <= sizeof(inode->i_block)) {
|
|
|
|
/* Fast symlink */
|
|
|
|
memcpy((char*)inode->i_block, link, len);
|
|
|
|
} else {
|
|
|
|
u8 *data = inode_allocate_data_indirect(inode, info.block_size, info.block_size);
|
|
|
|
memcpy(data, link, len);
|
|
|
|
inode->i_blocks_lo = info.block_size / 512;
|
|
|
|
}
|
|
|
|
|
|
|
|
return inode_num;
|
|
|
|
}
|
|
|
|
|
2015-04-04 17:01:57 -04:00
|
|
|
/* Creates a special file on disk. Returns the inode number of the new file */
|
|
|
|
u32 make_special(const char *path)
|
|
|
|
{
|
|
|
|
struct ext4_inode *inode;
|
|
|
|
struct stat s;
|
|
|
|
u32 inode_num;
|
|
|
|
|
|
|
|
if (stat(path, &s)) {
|
|
|
|
error("failed to stat file\n");
|
|
|
|
return EXT4_ALLOCATE_FAILED;
|
|
|
|
}
|
|
|
|
|
|
|
|
inode_num = allocate_inode(info);
|
|
|
|
if (inode_num == EXT4_ALLOCATE_FAILED) {
|
|
|
|
error("failed to allocate inode\n");
|
|
|
|
return EXT4_ALLOCATE_FAILED;
|
|
|
|
}
|
|
|
|
|
|
|
|
inode = get_inode(inode_num);
|
|
|
|
if (inode == NULL) {
|
|
|
|
error("failed to get inode %u", inode_num);
|
|
|
|
return EXT4_ALLOCATE_FAILED;
|
|
|
|
}
|
|
|
|
|
|
|
|
inode->i_mode = s.st_mode & S_IFMT;
|
|
|
|
inode->i_links_count = 1;
|
|
|
|
inode->i_flags |= aux_info.default_i_flags;
|
|
|
|
|
|
|
|
((u8 *)inode->i_block)[0] = major(s.st_rdev);
|
|
|
|
((u8 *)inode->i_block)[1] = minor(s.st_rdev);
|
|
|
|
|
|
|
|
return inode_num;
|
|
|
|
}
|
|
|
|
|
2015-04-04 16:26:16 -04:00
|
|
|
int inode_set_permissions(u32 inode_num, u16 mode, u16 uid, u16 gid, u32 mtime)
|
|
|
|
{
|
|
|
|
struct ext4_inode *inode = get_inode(inode_num);
|
|
|
|
|
|
|
|
if (!inode)
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
inode->i_mode |= mode;
|
|
|
|
inode->i_uid = uid;
|
|
|
|
inode->i_gid = gid;
|
|
|
|
inode->i_mtime = mtime;
|
|
|
|
inode->i_atime = mtime;
|
|
|
|
inode->i_ctime = mtime;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Returns the amount of free space available in the specified
|
|
|
|
* xattr region
|
|
|
|
*/
|
|
|
|
static size_t xattr_free_space(struct ext4_xattr_entry *entry, char *end)
|
|
|
|
{
|
|
|
|
while(!IS_LAST_ENTRY(entry) && (((char *) entry) < end)) {
|
|
|
|
end -= EXT4_XATTR_SIZE(le32_to_cpu(entry->e_value_size));
|
|
|
|
entry = EXT4_XATTR_NEXT(entry);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (((char *) entry) > end) {
|
|
|
|
error("unexpected read beyond end of xattr space");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return end - ((char *) entry);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Returns a pointer to the free space immediately after the
|
|
|
|
* last xattr element
|
|
|
|
*/
|
|
|
|
static struct ext4_xattr_entry* xattr_get_last(struct ext4_xattr_entry *entry)
|
|
|
|
{
|
|
|
|
for (; !IS_LAST_ENTRY(entry); entry = EXT4_XATTR_NEXT(entry)) {
|
|
|
|
// skip entry
|
|
|
|
}
|
|
|
|
return entry;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* assert that the elements in the ext4 xattr section are in sorted order
|
|
|
|
*
|
|
|
|
* The ext4 filesystem requires extended attributes to be sorted when
|
|
|
|
* they're not stored in the inode. The kernel ext4 code uses the following
|
|
|
|
* sorting algorithm:
|
|
|
|
*
|
|
|
|
* 1) First sort extended attributes by their name_index. For example,
|
|
|
|
* EXT4_XATTR_INDEX_USER (1) comes before EXT4_XATTR_INDEX_SECURITY (6).
