// -*- mode: js; js-indent-level: 4; indent-tabs-mode: nil -*- /* exported Workspace */ const { Clutter, GLib, GObject, St } = imports.gi; const DND = imports.ui.dnd; const Main = imports.ui.main; const Overview = imports.ui.overview; const { WindowPreview } = imports.ui.windowPreview; var WINDOW_PREVIEW_MAXIMUM_SCALE = 1.0; var WINDOW_REPOSITIONING_DELAY = 750; // When calculating a layout, we calculate the scale of windows and the percent // of the available area the new layout uses. If the values for the new layout, // when weighted with the values as below, are worse than the previous layout's, // we stop looking for a new layout and use the previous layout. // Otherwise, we keep looking for a new layout. var LAYOUT_SCALE_WEIGHT = 1; var LAYOUT_SPACE_WEIGHT = 0.1; var WINDOW_ANIMATION_MAX_NUMBER_BLENDING = 3; function _interpolate(start, end, step) { return start + (end - start) * step; } // Window Thumbnail Layout Algorithm // ================================= // // General overview // ---------------- // // The window thumbnail layout algorithm calculates some optimal layout // by computing layouts with some number of rows, calculating how good // each layout is, and stopping iterating when it finds one that is worse // than the previous layout. A layout consists of which windows are in // which rows, row sizes and other general state tracking that would make // calculating window positions from this information fairly easy. // // After a layout is computed that's considered the best layout, we // compute the layout scale to fit it in the area, and then compute // slots (sizes and positions) for each thumbnail. // // Layout generation // ----------------- // // Layout generation is naive and simple: we simply add windows to a row // until we've added too many windows to a row, and then make a new row, // until we have our required N rows. The potential issue with this strategy // is that we may have too many windows at the bottom in some pathological // cases, which tends to make the thumbnails have the shape of a pile of // sand with a peak, with one window at the top. // // Scaling factors // --------------- // // Thumbnail position is mostly straightforward -- the main issue is // computing an optimal scale for each window that fits the constraints, // and doesn't make the thumbnail too small to see. There are two factors // involved in thumbnail scale to make sure that these two goals are met: // the window scale (calculated by _computeWindowScale) and the layout // scale (calculated by computeSizeAndScale). // // The calculation logic becomes slightly more complicated because row // and column spacing are not scaled, they're constant, so we can't // simply generate a bunch of window positions and then scale it. In // practice, it's not too bad -- we can simply try to fit the layout // in the input area minus whatever spacing we have, and then add // it back afterwards. // // The window scale is constant for the window's size regardless of the // input area or the layout scale or rows or anything else, and right // now just enlarges the window if it's too small. The fact that this // factor is stable makes it easy to calculate, so there's no sense // in not applying it in most calculations. // // The layout scale depends on the input area, the rows, etc, but is the // same for the entire layout, rather than being per-window. After // generating the rows of windows, we basically do some basic math to // fit the full, unscaled layout to the input area, as described above. // // With these two factors combined, the final scale of each thumbnail is // simply windowScale * layoutScale... almost. // // There's one additional constraint: the thumbnail scale must never be // larger than WINDOW_PREVIEW_MAXIMUM_SCALE, which means that the inequality: // // windowScale * layoutScale <= WINDOW_PREVIEW_MAXIMUM_SCALE // // must always be true. This is for each individual window -- while we // could adjust layoutScale to make the largest thumbnail smaller than // WINDOW_PREVIEW_MAXIMUM_SCALE, it would shrink windows which are already // under the inequality. To solve this, we simply cheat: we simply keep // each window's "cell" area to be the same, but we shrink the thumbnail // and center it horizontally, and align it to the bottom vertically. var LayoutStrategy = class { constructor(monitor, rowSpacing, columnSpacing) { if (this.constructor === LayoutStrategy) throw new TypeError(`Cannot instantiate abstract type ${this.constructor.name}`); this._monitor = monitor; this._rowSpacing = rowSpacing; this._columnSpacing = columnSpacing; } _newRow() { // Row properties: // // * x, y are the position of row, relative to area // // * width, height are the scaled versions of