/* -*- mode: C; c-file-style: "gnu"; indent-tabs-mode: nil; -*- */ #include "config.h" #include #include #include #include #include #define GST_USE_UNSTABLE_API #include #include #include #include #include #include #include "shell-global.h" #include "shell-recorder-src.h" #include "shell-recorder.h" #include "shell-util.h" #define A11Y_APPS_SCHEMA "org.gnome.desktop.a11y.applications" #define MAGNIFIER_ACTIVE_KEY "screen-magnifier-enabled" typedef enum { RECORDER_STATE_CLOSED, RECORDER_STATE_RECORDING } RecorderState; typedef struct _RecorderPipeline RecorderPipeline; struct _ShellRecorder { GObject parent; /* A "maximum" amount of memory to use for buffering. This is used * to alert the user that they are filling up memory rather than * any that actually affects recording. (In kB) */ guint memory_target; guint memory_used; /* Current memory used. (In kB) */ RecorderState state; ClutterStage *stage; gboolean custom_area; cairo_rectangle_int_t area; int stage_width; int stage_height; int pointer_x; int pointer_y; GSettings *a11y_settings; gboolean draw_cursor; MetaCursorTracker *cursor_tracker; cairo_surface_t *cursor_image; guint8 *cursor_memory; int cursor_hot_x; int cursor_hot_y; int framerate; char *pipeline_description; char *file_template; /* We might have multiple pipelines that are finishing encoding * to go along with the current pipeline where we are recording. */ RecorderPipeline *current_pipeline; /* current pipeline */ GSList *pipelines; /* all pipelines */ GstClockTime last_frame_time; /* Timestamp for the last frame */ /* GSource IDs for different timeouts and idles */ guint redraw_timeout; guint redraw_idle; guint update_memory_used_timeout; guint update_pointer_timeout; guint repaint_hook_id; }; struct _RecorderPipeline { ShellRecorder *recorder; GstElement *pipeline; GstElement *src; int outfile; char *filename; }; static void recorder_set_stage (ShellRecorder *recorder, ClutterStage *stage); static void recorder_set_framerate (ShellRecorder *recorder, int framerate); static void recorder_set_pipeline (ShellRecorder *recorder, const char *pipeline); static void recorder_set_file_template (ShellRecorder *recorder, const char *file_template); static void recorder_set_draw_cursor (ShellRecorder *recorder, gboolean draw_cursor); static void recorder_pipeline_set_caps (RecorderPipeline *pipeline); static void recorder_pipeline_closed (RecorderPipeline *pipeline); static void recorder_remove_redraw_timeout (ShellRecorder *recorder); enum { PROP_0, PROP_DISPLAY, PROP_STAGE, PROP_FRAMERATE, PROP_PIPELINE, PROP_FILE_TEMPLATE, PROP_DRAW_CURSOR }; G_DEFINE_TYPE(ShellRecorder, shell_recorder, G_TYPE_OBJECT); /* The default value of the target frame rate; we'll never record more * than this many frames per second, though we may record less if the * screen isn't being redrawn. 30 is a compromise between smoothness * and the size of the recording. */ #define DEFAULT_FRAMES_PER_SECOND 30 /* The time (in milliseconds) between querying the server for the cursor * position. */ #define UPDATE_POINTER_TIME 100 /* The time we wait (in milliseconds) before redrawing when the memory used * changes. */ #define UPDATE_MEMORY_USED_DELAY 500 /* Maximum time between frames, in milliseconds. If we don't send data * for a long period of time, then when we send the next frame, a lot * of work can be created for the encoder to do, so we want to force a * periodic redraw when nothing happen. */ #define MAXIMUM_PAUSE_TIME 1000 /* The default pipeline. */ #define DEFAULT_PIPELINE "vp9enc min_quantizer=13 max_quantizer=13 cpu-used=5 deadline=1000000 threads=%T ! queue ! webmmux" /* If we can find the amount of memory on the machine, we use half * of that for memory_target, otherwise, we use this value, in kB. */ #define DEFAULT_MEMORY_TARGET (512*1024) static guint get_memory_target (void) { FILE *f; /* Really simple "get amount of memory on the machine" if it * doesn't work, you just get the default memory target. */ f = fopen("/proc/meminfo", "r"); if (!f) return DEFAULT_MEMORY_TARGET; while (!feof(f)) { gchar line_buffer[1024]; guint mem_total; if (fscanf(f, "MemTotal: %u", &mem_total) == 1) { fclose(f); return mem_total / 2; } /* Skip to the next line and discard what we read */ if (fgets(line_buffer, sizeof(line_buffer), f) == NULL) break; } fclose(f); return DEFAULT_MEMORY_TARGET; } /* * Used to force full stage redraws during recording to avoid artifacts * * Note: That this will cause the stage to be repainted on * every animation frame even if the frame wouldn't normally cause any new * drawing */ static gboolean recorder_repaint_hook (gpointer data) { ClutterActor *stage = data; clutter_actor_queue_redraw (stage); return TRUE; } static void shell_recorder_init (ShellRecorder *recorder) { /* Calling gst_init() is a no-op if GStreamer was previously initialized */ gst_init (NULL, NULL); shell_recorder_src_register (); recorder->memory_target = get_memory_target(); recorder->a11y_settings = g_settings_new (A11Y_APPS_SCHEMA); recorder->state = RECORDER_STATE_CLOSED; recorder->framerate = DEFAULT_FRAMES_PER_SECOND; recorder->draw_cursor = TRUE; } static void shell_recorder_finalize (GObject *object) { ShellRecorder *recorder = SHELL_RECORDER (object); if (recorder->update_memory_used_timeout) g_source_remove (recorder->update_memory_used_timeout); if (recorder->cursor_image) cairo_surface_destroy (recorder->cursor_image); if (recorder->cursor_memory) g_free (recorder->cursor_memory); recorder_set_stage (recorder, NULL); recorder_set_pipeline (recorder, NULL); recorder_set_file_template (recorder, NULL); recorder_remove_redraw_timeout (recorder); g_clear_object (&recorder->a11y_settings); G_OBJECT_CLASS (shell_recorder_parent_class)->finalize (object); } static void recorder_on_stage_destroy (ClutterActor *actor, ShellRecorder *recorder) { recorder_set_stage (recorder, NULL); } /* Add together the memory used by all pipelines; both the * currently recording pipeline and pipelines finishing * recording asynchronously. */ static void recorder_update_memory_used (ShellRecorder *recorder, gboolean repaint) { guint memory_used = 0; GSList *l; for (l = recorder->pipelines; l; l = l->next) { RecorderPipeline *pipeline = l->data; guint pipeline_memory_used; g_object_get (pipeline->src, "memory-used", &pipeline_memory_used, NULL); memory_used += pipeline_memory_used; } if (memory_used != recorder->memory_used) recorder->memory_used = memory_used; } /* Timeout used to avoid not drawing for more than MAXIMUM_PAUSE_TIME */ static gboolean recorder_redraw_timeout (gpointer data) { ShellRecorder *recorder = data; recorder->redraw_timeout = 0; clutter_actor_queue_redraw (CLUTTER_ACTOR (recorder->stage)); return FALSE; } static void recorder_add_redraw_timeout (ShellRecorder *recorder) { if (recorder->redraw_timeout == 0) { recorder->redraw_timeout = g_timeout_add (MAXIMUM_PAUSE_TIME, recorder_redraw_timeout, recorder); g_source_set_name_by_id (recorder->redraw_timeout, "[gnome-shell] recorder_redraw_timeout"); } } static void recorder_remove_redraw_timeout (ShellRecorder *recorder) { if (recorder->redraw_timeout != 0) { g_source_remove (recorder->redraw_timeout); recorder->redraw_timeout = 0; } } static void recorder_fetch_cursor_image (ShellRecorder *recorder) { CoglTexture *texture; int width, height; int stride; guint8 *data; texture = meta_cursor_tracker_get_sprite (recorder->cursor_tracker); if (!texture) return; meta_cursor_tracker_get_hot (recorder->cursor_tracker, &recorder->cursor_hot_x, &recorder->cursor_hot_y); width = cogl_texture_get_width (texture); height = cogl_texture_get_height (texture); stride = 4 * width; data = g_new (guint8, stride * height); cogl_texture_get_data (texture, CLUTTER_CAIRO_FORMAT_ARGB32, stride, data); /* FIXME: cairo-gl? */ recorder->cursor_image = cairo_image_surface_create_for_data (data, CAIRO_FORMAT_ARGB32, width, height, stride); recorder->cursor_memory = data; } /* Overlay the cursor image on the frame. We draw the cursor image * into the host-memory buffer after we've captured the frame. An * alternate approach would be to turn off the cursor while recording * and draw the cursor ourselves with GL, but then we'd need to figure * out what the cursor looks like, or hard-code a non-system cursor. */ static void recorder_draw_cursor (ShellRecorder *recorder, GstBuffer *buffer) { GstMapInfo info; cairo_surface_t *surface; cairo_t *cr; /* We don't show a cursor unless the hot spot is in the frame; this * means that sometimes we aren't going to draw a cursor even when * there is a little bit overlapping within the stage */ if (recorder->pointer_x < recorder->area.x || recorder->pointer_y < recorder->area.y || recorder->pointer_x >= recorder->area.x + recorder->area.width || recorder->pointer_y >= recorder->area.y + recorder->area.height) return; if (!recorder->cursor_image) recorder_fetch_cursor_image (recorder); if (!recorder->cursor_image) return; gst_buffer_map (buffer, &info, GST_MAP_WRITE); surface = cairo_image_surface_create_for_data (info.data, CAIRO_FORMAT_ARGB32, recorder->area.width, recorder->area.height, recorder->area.width * 4); cr = cairo_create (surface); cairo_set_source_surface (cr, recorder->cursor_image, recorder->pointer_x - recorder->cursor_hot_x - recorder->area.x, recorder->pointer_y - recorder->cursor_hot_y - recorder->area.y); cairo_paint (cr); cairo_destroy (cr); cairo_surface_destroy (surface); gst_buffer_unmap (buffer, &info); } /* Retrieve a frame and feed it into the pipeline */ static void recorder_record_frame (ShellRecorder *recorder, gboolean paint) { GstBuffer *buffer; ClutterCapture *captures; int n_captures; cairo_surface_t *image; guint size; uint8_t *data; GstMemory *memory; int i; GstClock *clock; GstClockTime now, base_time; g_return_if_fail (recorder->current_pipeline != NULL); /* If we get into the red zone, stop buffering new frames; 13/16 is * a bit more than the 3/4 threshold for a red indicator to keep the * indicator from flashing between red and yellow. */ if (recorder->memory_used > (recorder->memory_target * 13) / 16) return; /* Drop frames to get down to something like the target frame rate; since frames * are generated with VBlank sync, we don't have full control anyways, so we just * drop frames if the interval since the last frame is less than 75% of the * desired inter-frame interval. */ clock = gst_element_get_clock (recorder->current_pipeline->src); /* If we have no clock yet, the pipeline is not yet in PLAYING */ if (!clock) return; base_time = gst_element_get_base_time (recorder->current_pipeline->src); now = gst_clock_get_time (clock) - base_time; gst_object_unref (clock); if (GST_CLOCK_TIME_IS_VALID (recorder->last_frame_time) && now - recorder->last_frame_time < gst_util_uint64_scale_int (GST_SECOND, 3, 4 * recorder->framerate)) return; recorder->last_frame_time = now; clutter_stage_capture (recorder->stage, paint, &recorder->area, &captures, &n_captures); if (n_captures == 0) return; if (n_captures == 1) image = cairo_surface_reference (captures[0].image); else image = shell_util_composite_capture_images (captures, n_captures, recorder->area.x, recorder->area.y, recorder->area.width, recorder->area.height); data = cairo_image_surface_get_data (image); size = (cairo_image_surface_get_height (image) * cairo_image_surface_get_stride (image)); for (i = 0; i < n_captures; i++) cairo_surface_destroy (captures[i].image); g_free (captures); buffer = gst_buffer_new(); memory = gst_memory_new_wrapped (0, data, size, 0, size, image, (GDestroyNotify) cairo_surface_destroy); gst_buffer_insert_memory (buffer, -1, memory); GST_BUFFER_PTS(buffer) = now; if (recorder->draw_cursor && !g_settings_get_boolean (recorder->a11y_settings, MAGNIFIER_ACTIVE_KEY)) recorder_draw_cursor (recorder, buffer); shell_recorder_src_add_buffer (SHELL_RECORDER_SRC (recorder->current_pipeline->src), buffer); gst_buffer_unref (buffer); /* Reset the timeout that we used to avoid an overlong pause in the stream */ recorder_remove_redraw_timeout (recorder); recorder_add_redraw_timeout (recorder); } /* We hook in by recording each frame right after the stage is painted * by clutter before glSwapBuffers() makes it visible to the user. */ static void recorder_on_stage_paint (ClutterActor *actor, ShellRecorder *recorder) { if (recorder->state == RECORDER_STATE_RECORDING) recorder_record_frame (recorder, FALSE); } static void recorder_update_size (ShellRecorder *recorder) { ClutterActorBox allocation; clutter_actor_get_allocation_box (CLUTTER_ACTOR (recorder->stage), &allocation); recorder->stage_width = (int)(0.5 + allocation.x2 - allocation.x1); recorder->stage_height = (int)(0.5 + allocation.y2 - allocation.y1); if (!recorder->custom_area) { recorder->area.x = 0; recorder->area.y = 0; recorder->area.width = recorder->stage_width; recorder->area.height = recorder->stage_height; } } static void recorder_on_stage_notify_size (GObject *object, GParamSpec *pspec, ShellRecorder *recorder) { recorder_update_size (recorder); /* This breaks the recording but tweaking the GStreamer pipeline a bit * might make it work, at least if the codec can handle a stream where * the frame size changes in the middle. */ if (recorder->current_pipeline) recorder_pipeline_set_caps (recorder->current_pipeline); } static gboolean recorder_idle_redraw (gpointer data) { ShellRecorder *recorder = data; recorder->redraw_idle = 0; clutter_actor_queue_redraw (CLUTTER_ACTOR (recorder->stage)); return FALSE; } static void recorder_queue_redraw (ShellRecorder *recorder) { /* If we just queue a redraw on every mouse motion (for example), we * starve Clutter, which operates at a very low priority. So * we need to queue a "low priority redraw" after timeline updates */ if (recorder->state == RECORDER_STATE_RECORDING && recorder->redraw_idle == 0) { recorder->redraw_idle = g_idle_add_full (CLUTTER_PRIORITY_REDRAW + 1, recorder_idle_redraw, recorder, NULL); g_source_set_name_by_id (recorder->redraw_idle, "[gnome-shell] recorder_idle_redraw"); } } static void on_cursor_changed (MetaCursorTracker *tracker, ShellRecorder *recorder) { if (recorder->cursor_image) { cairo_surface_destroy (recorder->cursor_image); recorder->cursor_image = NULL; } if (recorder->cursor_memory) { g_free (recorder->cursor_memory); recorder->cursor_memory = NULL; } recorder_queue_redraw (recorder); } static void recorder_update_pointer (ShellRecorder *recorder) { int pointer_x, pointer_y; meta_cursor_tracker_get_pointer (recorder->cursor_tracker, &pointer_x, &pointer_y, NULL); if (pointer_x != recorder->pointer_x || pointer_y != recorder->pointer_y) { recorder->pointer_x = pointer_x; recorder->pointer_y = pointer_y; recorder_queue_redraw (recorder); } } static gboolean recorder_update_pointer_timeout (gpointer data) { recorder_update_pointer (data); return TRUE; } static void recorder_add_update_pointer_timeout (ShellRecorder *recorder) { if (!recorder->update_pointer_timeout) { recorder->update_pointer_timeout = g_timeout_add (UPDATE_POINTER_TIME, recorder_update_pointer_timeout, recorder); g_source_set_name_by_id (recorder->update_pointer_timeout, "[gnome-shell] recorder_update_pointer_timeout"); } } static void recorder_remove_update_pointer_timeout (ShellRecorder *recorder) { if (recorder->update_pointer_timeout) { g_source_remove (recorder->update_pointer_timeout); recorder->update_pointer_timeout = 0; } } static void recorder_connect_stage_callbacks (ShellRecorder *recorder) { g_signal_connect (recorder->stage, "destroy", G_CALLBACK (recorder_on_stage_destroy), recorder); g_signal_connect_after (recorder->stage, "paint", G_CALLBACK (recorder_on_stage_paint), recorder); g_signal_connect (recorder->stage, "notify::width", G_CALLBACK (recorder_on_stage_notify_size), recorder); g_signal_connect (recorder->stage, "notify::height", G_CALLBACK (recorder_on_stage_notify_size), recorder); } static void recorder_disconnect_stage_callbacks (ShellRecorder *recorder) { g_signal_handlers_disconnect_by_func (recorder->stage, (void *)recorder_on_stage_destroy, recorder); g_signal_handlers_disconnect_by_func (recorder->stage, (void *)recorder_on_stage_paint, recorder); g_signal_handlers_disconnect_by_func (recorder->stage, (void *)recorder_on_stage_notify_size, recorder); /* We don't don't deselect for cursor changes in case someone else just * happened to be selecting for cursor events on the same window; sending * us the events is close to free in any case. */ if (recorder->redraw_idle) { g_source_remove (recorder->redraw_idle); recorder->redraw_idle = 0; } } static void recorder_set_stage (ShellRecorder *recorder, ClutterStage *stage) { if (recorder->stage == stage) return; if (recorder->current_pipeline) shell_recorder_close (recorder); if (recorder->stage) recorder_disconnect_stage_callbacks (recorder); recorder->stage = stage; if (recorder->stage) recorder_update_size (recorder); } static void recorder_set_display (ShellRecorder *recorder, MetaDisplay *display) { MetaCursorTracker *tracker; tracker = meta_cursor_tracker_get_for_display (display); if (tracker == recorder->cursor_tracker) return; recorder->cursor_tracker = tracker; g_signal_connect_object (tracker, "cursor-changed", G_CALLBACK (on_cursor_changed), recorder, 0); } static void recorder_set_framerate (ShellRecorder *recorder, int framerate) { if (framerate == recorder->framerate) return; if (recorder->current_pipeline) shell_recorder_close (recorder); recorder->framerate = framerate; g_object_notify (G_OBJECT (recorder), "framerate"); } static void recorder_set_pipeline (ShellRecorder *recorder, const char *pipeline) { if (pipeline == recorder->pipeline_description || (pipeline && recorder->pipeline_description && strcmp (recorder->pipeline_description, pipeline) == 0)) return; if (recorder->current_pipeline) shell_recorder_close (recorder); if (recorder->pipeline_description) g_free (recorder->pipeline_description); recorder->pipeline_description = g_strdup (pipeline); g_object_notify (G_OBJECT (recorder), "pipeline"); } static void recorder_set_file_template (ShellRecorder *recorder, const char *file_template) { if (file_template == recorder->file_template || (file_template && recorder->file_template && strcmp (recorder->file_template, file_template) == 0)) return; if (recorder->current_pipeline) shell_recorder_close (recorder); if (recorder->file_template) g_free (recorder->file_template); recorder->file_template = g_strdup (file_template); g_object_notify (G_OBJECT (recorder), "file-template"); } static void recorder_set_draw_cursor (ShellRecorder *recorder, gboolean draw_cursor) { if (draw_cursor == recorder->draw_cursor) return; recorder->draw_cursor = draw_cursor; g_object_notify (G_OBJECT (recorder), "draw-cursor"); } static void shell_recorder_set_property (GObject *object, guint prop_id, const GValue *value, GParamSpec *pspec) { ShellRecorder *recorder = SHELL_RECORDER (object); switch (prop_id) { case PROP_DISPLAY: recorder_set_display (recorder, g_value_get_object (value)); break; case PROP_STAGE: recorder_set_stage (recorder, g_value_get_object (value)); break; case PROP_FRAMERATE: recorder_set_framerate (recorder, g_value_get_int (value)); break; case PROP_PIPELINE: recorder_set_pipeline (recorder, g_value_get_string (value)); break; case PROP_FILE_TEMPLATE: recorder_set_file_template (recorder, g_value_get_string (value)); break; case PROP_DRAW_CURSOR: recorder_set_draw_cursor (recorder, g_value_get_boolean (value)); break; default: G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec); break; } } static void shell_recorder_get_property (GObject *object, guint prop_id, GValue *value, GParamSpec *pspec) { ShellRecorder *recorder = SHELL_RECORDER (object); switch (prop_id) { case PROP_STAGE: g_value_set_object (value, G_OBJECT (recorder->stage)); break; case PROP_FRAMERATE: g_value_set_int (value, recorder->framerate); break; case PROP_PIPELINE: g_value_set_string (value, recorder->pipeline_description); break; case PROP_FILE_TEMPLATE: g_value_set_string (value, recorder->file_template); break; case PROP_DRAW_CURSOR: g_value_set_boolean (value, recorder->draw_cursor); break; default: G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec); break; } } static void shell_recorder_class_init (ShellRecorderClass *klass) { GObjectClass *gobject_class = G_OBJECT_CLASS (klass); gobject_class->finalize = shell_recorder_finalize; gobject_class->get_property = shell_recorder_get_property; gobject_class->set_property = shell_recorder_set_property; g_object_class_install_property (gobject_class, PROP_DISPLAY, g_param_spec_object ("display", "Display", "Display to record", META_TYPE_DISPLAY, G_PARAM_WRITABLE)); g_object_class_install_property (gobject_class, PROP_STAGE, g_param_spec_object ("stage", "Stage", "Stage to record", CLUTTER_TYPE_STAGE, G_PARAM_READWRITE)); g_object_class_install_property (gobject_class, PROP_FRAMERATE, g_param_spec_int ("framerate", "Framerate", "Framerate used for resulting video in frames-per-second", 0, G_MAXINT, DEFAULT_FRAMES_PER_SECOND, G_PARAM_READWRITE)); g_object_class_install_property (gobject_class, PROP_PIPELINE, g_param_spec_string ("pipeline", "Pipeline", "GStreamer pipeline description to encode recordings", NULL, G_PARAM_READWRITE)); g_object_class_install_property (gobject_class, PROP_FILE_TEMPLATE, g_param_spec_string ("file-template", "File Template", "The filename template to use for output files", NULL, G_PARAM_READWRITE)); g_object_class_install_property (gobject_class, PROP_DRAW_CURSOR, g_param_spec_boolean ("draw-cursor", "Draw Cursor", "Whether to record the cursor", TRUE, G_PARAM_READWRITE)); } /* Sets the GstCaps (video format, in this case) on the stream */ static void recorder_pipeline_set_caps (RecorderPipeline *pipeline) { GstCaps *caps; /* The data is always native-endian xRGB; videoconvert * doesn't support little-endian xRGB, but does support * big-endian BGRx. */ caps = gst_caps_new_simple ("video/x-raw", #if G_BYTE_ORDER == G_LITTLE_ENDIAN "format", G_TYPE_STRING, "BGRx", #else "format", G_TYPE_STRING, "xRGB", #endif "framerate", GST_TYPE_FRACTION, pipeline->recorder->framerate, 1, "width", G_TYPE_INT, pipeline->recorder->area.width, "height", G_TYPE_INT, pipeline->recorder->area.height, NULL); g_object_set (pipeline->src, "caps", caps, NULL); gst_caps_unref (caps); } /* Augments the supplied pipeline with the source elements: the actual * ShellRecorderSrc element where we inject frames then additional elements * to convert the output into something palatable. */ static gboolean recorder_pipeline_add_source (RecorderPipeline *pipeline) { GstPad *sink_pad = NULL, *src_pad = NULL; gboolean result = FALSE; GstElement *videoconvert; sink_pad = gst_bin_find_unlinked_pad (GST_BIN (pipeline->pipeline), GST_PAD_SINK); if (sink_pad == NULL) { g_warning("ShellRecorder: pipeline has no unlinked sink pad"); goto out; } pipeline->src = gst_element_factory_make ("shellrecordersrc", NULL); if (pipeline->src == NULL) { g_warning ("Can't create recorder source element"); goto out; } gst_bin_add (GST_BIN (pipeline->pipeline), pipeline->src); recorder_pipeline_set_caps (pipeline); /* The videoconvert element is a generic converter; it will convert * our supplied fixed format data into whatever the encoder wants */ videoconvert = gst_element_factory_make ("videoconvert", NULL); if (!videoconvert) { g_warning("Can't create videoconvert element"); goto out; } gst_bin_add (GST_BIN (pipeline->pipeline), videoconvert); gst_element_link_many (pipeline->src, videoconvert, NULL); src_pad = gst_element_get_static_pad (videoconvert, "src"); if (!src_pad) { g_warning("ShellRecorder: can't get src pad to link into pipeline"); goto out; } if (gst_pad_link (src_pad, sink_pad) != GST_PAD_LINK_OK) { g_warning("ShellRecorder: can't link to sink pad"); goto out; } result = TRUE; out: if (sink_pad) gst_object_unref (sink_pad); if (src_pad) gst_object_unref (src_pad); return result; } static char * get_absolute_path (char *maybe_relative) { char *path; if (g_path_is_absolute (maybe_relative)) path = g_strdup (maybe_relative); else { const char *video_dir = g_get_user_special_dir (G_USER_DIRECTORY_VIDEOS); if (!g_file_test (video_dir, G_FILE_TEST_EXISTS)) video_dir = g_get_home_dir (); path = g_build_filename (video_dir, maybe_relative, NULL); } return path; } /* Open a file for writing. Opening the file ourselves and using fdsink has * the advantage over filesink of being able to use O_EXCL when we want to * avoid overwriting* an existing file. Returns -1 if the file couldn't * be opened. */ static int recorder_open_outfile (ShellRecorder *recorder, char **outfilename) { const char *pattern; int flags; int outfile = -1; pattern = recorder->file_template; if (!pattern) return -1; while (TRUE) { GString *filename = g_string_new (NULL); const char *p; char *path; for (p = pattern; *p; p++) { if (*p == '%') { switch (*(p + 1)) { case '%': case '\0': g_string_append_c (filename, '%'); break; case 'd': { /* Appends date according to locale */ GDateTime *datetime = g_date_time_new_now_local (); char *date_str = g_date_time_format (datetime, "%0x"); char *s; for (s = date_str; *s; s++) if (G_IS_DIR_SEPARATOR (*s)) *s = '-'; g_string_append (filename, date_str); g_free (date_str); g_date_time_unref (datetime); } break; case 't': { /* Appends time according to locale */ GDateTime *datetime = g_date_time_new_now_local (); char *time_str = g_date_time_format (datetime, "%0X"); char *s; for (s = time_str; *s; s++) if (G_IS_DIR_SEPARATOR (*s)) *s = ':'; g_string_append (filename, time_str); g_free (time_str); g_date_time_unref (datetime); } break; default: g_warning ("Unknown escape %%%c in filename", *(p + 1)); goto out; } p++; } else g_string_append_c (filename, *p); } /* If a filename is explicitly specified without %u then we assume the user * is fine with over-writing the old contents; putting %u in the default * should avoid problems with malicious symlinks. */ flags = O_WRONLY | O_CREAT | O_TRUNC; path = get_absolute_path (filename->str); outfile = open (path, flags, 0666); if (outfile != -1) { g_printerr ("Recording to %s\n", path); if (outfilename != NULL) *outfilename = path; else g_free (path); g_string_free (filename, TRUE); goto out; } if (outfile == -1 && errno != EEXIST) { g_warning ("Cannot open output file '%s': %s", path, g_strerror (errno)); g_string_free (filename, TRUE); g_free (path); goto out; } g_string_free (filename, TRUE); g_free (path); } out: return outfile; } /* Augments the supplied pipeline with a sink element to write to the output * file, if necessary. */ static gboolean recorder_pipeline_add_sink (RecorderPipeline *pipeline) { GstPad *sink_pad = NULL, *src_pad = NULL; GstElement *fdsink; gboolean result = FALSE; src_pad = gst_bin_find_unlinked_pad (GST_BIN (pipeline->pipeline), GST_PAD_SRC); if (src_pad == NULL) { /* Nothing to do - assume that we were given a complete pipeline */ return TRUE; } pipeline->outfile = recorder_open_outfile (pipeline->recorder, &pipeline->filename); if (pipeline->outfile == -1) goto out; fdsink = gst_element_factory_make ("fdsink", NULL); if (fdsink == NULL) { g_warning("Can't create fdsink element"); goto out; } gst_bin_add (GST_BIN (pipeline->pipeline), fdsink); g_object_set (fdsink, "fd", pipeline->outfile, NULL); sink_pad = gst_element_get_static_pad (fdsink, "sink"); if (!sink_pad) { g_warning("ShellRecorder: can't get sink pad to link pipeline output"); goto out; } if (gst_pad_link (src_pad, sink_pad) != GST_PAD_LINK_OK) { g_warning("ShellRecorder: can't link to sink pad"); goto out; } result = TRUE; out: if (src_pad) gst_object_unref (src_pad); if (sink_pad) gst_object_unref (sink_pad); return result; } static gboolean recorder_update_memory_used_timeout (gpointer data) { ShellRecorder *recorder = data; recorder->update_memory_used_timeout = 0; recorder_update_memory_used (recorder, TRUE); return FALSE; } /* We throttle down the frequency which we recompute memory usage * and draw the buffer indicator to avoid cutting into performance. */ static void recorder_pipeline_on_memory_used_changed (ShellRecorderSrc *src, GParamSpec *spec, RecorderPipeline *pipeline) { ShellRecorder *recorder = pipeline->recorder; if (!recorder) return; if (recorder->update_memory_used_timeout == 0) { recorder->update_memory_used_timeout = g_timeout_add (UPDATE_MEMORY_USED_DELAY, recorder_update_memory_used_timeout, recorder); g_source_set_name_by_id (recorder->update_memory_used_timeout, "[gnome-shell] recorder_update_memory_used_timeout"); } } static void recorder_pipeline_free (RecorderPipeline *pipeline) { if (pipeline->pipeline != NULL) gst_object_unref (pipeline->pipeline); if (pipeline->outfile != -1) close (pipeline->outfile); g_free (pipeline->filename); g_clear_object (&pipeline->recorder); g_free (pipeline); } /* Function gets called on pipeline-global events; we use it to * know when the pipeline is finished. */ static gboolean recorder_pipeline_bus_watch (GstBus *bus, GstMessage *message, gpointer data) { RecorderPipeline *pipeline = data; if (message->type == GST_MESSAGE_EOS) { recorder_pipeline_closed (pipeline); return FALSE; /* remove watch */ } else if (message->type == GST_MESSAGE_ERROR) { GError *error; gst_message_parse_error (message, &error, NULL); g_warning ("Error in recording pipeline: %s\n", error->message); g_error_free (error); recorder_pipeline_closed (pipeline); return FALSE; /* remove watch */ } /* Leave the watch in place */ return TRUE; } /* Clean up when the pipeline is finished */ static void recorder_pipeline_closed (RecorderPipeline *pipeline) { g_signal_handlers_disconnect_by_func (pipeline->src, (gpointer) recorder_pipeline_on_memory_used_changed, pipeline); recorder_disconnect_stage_callbacks (pipeline->recorder); gst_element_set_state (pipeline->pipeline, GST_STATE_NULL); if (pipeline->recorder) { GtkRecentManager *recent_manager; GFile *file; char *uri; ShellRecorder *recorder = pipeline->recorder; if (pipeline == recorder->current_pipeline) { /* Error case; force a close */ recorder->current_pipeline = NULL; shell_recorder_close (recorder); } recent_manager = gtk_recent_manager_get_default (); file = g_file_new_for_path (pipeline->filename); uri = g_file_get_uri (file); gtk_recent_manager_add_item (recent_manager, uri); g_free (uri); g_object_unref (file); recorder->pipelines = g_slist_remove (recorder->pipelines, pipeline); } recorder_pipeline_free (pipeline); } /* * Replaces '%T' in the passed pipeline with the thread count, * the maximum possible value is 64 (limit of what vp9enc supports) * * It is assumes that %T occurs only once. */ static char* substitute_thread_count (const char *pipeline) { char *tmp; int n_threads; GString *result; tmp = strstr (pipeline, "%T"); if (!tmp) return g_strdup (pipeline); #ifdef _SC_NPROCESSORS_ONLN { int n_processors = sysconf (_SC_NPROCESSORS_ONLN); /* includes hyper-threading */ n_threads = MIN (MAX (1, n_processors - 1), 64); } #else n_threads = 3; #endif result = g_string_new (NULL); g_string_append_len (result, pipeline, tmp - pipeline); g_string_append_printf (result, "%d", n_threads); g_string_append (result, tmp + 2); return g_string_free (result, FALSE); } static gboolean recorder_open_pipeline (ShellRecorder *recorder) { RecorderPipeline *pipeline; const char *pipeline_description; char *parsed_pipeline; GError *error = NULL; GstBus *bus; pipeline = g_new0 (RecorderPipeline, 1); pipeline->recorder = g_object_ref (recorder); pipeline->outfile = - 1; pipeline_description = recorder->pipeline_description; if (!pipeline_description) pipeline_description = DEFAULT_PIPELINE; parsed_pipeline = substitute_thread_count (pipeline_description); pipeline->pipeline = gst_parse_launch_full (parsed_pipeline, NULL, GST_PARSE_FLAG_FATAL_ERRORS, &error); g_free (parsed_pipeline); if (pipeline->pipeline == NULL) { g_warning ("ShellRecorder: failed to parse pipeline: %s", error->message); g_error_free (error); goto error; } if (!recorder_pipeline_add_source (pipeline)) goto error; if (!recorder_pipeline_add_sink (pipeline)) goto error; gst_element_set_state (pipeline->pipeline, GST_STATE_PLAYING); bus = gst_pipeline_get_bus (GST_PIPELINE (pipeline->pipeline)); gst_bus_add_watch (bus, recorder_pipeline_bus_watch, pipeline); gst_object_unref (bus); g_signal_connect (pipeline->src, "notify::memory-used", G_CALLBACK (recorder_pipeline_on_memory_used_changed), pipeline); recorder->current_pipeline = pipeline; recorder->pipelines = g_slist_prepend (recorder->pipelines, pipeline); return TRUE; error: recorder_pipeline_free (pipeline); return FALSE; } static void recorder_close_pipeline (ShellRecorder *recorder) { if (recorder->current_pipeline != NULL) { /* This will send an EOS (end-of-stream) message after the last frame * is written. The bus watch for the pipeline will get it and do * final cleanup */ gst_element_send_event (recorder->current_pipeline->pipeline, gst_event_new_eos()); recorder->current_pipeline = NULL; } } /** * shell_recorder_new: * @stage: The #ClutterStage * * Create a new #ShellRecorder to record movies of a #ClutterStage * * Return value: The newly created #ShellRecorder object */ ShellRecorder * shell_recorder_new (ClutterStage *stage) { return g_object_new (SHELL_TYPE_RECORDER, "stage", stage, NULL); } /** * shell_recorder_set_framerate: * @recorder: the #ShellRecorder * @framerate: Framerate used for resulting video in frames-per-second. * * Sets the number of frames per second we try to record. Less frames * will be recorded when the screen doesn't need to be redrawn this * quickly. (This value will also be set as the framerate for the * GStreamer pipeline; whether that has an effect on the resulting * video will depend on the details of the pipeline and the codec. The * default encoding to webm format doesn't pay attention to the pipeline * framerate.) * * The default value is 30. */ void shell_recorder_set_framerate (ShellRecorder *recorder, int framerate) { g_return_if_fail (SHELL_IS_RECORDER (recorder)); recorder_set_framerate (recorder, framerate); } /** * shell_recorder_set_file_template: * @recorder: the #ShellRecorder * @file_template: the filename template to use for output files, * or %NULL for the defalt value. * * Sets the filename that will be used when creating output * files. This is only used if the configured pipeline has an * unconnected source pad (as the default pipeline does). If * the pipeline is complete, then the filename is unused. The * provided string is used as a template.It can contain * the following escapes: * * %d: The current date as YYYYYMMDD * %%: A literal percent * * The default value is 'shell-%d%u-%c.ogg'. */ void shell_recorder_set_file_template (ShellRecorder *recorder, const char *file_template) { g_return_if_fail (SHELL_IS_RECORDER (recorder)); recorder_set_file_template (recorder, file_template); } void shell_recorder_set_draw_cursor (ShellRecorder *recorder, gboolean draw_cursor) { g_return_if_fail (SHELL_IS_RECORDER (recorder)); recorder_set_draw_cursor (recorder, draw_cursor); } /** * shell_recorder_set_pipeline: * @recorder: the #ShellRecorder * @pipeline: (nullable): the GStreamer pipeline used to encode recordings * or %NULL for the default