|
|
|
|
* 2) If the name_indexes are equal, then sorting is based on the length
|
|
|
|
* of the name. For example, XATTR_SELINUX_SUFFIX ("selinux") comes before
|
|
|
|
* XATTR_CAPS_SUFFIX ("capability") because "selinux" is shorter than "capability"
|
|
|
|
* 3) If the name_index and name_length are equal, then memcmp() is used to determine
|
|
|
|
* which name comes first. For example, "selinux" would come before "yelinux".
|
|
|
|
*
|
|
|
|
* This method is intended to implement the sorting function defined in
|
|
|
|
* the Linux kernel file fs/ext4/xattr.c function ext4_xattr_find_entry().
|
|
|
|
*/
|
|
|
|
static void xattr_assert_sane(struct ext4_xattr_entry *entry)
|
|
|
|
{
|
|
|
|
for( ; !IS_LAST_ENTRY(entry); entry = EXT4_XATTR_NEXT(entry)) {
|
|
|
|
struct ext4_xattr_entry *next = EXT4_XATTR_NEXT(entry);
|
|
|
|
if (IS_LAST_ENTRY(next)) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
int cmp = next->e_name_index - entry->e_name_index;
|
|
|
|
if (cmp == 0)
|
|
|
|
cmp = next->e_name_len - entry->e_name_len;
|
|
|
|
if (cmp == 0)
|
|
|
|
cmp = memcmp(next->e_name, entry->e_name, next->e_name_len);
|
|
|
|
if (cmp < 0) {
|
|
|
|
error("BUG: extended attributes are not sorted\n");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (cmp == 0) {
|
|
|
|
error("BUG: duplicate extended attributes detected\n");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#define NAME_HASH_SHIFT 5
|
|
|
|
#define VALUE_HASH_SHIFT 16
|
|
|
|
|
|
|
|
static void ext4_xattr_hash_entry(struct ext4_xattr_header *header,
|
|
|
|
struct ext4_xattr_entry *entry)
|
|
|
|
{
|
|
|
|
u32 hash = 0;
|
|
|
|
char *name = entry->e_name;
|
|
|
|
int n;
|
|
|
|
|
|
|
|
for (n = 0; n < entry->e_name_len; n++) {
|
|
|
|
hash = (hash << NAME_HASH_SHIFT) ^
|
|
|
|
(hash >> (8*sizeof(hash) - NAME_HASH_SHIFT)) ^
|
|
|
|
*name++;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (entry->e_value_block == 0 && entry->e_value_size != 0) {
|
|
|
|
u32 *value = (u32 *)((char *)header +
|
|
|
|
le16_to_cpu(entry->e_value_offs));
|
|
|
|
for (n = (le32_to_cpu(entry->e_value_size) +
|
|
|
|
EXT4_XATTR_ROUND) >> EXT4_XATTR_PAD_BITS; n; n--) {
|
|
|
|
hash = (hash << VALUE_HASH_SHIFT) ^
|
|
|
|
(hash >> (8*sizeof(hash) - VALUE_HASH_SHIFT)) ^
|
|
|
|
le32_to_cpu(*value++);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
entry->e_hash = cpu_to_le32(hash);
|
|
|
|
}
|
|
|
|
|
|
|
|
#undef NAME_HASH_SHIFT
|
|
|
|
#undef VALUE_HASH_SHIFT
|
|
|
|
|
|
|
|
static struct ext4_xattr_entry* xattr_addto_range(
|
|
|
|
void *block_start,
|
|
|
|
void *block_end,
|
|
|
|
struct ext4_xattr_entry *first,
|
|
|
|
int name_index,
|
|
|
|
const char *name,
|
|
|
|
const void *value,
|
|
|
|
size_t value_len)
|
|
|
|
{
|
|
|
|
size_t name_len = strlen(name);
|
|
|
|
if (name_len > 255)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
size_t available_size = xattr_free_space(first, block_end);
|
|
|
|
size_t needed_size = EXT4_XATTR_LEN(name_len) + EXT4_XATTR_SIZE(value_len);
|
|
|
|
|
|
|
|
if (needed_size > available_size)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
struct ext4_xattr_entry *new_entry = xattr_get_last(first);
|
|
|
|
memset(new_entry, 0, EXT4_XATTR_LEN(name_len));
|
|
|
|
|
|
|
|
new_entry->e_name_len = name_len;
|
|
|
|
new_entry->e_name_index = name_index;
|
|
|
|
memcpy(new_entry->e_name, name, name_len);
|
|
|
|
new_entry->e_value_block = 0;
|
|
|
|
new_entry->e_value_size = cpu_to_le32(value_len);
|
|
|
|
|
|
|
|