fullWidth, fullHeight // // * width also has the spacing in between windows. It's not in // fullWidth, as the spacing is constant, whereas fullWidth is // meant to be scaled // // * neither height/fullHeight have any sort of spacing or padding return { x: 0, y: 0, width: 0, height: 0, fullWidth: 0, fullHeight: 0, windows: [] }; } // Computes and returns an individual scaling factor for @window, // to be applied in addition to the overall layout scale. _computeWindowScale(window) { // Since we align windows next to each other, the height of the // thumbnails is much more important to preserve than the width of // them, so two windows with equal height, but maybe differering // widths line up. let ratio = window.boundingBox.height / this._monitor.height; // The purpose of this manipulation here is to prevent windows // from getting too small. For something like a calculator window, // we need to bump up the size just a bit to make sure it looks // good. We'll use a multiplier of 1.5 for this. // Map from [0, 1] to [1.5, 1] return _interpolate(1.5, 1, ratio); } // Compute the size of each row, by assigning to the properties // row.width, row.height, row.fullWidth, row.fullHeight, and // (optionally) for each row in @layout.rows. This method is // intended to be called by subclasses. _computeRowSizes(_layout) { throw new GObject.NotImplementedError(`_computeRowSizes in ${this.constructor.name}`); } // Compute strategy-specific window slots for each window in // @windows, given the @layout. The strategy may also use @layout // as strategy-specific storage. // // This must calculate: // * maxColumns - The maximum number of columns used by the layout. // * gridWidth - The total width used by the grid, unscaled, unspaced. // * gridHeight - The totial height used by the grid, unscaled, unspaced. // * rows - A list of rows, which should be instantiated by _newRow. computeLayout(_windows, _layout) { throw new GObject.NotImplementedError(`computeLayout in ${this.constructor.name}`); } // Given @layout, compute the overall scale and space of the layout. // The scale is the individual, non-fancy scale of each window, and // the space is the percentage of the available area eventually // used by the layout. // This method does not return anything, but instead installs // the properties "scale" and "space" on @layout directly. // // Make sure to call this methods before calling computeWindowSlots(), // as it depends on the scale property installed in @layout here. computeScaleAndSpace(layout) { let area = layout.area; let hspacing = (layout.maxColumns - 1) * this._columnSpacing; let vspacing = (layout.numRows - 1) * this._rowSpacing; let spacedWidth = area.width - hspacing; let spacedHeight = area.height - vspacing; let horizontalScale = spacedWidth / layout.gridWidth; let verticalScale = spacedHeight / layout.gridHeight; // Thumbnails should be less than 70% of the original size let scale = Math.min( horizontalScale, verticalScale, WINDOW_PREVIEW_MAXIMUM_SCALE); let scaledLayoutWidth = layout.gridWidth * scale + hspacing; let scaledLayoutHeight = layout.gridHeight * scale + vspacing; let space = (scaledLayoutWidth * scaledLayoutHeight) / (area.width * area.height); layout.scale = scale; layout.space = space; } computeWindowSlots(layout, area) { this._computeRowSizes(layout); let { rows, scale } = layout; let slots = []; // Do this in three parts. let heightWithoutSpacing = 0; for (let i = 0; i < rows.length; i++) { let row = rows[i]; heightWithoutSpacing += row.height; } let verticalSpacing = (rows.length - 1) * this._rowSpacing; let additionalVerticalScale = Math.min(1, (area.height - verticalSpacing) / heightWithoutSpacing); // keep track how much smaller the grid becomes due to scaling // so it can be centered again let compensation = 0; let y = 0; for (let i = 0; i < rows.length; i++) { let row = rows[i]; // If this window layout row doesn't fit in the actual // geometry, then apply an additional scale to it. let horizontalSpacing = (row.windows.length - 1) * this._columnSpacing; let widthWithoutSpacing = row.width - horizontalSpacing; let additionalHorizontalScale = Math.min(1, (area.width - horizontalSpacing) / widthWithoutSpacing); if (additionalHorizontalScale < additionalVerticalScale) { row.additionalScale = additionalHorizontalScale; // Only consider the scaling in addition to the vertical scaling for centering. compensation += (additionalVerticalScale - additionalHorizontalScale) * row.height; } else { row.additionalScale = additionalVerticalScale; // No compensation when scaling vertically since centering based on a too large // height would undo what vertical scaling is trying to achieve. } row.x = area.x + (Math.max(area.width - (widthWithoutSpacing * row.additionalScale + horizontalSpacing), 0) / 2); row.y = area.y + (Math.max(area.height - (heightWithoutSpacing + verticalSpacing), 0) / 2) + y; y += row.height * row.additionalScale + this._rowSpacing; } compensation /= 2; for (let i = 0; i < rows.length; i++) { let row = rows[i]; let x = row.x; for (let j = 0; j < row.windows.length; j++) { let window = row.windows[j]; let s = scale * this._computeWindowScale(window) * row.additionalScale; let cellWidth = window.boundingBox.width * s; let cellHeight = window.boundingBox.height * s; s = Math.min(s, WINDOW_PREVIEW_MAXIMUM_SCALE); let cloneWidth = window.boundingBox.width * s; const cloneHeight = window.boundingBox.height * s; let cloneX = x + (cellWidth - cloneWidth) / 2; let cloneY = row.y + row.height * row.additionalScale - cellHeight + compensation; // Align with the pixel grid to prevent blurry windows at scale = 1 cloneX = Math.floor(cloneX); cloneY = Math.floor(cloneY); slots.push([cloneX, cloneY, cloneWidth, cloneHeight, window]); x += cellWidth + this._columnSpacing; } } return slots; } }; var UnalignedLayoutStrategy = class extends LayoutStrategy { _computeRowSizes(layout) { let { rows, scale } = layout; for (let i = 0; i < rows.length; i++) { let row = rows[i]; row.width = row.fullWidth * scale + (row.windows.length - 1) * this._columnSpacing; row.height = row.fullHeight * scale; } } _keepSameRow(row, window, width, idealRowWidth) { if (row.fullWidth + width <= idealRowWidth) return true; let oldRatio = row.fullWidth / idealRowWidth; let newRatio = (row.fullWidth + width) / idealRowWidth; if (Math.abs(1 - newRatio) < Math.abs(1 - oldRatio)) return true; return false; } _sortRow(row) { // Sort windows horizontally to minimize travel distance. // This affects in what order the windows end up in a row. row.windows.sort((a, b) => a.windowCenter.x - b.windowCenter.x); } computeLayout(windows, layout) { let numRows = layout.numRows; let rows = []; let totalWidth = 0; for (let i = 0; i < windows.length; i++) { let window = windows[i]; let s = this._computeWindowScale(window); totalWidth += window.boundingBox.width * s; } let idealRowWidth = totalWidth / numRows; // Sort windows vertically to minimize travel distance. // This affects what rows the windows get placed in. let sortedWindows = windows.slice(); sortedWindows.sort((a, b) => a.windowCenter.y - b.windowCenter.y); let windowIdx = 0; for (let i = 0; i < numRows; i++) { let row = this._newRow(); rows.push(row); for (; windowIdx < sortedWindows.length; windowIdx++) { let window = sortedWindows[windowIdx]; let s = this._computeWindowScale(window); let width = window.boundingBox.width * s; let height = window.boundingBox.height * s; row.fullHeight = Math.max(row.fullHeight, height); // either new width is < idealWidth or new width is nearer from idealWidth then oldWidth if (this._keepSameRow(row, window, width, idealRowWidth) || (i == numRows - 1)) { row.windows.push(window); row.fullWidth += width; } else { break; } } } let gridHeight = 0; let maxRow; for (let i = 0; i < numRows; i++) { let row = rows[i]; this._sortRow(row); if (!maxRow || row.fullWidth > maxRow.fullWidth) maxRow = row; gridHeight += row.fullHeight; } layout.rows = rows; layout.maxColumns = maxRow.windows.length; layout.gridWidth = maxRow.fullWidth; layout.gridHeight = gridHeight; } }; function animateAllocation(actor, box) { if (actor.allocation.equal(box) || actor.allocation.get_width() === 0 || actor.allocation.get_height() === 0) { actor.allocate(box); return null; } actor.save_easing_state(); actor.set_easing_mode(Clutter.AnimationMode.EASE_OUT_QUAD); actor.set_easing_duration(200); actor.allocate(box); actor.restore_easing_state(); return actor.get_transition('allocation'); } var WorkspaceLayout = GObject.registerClass({ Properties: { 'spacing': GObject.ParamSpec.double( 'spacing', 'Spacing', 'Spacing', GObject.ParamFlags.READWRITE, 0, Infinity, 20), 'layout-frozen': GObject.ParamSpec.boolean( 'layout-frozen', 'Layout frozen', 'Layout frozen', GObject.ParamFlags.READWRITE, false), }, }, class WorkspaceLayout extends Clutter.LayoutManager { _init(metaWorkspace, monitorIndex) { super._init(); this._spacing = 20; this._layoutFrozen = false; this._monitorIndex = monitorIndex; this._workarea = metaWorkspace ? metaWorkspace.get_work_area_for_monitor(this._monitorIndex) : Main.layoutManager.getWorkAreaForMonitor(this._monitorIndex); this._container = null; this._windows = new Map(); this._sortedWindows = []; this._lastBox = null; this._windowSlots = []; this._layout = null; this._stateAdjustment = new St.Adjustment({ value: 1, lower: 0, upper: 1, }); this._stateAdjustment.connect('notify::value', () => this.layout_changed()); } _isBetterLayout(oldLayout, newLayout) { if (oldLayout.scale === undefined) return true; let