mutter/src/backends/native/meta-kms.c
Jonas Ådahl c6b454d00f kms: Prepare shutdown on 'prepare-shutdown' signal
Doing it in dispose means the backend is actively tearing down itself,
meaning various components might or might not be there, depending on how
the tearing down is implemented. Make things a bit more robust by doing
any work that might rely on the backend being there before shutdown is
done in response to the 'prepare-shutdown' signal being emitted by the
backend.

Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2853>
2023-02-18 10:53:27 +00:00

820 lines
22 KiB
C

/*
* Copyright (C) 2018 Red Hat
* Copyright 2020 DisplayLink (UK) Ltd.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
* 02111-1307, USA.
*/
#include "config.h"
#include "backends/native/meta-kms-private.h"
#include "backends/native/meta-backend-native.h"
#include "backends/native/meta-kms-device-private.h"
#include "backends/native/meta-kms-impl.h"
#include "backends/native/meta-kms-update-private.h"
#include "backends/native/meta-udev.h"
#include "cogl/cogl.h"
#include "meta-private-enum-types.h"
/**
* SECTION:kms
* @short description: KMS abstraction
* @title: KMS abstraction
*
* The KMS abstraction consists of various building blocks for helping out with
* interacting with the various drm API's, enabling users to use a
* transactional API, aiming to hide all interaction with the underlying APIs.
*
* The subsystem defines two separate contexts, the "main" context, and the
* "impl" context. The main context is the context of which mutter as a whole
* runs in. It uses the main GLib main loop and main context and always runs in
* the main thread.
*
* The impl context is where all underlying API is being executed. While in the
* current state, it always runs in the main thread, the aim is to be able to
* execute the impl context in a dedicated thread.
*
* The public facing MetaKms API is always assumed to be executed from the main
* context.
*
* The KMS abstraction consists of the following public components:
*
* #MetaKms:
*
* Main entry point; used by the native backend to create devices, post updates
* etc.
*
* #MetaKmsDevice:
*
* A device (usually /dev/dri/cardN, where N being a number). Used to get KMS
* objects, such as connectors, CRTCs, planes, as well as basic meta data such
* as device path etc.
*
* #MetaKmsCrtc:
*
* Represents a CRTC. It manages a representation of the current CRTC state,
* including current mode, coordinates, possible clones.
*
* #MetaKmsConnector:
*
* Represents a connector, e.g. a display port connection. It also manages a
* representation of the current state, including meta data such as physical
* dimension of the connected, available modes, EDID, tile info etc. It also
* contains helper functions for configuration, as well as methods for adding
* configuration to a transaction (See #MetaKmsUpdate).
*
* #MetaKmsPlane:
*
* Represents a hardware plane. A plane is used to define the content of what
* should be presented on a CRTC. Planes can either be primary planes, used as
* a backdrop for CRTCs, overlay planes, and cursor planes.
*
* #MetaKmsMode:
*
* Represents a mode a CRTC and connector can be configured with.
* Represents both modes directly derived from the devices, as well as
* fall back modes when the CRTC supports scaling.
*
* #MetaKmsUpdate:
*
* A KMS transaction object, meant to be processed potentially atomically when
* posted. An update consists of plane assignments, mode sets and KMS object
* property entries. The user adds updates to the object, and then posts it via
* MetaKms. It will then be processed by the MetaKms backend (See
* #MetaKmsImpl), potentially atomically. Each #MetaKmsUpdate deals with
* updating a single device.
*
*
* There are also these private objects, without public facing API:
*
* #MetaKmsImpl:
*
* The KMS impl context object, managing things in the impl context.
*
* #MetaKmsImplDevice:
*
* An object linked to a #MetaKmsDevice, but where it is executed in the impl
* context. It takes care of the updating of the various KMS object (CRTC,
* connector, ..) states.
*
* This is an abstract type, with currently #MetaKmsImplDeviceSimple,
* implementing mode setting and page flipping using legacy DRM API.
*
* #MetaKmsPageFlip:
*
* A object representing a page flip. It's created when a page flip is queued,
* and contains information necessary to provide feedback to the one requesting
* the page flip.