char *val = (char *) new_entry + available_size - EXT4_XATTR_SIZE(value_len);
|
|
|
|
size_t e_value_offs = val - (char *) block_start;
|
|
|
|
|
|
|
|
new_entry->e_value_offs = cpu_to_le16(e_value_offs);
|
|
|
|
memset(val, 0, EXT4_XATTR_SIZE(value_len));
|
|
|
|
memcpy(val, value, value_len);
|
|
|
|
|
|
|
|
xattr_assert_sane(first);
|
|
|
|
return new_entry;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int xattr_addto_inode(struct ext4_inode *inode, int name_index,
|
|
|
|
const char *name, const void *value, size_t value_len)
|
|
|
|
{
|
|
|
|
struct ext4_xattr_ibody_header *hdr = (struct ext4_xattr_ibody_header *) (inode + 1);
|
|
|
|
struct ext4_xattr_entry *first = (struct ext4_xattr_entry *) (hdr + 1);
|
|
|
|
char *block_end = ((char *) inode) + info.inode_size;
|
|
|
|
|
|
|
|
struct ext4_xattr_entry *result =
|
|
|
|
xattr_addto_range(first, block_end, first, name_index, name, value, value_len);
|
|
|
|
|
|
|
|
if (result == NULL)
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
hdr->h_magic = cpu_to_le32(EXT4_XATTR_MAGIC);
|
|
|
|
inode->i_extra_isize = cpu_to_le16(sizeof(struct ext4_inode) - EXT4_GOOD_OLD_INODE_SIZE);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int xattr_addto_block(struct ext4_inode *inode, int name_index,
|
|
|
|
const char *name, const void *value, size_t value_len)
|
|
|
|
{
|
|
|
|
struct ext4_xattr_header *header = get_xattr_block_for_inode(inode);
|
|
|
|
if (!header)
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
struct ext4_xattr_entry *first = (struct ext4_xattr_entry *) (header + 1);
|
|
|
|
char *block_end = ((char *) header) + info.block_size;
|
|
|
|
|
|
|
|
struct ext4_xattr_entry *result =
|
|
|
|
xattr_addto_range(header, block_end, first, name_index, name, value, value_len);
|
|
|
|
|
|
|
|
if (result == NULL)
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
ext4_xattr_hash_entry(header, result);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static int xattr_add(u32 inode_num, int name_index, const char *name,
|
|
|
|
const void *value, size_t value_len)
|
|
|
|
{
|
|
|
|
if (!value)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
struct ext4_inode *inode = get_inode(inode_num);
|
|
|
|
|
|
|
|
if (!inode)
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
int result = xattr_addto_inode(inode, name_index, name, value, value_len);
|
|
|
|
if (result != 0) {
|
|
|
|
result = xattr_addto_block(inode, name_index, name, value, value_len);
|
|
|
|
}
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
int inode_set_selinux(u32 inode_num, const char *secon)
|
|
|
|
{
|
|
|
|
if (!secon)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
return xattr_add(inode_num, EXT4_XATTR_INDEX_SECURITY,
|
|
|
|
XATTR_SELINUX_SUFFIX, secon, strlen(secon) + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
int inode_set_capabilities(u32 inode_num, uint64_t capabilities) {
|
|
|
|
if (capabilities == 0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
struct vfs_cap_data cap_data;
|
|
|
|
memset(&cap_data, 0, sizeof(cap_data));
|
|
|
|
|
|
|
|
cap_data.magic_etc = VFS_CAP_REVISION | VFS_CAP_FLAGS_EFFECTIVE;
|
|
|
|
cap_data.data[0].permitted = (uint32_t) (capabilities & 0xffffffff);
|
|
|
|
cap_data.data[0].inheritable = 0;
|
|
|
|
cap_data.data[1].permitted = (uint32_t) (capabilities >> 32);
|
|
|
|
cap_data.data[1].inheritable = 0;
|
|
|
|
|
|
|
|
return xattr_add(inode_num, EXT4_XATTR_INDEX_SECURITY,
|
|
|
|
XATTR_CAPS_SUFFIX, &cap_data, sizeof(cap_data));
|
|
|
|
}
|