spacePower = (newLayout.space - oldLayout.space) * LAYOUT_SPACE_WEIGHT; let scalePower = (newLayout.scale - oldLayout.scale) * LAYOUT_SCALE_WEIGHT; if (newLayout.scale > oldLayout.scale && newLayout.space > oldLayout.space) { // Win win -- better scale and better space return true; } else if (newLayout.scale > oldLayout.scale && newLayout.space <= oldLayout.space) { // Keep new layout only if scale gain outweighs aspect space loss return scalePower > spacePower; } else if (newLayout.scale <= oldLayout.scale && newLayout.space > oldLayout.space) { // Keep new layout only if aspect space gain outweighs scale loss return spacePower > scalePower; } else { // Lose -- worse scale and space return false; } } _adjustSpacingAndPadding(rowSpacing, colSpacing, containerBox) { if (this._sortedWindows.length === 0) return [colSpacing, rowSpacing, containerBox]; // All of the overlays have the same chrome sizes, // so just pick the first one. const window = this._sortedWindows[0]; const [topOversize, bottomOversize] = window.chromeHeights(); const [leftOversize, rightOversize] = window.chromeWidths(); if (rowSpacing) rowSpacing += Math.max(topOversize, bottomOversize); if (colSpacing) colSpacing += Math.max(leftOversize, rightOversize); if (containerBox) { containerBox.x1 += leftOversize; containerBox.x2 -= rightOversize; containerBox.y1 += topOversize; containerBox.y2 -= bottomOversize; } return [rowSpacing, colSpacing, containerBox]; } _createBestLayout(area) { const [rowSpacing, colSpacing] = this._adjustSpacingAndPadding(this._spacing, this._spacing, null); // We look for the largest scale that allows us to fit the // largest row/tallest column on the workspace. const strategy = new UnalignedLayoutStrategy( Main.layoutManager.monitors[this._monitorIndex], rowSpacing, colSpacing); let lastLayout = {}; for (let numRows = 1; ; numRows++) { let numColumns = Math.ceil(this._sortedWindows.length / numRows); // If adding a new row does not change column count just stop // (for instance: 9 windows, with 3 rows -> 3 columns, 4 rows -> // 3 columns as well => just use 3 rows then) if (numColumns === lastLayout.numColumns) break; let layout = { area, strategy, numRows, numColumns }; strategy.computeLayout(this._sortedWindows, layout); strategy.computeScaleAndSpace(layout); if (!this._isBetterLayout(lastLayout, layout)) break; lastLayout = layout; } return lastLayout; } _getWindowSlots(containerBox) { [, , containerBox] = this._adjustSpacingAndPadding(null, null, containerBox); const availArea = { x: parseInt(containerBox.x1), y: parseInt(containerBox.y1), width: parseInt(containerBox.get_width()), height: parseInt(containerBox.get_height()), }; return this._layout.strategy.computeWindowSlots(this._layout, availArea); } vfunc_set_container(container) { this._container = container; this._stateAdjustment.actor = container; } vfunc_get_preferred_width(container, forHeight) { if (forHeight === -1) return [0, this._workarea.width]; const workAreaAspectRatio = this._workarea.width / this._workarea.height; const widthPreservingAspectRatio = forHeight * workAreaAspectRatio; return [0, widthPreservingAspectRatio]; } vfunc_get_preferred_height(container, forWidth) { if (forWidth === -1) return [0, this._workarea.height]; const workAreaAspectRatio = this._workarea.width / this._workarea.height; const heightPreservingAspectRatio = forWidth / workAreaAspectRatio; return [0, heightPreservingAspectRatio]; } vfunc_allocate(container, box) { const containerAllocationChanged = this._lastBox === null || !this._lastBox.equal(box); this._lastBox = box.copy(); // If the containers size changed, we can no longer keep around // the old windowSlots, so we must unfreeze the layout if (this._layoutFrozen && containerAllocationChanged) { this._layoutFrozen = false; this.notify('layout-frozen'); } let layoutChanged = false; if (!this._layoutFrozen) { if (this._layout === null) { this._layout = this._createBestLayout(this._workarea); layoutChanged = true; } if (layoutChanged || containerAllocationChanged) this._windowSlots = this._getWindowSlots(box.copy()); } const allocationScale = box.get_width() / this._workarea.width; const workspaceBox = new Clutter.ActorBox(); const layoutBox = new Clutter.ActorBox(); let childBox = new Clutter.ActorBox(); for (const child of container) { if (!child.visible) continue; // The fifth element in the slot array is the WindowPreview const index = this._windowSlots.findIndex(s => s[4] === child); if (index === -1) continue; const [x, y, width, height] = this._windowSlots[index]; const windowInfo = this._windows.get(child); child.slotId = index; workspaceBox.x1 = child.boundingBox.x - this._workarea.x; workspaceBox.x2 = workspaceBox.x1 + child.boundingBox.width; workspaceBox.y1 = child.boundingBox.y - this._workarea.y; workspaceBox.y2 = workspaceBox.y1 + child.boundingBox.height; workspaceBox.scale(allocationScale); layoutBox.x1 = x; layoutBox.x2 = layoutBox.x1 + width; layoutBox.y1 = y; layoutBox.y2 = layoutBox.y1 + height; childBox = workspaceBox.interpolate(layoutBox, this._stateAdjustment.value); if (windowInfo.currentTransition) { windowInfo.currentTransition.get_interval().set_final(childBox); continue; } // We want layout changes (ie. larger changes to the layout like // reshuffling the window order) to be animated, but small changes // like changes to the container size to happen immediately (for // example if the container height is being animated, we want to // avoid animating the children allocations to make sure they // don't "lag behind" the other animation). if (layoutChanged) { const transition = animateAllocation(child, childBox); if (transition) { windowInfo.currentTransition = transition; windowInfo.currentTransition.connect('stopped', () => { windowInfo.currentTransition = null; }); } } else { child.allocate(childBox); } } } /** * addWindow: * @param {WindowPreview} window: the window to add * @param {Meta.Window} metaWindow: the MetaWindow of the window * * Adds @window to the workspace, it will be shown immediately if * the layout isn't frozen using the layout-frozen property. * * If @window is already part of the workspace, nothing will happen. */ addWindow(window, metaWindow) { if (this._windows.has(window)) return; this._windows.set(window, { metaWindow, sizeChangedId: metaWindow.connect('size-changed', () => { this._layout = null; this.layout_changed(); }), destroyId: window.connect('destroy', () => this.removeWindow(window)), currentTransition: null, }); this._sortedWindows.push(window); this._sortedWindows.sort((a, b) => { const winA = this._windows.get(a).metaWindow; const winB = this._windows.get(b).metaWindow; return winA.get_stable_sequence() - winB.get_stable_sequence(); }); this._container.add_child(window); this._layout = null; this.layout_changed(); } /** * removeWindow: * @param {WindowPreview} window: the window to remove * * Removes @window from the workspace if @window is a part of the * workspace. If the layout-frozen property is set to true, the * window will still be visible until the property is set to false. */ removeWindow(window) { const windowInfo = this._windows.get(window); if (!windowInfo) return; windowInfo.metaWindow.disconnect(windowInfo.sizeChangedId); window.disconnect(windowInfo.destroyId); if (windowInfo.currentTransition) window.remove_transition('allocation'); this._windows.delete(window); this._sortedWindows.splice(this._sortedWindows.indexOf(window), 1); // The layout might be frozen and we might not update the windowSlots // on the next allocation, so remove the slot now already this._windowSlots.splice( this._windowSlots.findIndex(s => s[4] === window), 1); // The window might have been reparented by DND if (window.get_parent() === this._container) this._container.remove_child(window); this._layout = null; this.layout_changed(); } syncStacking(stackIndices) { const windows = [...this._windows.keys()]; windows.sort((a, b) => { const seqA = this._windows.get(a).metaWindow.get_stable_sequence(); const seqB = this._windows.get(b).metaWindow.get_stable_sequence(); return stackIndices[seqA] - stackIndices[seqB]; }); let lastWindow = null; for (const window of windows) { window.setStackAbove(lastWindow); lastWindow = window; } this._layout = null; this.layout_changed(); } /** * getFocusChain: * * Gets the focus chain of the workspace. This function will return * an empty array if the floating window layout is used. * * @returns {Array} an array of {Clutter.Actor}s */ getFocusChain() { if (this._stateAdjustment.value === 0) return []; // The fifth element in the slot array is the WindowPreview return this._windowSlots.map(s => s[4]); } /** * An StAdjustment for controlling and transitioning between * the alignment of windows using the layout strategy and the * floating window layout. * * A value of 0 of the adjustment completely uses the floating * window layout while a value of 1 completely aligns windows using * the layout strategy. * * @type {St.Adjustment} */ get stateAdjustment() { return this._stateAdjustment; } get spacing() { return this._spacing; } set spacing(s) { if (this._spacing === s) return; this._spacing = s; this._layout = null; this.notify('spacing'); this.layout_changed(); } // eslint-disable-next-line camelcase get layout_frozen() { return this._layoutFrozen; } // eslint-disable-next-line camelcase set layout_frozen(f) { if (this._layoutFrozen === f) return; this._layoutFrozen = f; this.notify('layout-frozen'); if (!this._layoutFrozen) this.layout_changed(); } }); /** * @metaWorkspace: a #Meta.Workspace, or null */ var Workspace = GObject.registerClass( class Workspace extends St.Widget { _init(metaWorkspace, monitorIndex) { super._init({ style_class: 'window-picker', layout_manager: new WorkspaceLayout(metaWorkspace, monitorIndex), }); // When dragging a window, we use this slot for reserve space. this._reservedSlot = null; this._reservedSlotWindow = null; this.metaWorkspace = metaWorkspace; this.monitorIndex = monitorIndex; this._monitor = Main.layoutManager.monitors[this.monitorIndex]; if (monitorIndex != Main.layoutManager.primaryIndex) this.add_style_class_name('external-monitor'); this.connect('style-changed', this._onStyleChanged.bind(this)); this.connect('destroy', this._onDestroy.bind(this)); const windows = global.get_window_actors().map(a => a.meta_window) .filter(this._isMyWindow, this); // Create clones for windows that should be // visible in the Overview this._windows = []; for (let i = 0; i < windows.length; i++) { if (this._isOverviewWindow(windows[i])) this._addWindowClone(windows[i]); } // Track window changes if (this.metaWorkspace) { this._windowAddedId = this.metaWorkspace.connect('window-added', this._windowAdded.bind(this)); this._windowRemovedId = this.metaWorkspace.connect('window-removed', this._windowRemoved.bind(this)); } this._windowEnteredMonitorId = global.display.connect('window-entered-monitor', this._windowEnteredMonitor.bind(this)); this._windowLeftMonitorId = global.display.connect('window-left-monitor', this._windowLeftMonitor.bind(this)); this._layoutFrozenId = 0; // DND requires this to be set this._delegate = this; } vfunc_get_focus_chain() { return this.layout_manager.getFocusChain(); } _lookupIndex(metaWindow) { return this._windows.findIndex(w => w.metaWindow == metaWindow); } containsMetaWindow(metaWindow) { return this._lookupIndex(metaWindow) >= 0; } isEmpty() { return this._windows.length == 0; } setReservedSlot(metaWindow) { if (this._reservedSlotWindow == metaWindow) return; if (!metaWindow || this.containsMetaWindow(metaWindow)) { this._reservedSlotWindow = null; this._reservedSlot = null; } else { this._reservedSlotWindow = metaWindow; this._reservedSlot = this._windows[this._lookupIndex(metaWindow)]; } } syncStacking(stackIndices) { this.layout_manager.syncStacking(stackIndices); } _doRemoveWindow(metaWin) { let clone = this._removeWindowClone(metaWin); if (!clone) return; clone.destroy(); // We need to reposition the windows; to avoid shuffling windows // around while the user is interacting with the workspace, we delay // the positioning until the pointer remains still for at least 750 ms // or is moved outside the workspace this.layout_manager.layout_frozen = true; if (this._layoutFrozenId > 0) { GLib.source_remove(this._layoutFrozenId); this._layoutFrozenId = 0; } let [oldX, oldY] = global.get_pointer(); this._layoutFrozenId = GLib.timeout_add( GLib.PRIORITY_DEFAULT, WINDOW_REPOSITIONING_DELAY, () => { const [newX, newY] = global.get_pointer(); const pointerHasMoved = oldX !== newX || oldY !== newY; const actorUnderPointer = global.stage.get_actor_at_pos( Clutter.PickMode.REACTIVE, newX, newY); if ((pointerHasMoved && this.contains(actorUnderPointer)) || this._windows.some(w => w.contains(actorUnderPointer))) { oldX = newX; oldY = newY; return GLib.SOURCE_CONTINUE; } this.layout_manager.layout_frozen = false; this._layoutFrozenId = 0; return GLib.SOURCE_REMOVE; }); GLib.Source.set_name_by_id(this._layoutFrozenId, '[gnome-shell] this._layoutFrozenId'); } _doAddWindow(metaWin) { let win = metaWin.get_compositor_private(); if (!win) { // Newly-created windows are added to a workspace before // the compositor finds out about them... let id = GLib.idle_add(GLib.PRIORITY_DEFAULT, () => { if (metaWin.get_compositor_private() && metaWin.get_workspace() == this.metaWorkspace) this._doAddWindow(metaWin); return GLib.SOURCE_REMOVE; }); GLib.Source.set_name_by_id(id, '[gnome-shell] this._doAddWindow'); return; } // We might have the window in our list already if it was on all workspaces and // now was moved to this workspace if (this._lookupIndex(metaWin) != -1) return; if (!this._isMyWindow(metaWin)) return; if (!this._isOverviewWindow(metaWin)) { if (metaWin.get_transient_for() == null) return; // Let the top-most ancestor handle all transients let parent = metaWin.find_root_ancestor(); let clone = this._windows.find(c => c.metaWindow == parent); // If no clone was found, the parent hasn't been created yet // and will take care of the dialog when added if (clone) clone.addDialog(metaWin); return; } const clone = this._addWindowClone(metaWin); clone.set_pivot_point(0.5, 0.5); clone.scale_x = 0; clone.scale_y = 0; clone.ease({ scale_x: 1, scale_y: 1, duration: 250, onStopped: () => clone.set_pivot_point(0, 