*
*/
enum
{
RESOURCES_CHANGED,
N_SIGNALS
};
static int signals[N_SIGNALS];
typedef struct _MetaKmsCallbackData
{
MetaKmsCallback callback;
gpointer user_data;
GDestroyNotify user_data_destroy;
} MetaKmsCallbackData;
typedef struct _MetaKmsSimpleImplSource
{
GSource source;
MetaKms *kms;
} MetaKmsSimpleImplSource;
typedef struct _MetaKmsFdImplSource
{
GSource source;
gpointer fd_tag;
MetaKms *kms;
MetaKmsImplTaskFunc dispatch;
gpointer user_data;
} MetaKmsFdImplSource;
struct _MetaKms
{
GObject parent;
MetaKmsFlags flags;
MetaBackend *backend;
gulong hotplug_handler_id;
gulong removed_handler_id;
MetaKmsImpl *impl;
gboolean in_impl_task;
gboolean waiting_for_impl_task;
GList *devices;
GList *pending_updates;
GList *pending_callbacks;
guint callback_source_id;
};
G_DEFINE_TYPE (MetaKms, meta_kms, G_TYPE_OBJECT)
void
meta_kms_discard_pending_updates (MetaKms *kms)
{
g_clear_list (&kms->pending_updates, (GDestroyNotify) meta_kms_update_free);
}
static void
meta_kms_add_pending_update (MetaKms *kms,
MetaKmsUpdate *update)
{
kms->pending_updates = g_list_prepend (kms->pending_updates, update);
}
MetaKmsUpdate *
meta_kms_ensure_pending_update (MetaKms *kms,
MetaKmsDevice *device)
{
MetaKmsUpdate *update;
update = meta_kms_get_pending_update (kms, device);
if (update)
return update;
update = meta_kms_update_new (device);
meta_kms_add_pending_update (kms, update);
return update;
}
MetaKmsUpdate *
meta_kms_get_pending_update (MetaKms *kms,
MetaKmsDevice *device)
{
GList *l;
for (l = kms->pending_updates; l; l = l->next)
{
MetaKmsUpdate *update = l->data;
if (meta_kms_update_get_device (update) == device)
return update;
}
return NULL;
}
static MetaKmsUpdate *
meta_kms_take_pending_update (MetaKms *kms,
MetaKmsDevice *device)
{
GList *l;
for (l = kms->pending_updates; l; l = l->next)
{
MetaKmsUpdate *update = l->data;
if (meta_kms_update_get_device (update) == device)
{
kms->pending_updates = g_list_delete_link (kms->pending_updates, l);
return update;
}
}
return NULL;
}
MetaKmsFeedback *
meta_kms_post_pending_update_sync (MetaKms *kms,
MetaKmsDevice *device,
MetaKmsUpdateFlag flags)
{
MetaKmsUpdate *update;
MetaKmsFeedback *feedback;
GList *result_listeners;
GList *l;
COGL_TRACE_BEGIN_SCOPED (MetaKmsPostUpdateSync,
"KMS (post update)");
update = meta_kms_take_pending_update (kms, device);
if (!update)
return NULL;
meta_kms_update_lock (update);
feedback = meta_kms_device_process_update_sync (device, update, flags);
result_listeners = meta_kms_update_take_result_listeners (update);
if (feedback->error &&
flags & META_KMS_UPDATE_FLAG_PRESERVE_ON_ERROR)
{
GList *l;
meta_kms_update_unlock (update);
for (l = feedback->failed_planes; l; l = l->next)
{
MetaKmsPlane *plane = l->data;
meta_kms_update_drop_plane_assignment (update, plane);
}
meta_kms_update_drop_defunct_page_flip_listeners (update);
meta_kms_add_pending_update (kms, update);
}
else
{
meta_kms_update_free (update);
}
for (l = result_listeners; l; l = l->next)
{
MetaKmsResultListener *listener = l->data;
meta_kms_result_listener_notify (listener, feedback);
meta_kms_result_listener_free (listener);
}
g_list_free (result_listeners);
return feedback;
}
MetaKmsFeedback *
meta_kms_post_test_update_sync (MetaKms *kms,
MetaKmsUpdate *update)
{