value. * * Sets the GStreamer pipeline used to encode recordings. * It follows the syntax used for gst-launch. The pipeline * should have an unconnected sink pad where the recorded * video is recorded. It will normally have a unconnected * source pad; output from that pad will be written into the * output file. (See shell_recorder_set_file_template().) However * the pipeline can also take care of its own output - this * might be used to send the output to an icecast server * via shout2send or similar. * * The default value is 'vp9enc min_quantizer=13 max_quantizer=13 cpu-used=5 deadline=1000000 threads=%T ! queue ! webmmux' */ void shell_recorder_set_pipeline (ShellRecorder *recorder, const char *pipeline) { g_return_if_fail (SHELL_IS_RECORDER (recorder)); recorder_set_pipeline (recorder, pipeline); } void shell_recorder_set_area (ShellRecorder *recorder, int x, int y, int width, int height) { g_return_if_fail (SHELL_IS_RECORDER (recorder)); recorder->custom_area = TRUE; recorder->area.x = CLAMP (x, 0, recorder->stage_width); recorder->area.y = CLAMP (y, 0, recorder->stage_height); recorder->area.width = CLAMP (width, 0, recorder->stage_width - recorder->area.x); recorder->area.height = CLAMP (height, 0, recorder->stage_height - recorder->area.y); /* This breaks the recording but tweaking the GStreamer pipeline a bit * might make it work, at least if the codec can handle a stream where * the frame size changes in the middle. */ if (recorder->current_pipeline) recorder_pipeline_set_caps (recorder->current_pipeline); } /** * shell_recorder_record: * @recorder: the #ShellRecorder * @filename_used: (out) (optional): actual filename used for recording * * Starts recording, Starting the recording may fail if the output file * cannot be opened, or if the output stream cannot be created * for other reasons. In that case a warning is printed to * stderr. There is no way currently to get details on how * recording failed to start. * * An extra reference count is added to the recorder if recording * is succesfully started; the recording object will not be freed * until recording is stopped even if the creator no longer holds * a reference. Recording is automatically stopped if the stage * is destroyed. * * Return value: %TRUE if recording was succesfully started */ gboolean shell_recorder_record (ShellRecorder *recorder, char **filename_used) { g_return_val_if_fail (SHELL_IS_RECORDER (recorder), FALSE); g_return_val_if_fail (recorder->stage != NULL, FALSE); g_return_val_if_fail (recorder->state != RECORDER_STATE_RECORDING, FALSE); if (!recorder_open_pipeline (recorder)) return FALSE; if (filename_used) *filename_used = g_strdup (recorder->current_pipeline->filename); recorder_connect_stage_callbacks (recorder); recorder->last_frame_time = GST_CLOCK_TIME_NONE; recorder->state = RECORDER_STATE_RECORDING; recorder_update_pointer (recorder); recorder_add_update_pointer_timeout (recorder); /* Disable unredirection while we are recoring */ meta_disable_unredirect_for_display (shell_global_get_display (shell_global_get ())); /* Set up repaint hook */ recorder->repaint_hook_id = clutter_threads_add_repaint_func(recorder_repaint_hook, recorder->stage, NULL); /* Record an initial frame and also redraw with the indicator */ clutter_actor_queue_redraw (CLUTTER_ACTOR (recorder->stage)); /* We keep a ref while recording to let a caller start a recording then * drop their reference to the recorder */ g_object_ref (recorder); return TRUE; } /** * shell_recorder_close: * @recorder: the #ShellRecorder * * Stops recording. It's possible to call shell_recorder_record() * again to reopen a new recording stream, but unless change the * recording filename, this may result in the old recording being * overwritten. */ void shell_recorder_close (ShellRecorder *recorder) { g_return_if_fail (SHELL_IS_RECORDER (recorder)); g_return_if_fail (recorder->state != RECORDER_STATE_CLOSED); /* We want to record one more frame since some time may have * elapsed since the last frame */ recorder_record_frame (recorder, TRUE); recorder_remove_update_pointer_timeout (recorder); recorder_close_pipeline (recorder); /* Queue a redraw to remove the recording indicator */ clutter_actor_queue_redraw (CLUTTER_ACTOR (recorder->stage)); if (recorder->repaint_hook_id != 0) { clutter_threads_remove_repaint_func (recorder->repaint_hook_id); recorder->repaint_hook_id = 0; } recorder->state = RECORDER_STATE_CLOSED; /* Reenable after the recording */ meta_enable_unredirect_for_display (shell_global_get_display (shell_global_get ())); /* Release the refcount we took when we started recording */ g_object_unref (recorder); } /** * shell_recorder_is_recording: * * Determine if recording is currently in progress. (The recorder * is not paused or closed.) * * Return value: %TRUE if the recorder is currently recording. */ gboolean shell_recorder_is_recording (ShellRecorder *recorder) { g_return_val_if_fail (SHELL_IS_RECORDER (recorder), FALSE); return recorder->state == RECORDER_STATE_RECORDING; }