0), }); if (this._layoutFrozenId > 0) { // If a window was closed before, unfreeze the layout to ensure // the new window is immediately shown this.layout_manager.layout_frozen = false; GLib.source_remove(this._layoutFrozenId); this._layoutFrozenId = 0; } } _windowAdded(metaWorkspace, metaWin) { this._doAddWindow(metaWin); } _windowRemoved(metaWorkspace, metaWin) { this._doRemoveWindow(metaWin); } _windowEnteredMonitor(metaDisplay, monitorIndex, metaWin) { if (monitorIndex == this.monitorIndex) this._doAddWindow(metaWin); } _windowLeftMonitor(metaDisplay, monitorIndex, metaWin) { if (monitorIndex == this.monitorIndex) this._doRemoveWindow(metaWin); } // check for maximized windows on the workspace hasMaximizedWindows() { for (let i = 0; i < this._windows.length; i++) { let metaWindow = this._windows[i].metaWindow; if (metaWindow.showing_on_its_workspace() && metaWindow.maximized_horizontally && metaWindow.maximized_vertically) return true; } return false; } fadeToOverview() { // We don't want to reposition windows while animating in this way. this.layout_manager.layout_frozen = true; this._overviewShownId = Main.overview.connect('shown', this._doneShowingOverview.bind(this)); if (this._windows.length == 0) return; if (this.metaWorkspace !== null && !this.metaWorkspace.active) return; // Special case maximized windows, since it doesn't make sense // to animate windows below in the stack let topMaximizedWindow; // It is ok to treat the case where there is no maximized // window as if the bottom-most window was maximized given that // it won't affect the result of the animation for (topMaximizedWindow = this._windows.length - 1; topMaximizedWindow > 0; topMaximizedWindow--) { let metaWindow = this._windows[topMaximizedWindow].metaWindow; if (metaWindow.maximized_horizontally && metaWindow.maximized_vertically) break; } let nTimeSlots = Math.min(WINDOW_ANIMATION_MAX_NUMBER_BLENDING + 1, this._windows.length - topMaximizedWindow); let windowBaseTime = Overview.ANIMATION_TIME / nTimeSlots; let topIndex = this._windows.length - 1; for (let i = 0; i < this._windows.length; i++) { if (i < topMaximizedWindow) { // below top-most maximized window, don't animate this._windows[i].hideOverlay(false); this._windows[i].opacity = 0; } else { let fromTop = topIndex - i; let time; if (fromTop < nTimeSlots) // animate top-most windows gradually time = windowBaseTime * (nTimeSlots - fromTop); else time = windowBaseTime; this._windows[i].opacity = 255; this._fadeWindow(i, time, 0); } } } fadeFromOverview() { this.layout_manager.layout_frozen = true; this._overviewHiddenId = Main.overview.connect('hidden', this._doneLeavingOverview.bind(this)); if (this._windows.length == 0) return; for (let i = 0; i < this._windows.length; i++) this._windows[i].remove_all_transitions(); if (this._layoutFrozenId > 0) { GLib.source_remove(this._layoutFrozenId); this._layoutFrozenId = 0; } if (this.metaWorkspace !== null && !this.metaWorkspace.active) return; // Special case maximized windows, since it doesn't make sense // to animate windows below in the stack let topMaximizedWindow; // It is ok to treat the case where there is no maximized // window as if the bottom-most window was maximized given that // it won't affect the result of the animation for (topMaximizedWindow = this._windows.length - 1; topMaximizedWindow > 0; topMaximizedWindow--) { let metaWindow = this._windows[topMaximizedWindow].metaWindow; if (metaWindow.maximized_horizontally && metaWindow.maximized_vertically) break; } let nTimeSlots = Math.min(WINDOW_ANIMATION_MAX_NUMBER_BLENDING + 1, this._windows.length - topMaximizedWindow); let windowBaseTime = Overview.ANIMATION_TIME / nTimeSlots; let topIndex = this._windows.length - 1; for (let i = 0; i < this._windows.length; i++) { if (i < topMaximizedWindow) { // below top-most maximized window, don't animate this._windows[i].hideOverlay(false); this._windows[i].opacity = 0; } else { let fromTop = topIndex - i; let time; if (fromTop < nTimeSlots) // animate top-most windows gradually time = windowBaseTime * (fromTop + 1); else time = windowBaseTime * nTimeSlots; this._windows[i].opacity = 0; this._fadeWindow(i, time, 255); } } } _fadeWindow(index, duration, opacity) { let clone = this._windows[index]; clone.hideOverlay(false); if (clone.metaWindow.showing_on_its_workspace()) { clone.ease({ opacity, duration, mode: Clutter.AnimationMode.EASE_OUT_QUAD, }); } else { // The window is hidden clone.opacity = 0; } } zoomToOverview() { } zoomFromOverview() { for (let i = 0; i < this._windows.length; i++) this._windows[i].remove_all_transitions(); if (this._layoutFrozenId > 0) { GLib.source_remove(this._layoutFrozenId); this._layoutFrozenId = 0; } this.layout_manager.layout_frozen = true; this._overviewHiddenId = Main.overview.connect('hidden', this._doneLeavingOverview.bind(this)); if (this.metaWorkspace !== null && !this.metaWorkspace.active) return; // Position and scale the windows. for (let i = 0; i < this._windows.length; i++) this._zoomWindowFromOverview(i); } _zoomWindowFromOverview(index) { let clone = this._windows[index]; clone.hideOverlay(false); if (clone.metaWindow.showing_on_its_workspace()) { clone.ease({ opacity: 255, duration: Overview.ANIMATION_TIME, mode: Clutter.AnimationMode.EASE_OUT_QUAD, }); } else { // The window is hidden, make it shrink and fade it out clone.ease({ opacity: 0, duration: Overview.ANIMATION_TIME, mode: Clutter.AnimationMode.EASE_OUT_QUAD, }); } } _onDestroy() { if (this._overviewHiddenId) { Main.overview.disconnect(this._overviewHiddenId); this._overviewHiddenId = 0; } if (this._overviewShownId) { Main.overview.disconnect(this._overviewShownId); this._overviewShownId = 0; } if (this.metaWorkspace) { this.metaWorkspace.disconnect(this._windowAddedId); this.metaWorkspace.disconnect(this._windowRemovedId); } global.display.disconnect(this._windowEnteredMonitorId); global.display.disconnect(this._windowLeftMonitorId); if (this._layoutFrozenId > 0) { GLib.source_remove(this._layoutFrozenId); this._layoutFrozenId = 0; } this._windows = []; } _doneLeavingOverview() { this.layout_manager.layout_frozen = false; } _doneShowingOverview() { this.layout_manager.layout_frozen = false; } _isMyWindow(window) { const isOnWorkspace = this.metaWorkspace === null || window.located_on_workspace(this.metaWorkspace); const isOnMonitor = window.get_monitor() === this.monitorIndex; return isOnWorkspace && isOnMonitor; } _isOverviewWindow(window) { return !window.skip_taskbar; } // Create a clone of a (non-desktop) window and add it to the window list _addWindowClone(metaWindow) { let clone = new WindowPreview(metaWindow, this); clone.connect('selected', this._onCloneSelected.bind(this)); clone.connect('drag-begin', () => { Main.overview.beginWindowDrag(metaWindow); }); clone.connect('drag-cancelled', () => { Main.overview.cancelledWindowDrag(metaWindow); }); clone.connect('drag-end', () => { Main.overview.endWindowDrag(metaWindow); }); clone.connect('show-chrome', () => { let focus = global.stage.key_focus; if (focus == null || this.contains(focus)) clone.grab_key_focus(); this._windows.forEach(c => { if (c !== clone) c.hideOverlay(true); }); }); clone.connect('destroy', () => { this._doRemoveWindow(metaWindow); }); this.layout_manager.addWindow(clone, metaWindow); if (this._windows.length == 0) clone.setStackAbove(null); else clone.setStackAbove(this._windows[this._windows.length - 1]); this._windows.push(clone); return clone; } _removeWindowClone(metaWin) { // find the position of the window in our list let index = this._lookupIndex(metaWin); if (index == -1) return null; this.layout_manager.removeWindow(this._windows[index]); return this._windows.splice(index, 1).pop(); } _onStyleChanged() { const themeNode = this.get_theme_node(); this.layout_manager.spacing = themeNode.get_length('spacing'); } _onCloneSelected(clone, time) { let wsIndex; if (this.metaWorkspace) wsIndex = this.metaWorkspace.index(); Main.activateWindow(clone.metaWindow, time, wsIndex); } // Draggable target interface handleDragOver(source, _actor, _x, _y, _time) { if (source.metaWindow && !this._isMyWindow(source.metaWindow)) return DND.DragMotionResult.MOVE_DROP; if (source.app && source.app.can_open_new_window()) return DND.DragMotionResult.COPY_DROP; if (!source.app && source.shellWorkspaceLaunch) return DND.DragMotionResult.COPY_DROP; return DND.DragMotionResult.CONTINUE; } acceptDrop(source, actor, x, y, time) { let workspaceManager = global.workspace_manager; let workspaceIndex = this.metaWorkspace ? this.metaWorkspace.index() : workspaceManager.get_active_workspace_index(); if (source.metaWindow) { const window = source.metaWindow; if (this._isMyWindow(window)) return false; // We need to move the window before changing the workspace, because // the move itself could cause a workspace change if the window enters // the primary monitor if (window.get_monitor() != this.monitorIndex) window.move_to_monitor(this.monitorIndex); window.change_workspace_by_index(workspaceIndex, false); return true; } else if (source.app && source.app.can_open_new_window()) { if (source.animateLaunchAtPos) source.animateLaunchAtPos(actor.x, actor.y); source.app.open_new_window(workspaceIndex); return true; } else if (!source.app && source.shellWorkspaceLaunch) { // While unused in our own drag sources, shellWorkspaceLaunch allows // extensions to define custom actions for their drag sources. source.shellWorkspaceLaunch({ workspace: workspaceIndex, timestamp: time }); return true; } return false; } });