MetaKmsDevice *device = meta_kms_update_get_device (update);
MetaKmsUpdateFlag flags;
g_assert (!meta_kms_update_get_page_flip_listeners (update));
g_assert (!meta_kms_update_get_mode_sets (update));
g_assert (!meta_kms_update_get_connector_updates (update));
meta_kms_update_lock (update);
flags = META_KMS_UPDATE_FLAG_TEST_ONLY;
return meta_kms_device_process_update_sync (device, update, flags);
}
static gpointer
meta_kms_discard_pending_page_flips_in_impl (MetaKmsImpl *impl,
gpointer user_data,
GError **error)
{
meta_kms_impl_discard_pending_page_flips (impl);
return GINT_TO_POINTER (TRUE);
}
void
meta_kms_discard_pending_page_flips (MetaKms *kms)
{
meta_kms_run_impl_task_sync (kms,
meta_kms_discard_pending_page_flips_in_impl,
NULL,
NULL);
}
static gpointer
meta_kms_notify_modes_set_in_impl (MetaKmsImpl *impl,
gpointer user_data,
GError **error)
{
meta_kms_impl_notify_modes_set (impl);
return GINT_TO_POINTER (TRUE);
}
void
meta_kms_notify_modes_set (MetaKms *kms)
{
meta_kms_run_impl_task_sync (kms,
meta_kms_notify_modes_set_in_impl,
NULL,
NULL);
}
static void
meta_kms_callback_data_free (MetaKmsCallbackData *callback_data)
{
if (callback_data->user_data_destroy)
callback_data->user_data_destroy (callback_data->user_data);
g_free (callback_data);
}
static int
flush_callbacks (MetaKms *kms)
{
GList *l;
int callback_count = 0;
meta_assert_not_in_kms_impl (kms);
g_clear_handle_id (&kms->callback_source_id, g_source_remove);
for (l = kms->pending_callbacks; l; l = l->next)
{
MetaKmsCallbackData *callback_data = l->data;
callback_data->callback (kms, callback_data->user_data);
meta_kms_callback_data_free (callback_data);
callback_count++;
}
g_list_free (kms->pending_callbacks);
kms->pending_callbacks = NULL;
return callback_count;
}
static gboolean
callback_idle (gpointer user_data)
{
MetaKms *kms = user_data;
flush_callbacks (kms);
kms->callback_source_id = 0;
return G_SOURCE_REMOVE;
}
void
meta_kms_queue_callback (MetaKms *kms,
MetaKmsCallback callback,
gpointer user_data,
GDestroyNotify user_data_destroy)
{
MetaKmsCallbackData *callback_data;
callback_data = g_new0 (MetaKmsCallbackData, 1);
*callback_data = (MetaKmsCallbackData) {
.callback = callback,
.user_data = user_data,
.user_data_destroy = user_data_destroy,
};
kms->pending_callbacks = g_list_append (kms->pending_callbacks,
callback_data);
if (!kms->callback_source_id)
kms->callback_source_id = g_idle_add (callback_idle, kms);
}
gpointer
meta_kms_run_impl_task_sync (MetaKms *kms,
MetaKmsImplTaskFunc func,
gpointer user_data,
GError **error)
{
gpointer ret;
kms->in_impl_task = TRUE;
kms->waiting_for_impl_task = TRUE;
ret = func (kms->impl, user_data, error);
kms->waiting_for_impl_task = FALSE;
kms->in_impl_task = FALSE;
return ret;
}
static gboolean
simple_impl_source_dispatch (GSource *source,
GSourceFunc callback,
gpointer user_data)
{
MetaKmsSimpleImplSource *simple_impl_source =
(MetaKmsSimpleImplSource *) source;
MetaKms *kms = simple_impl_source->kms;
gboolean ret;
kms->in_impl_task = TRUE;
ret = callback (user_data);
kms->in_impl_task = FALSE;
return ret;
}
static GSourceFuncs simple_impl_source_funcs = {
.dispatch = simple_impl_source_dispatch,
};
GSource *
meta_kms_add_source_in_impl (MetaKms *kms,
GSourceFunc func,
gpointer user_data,
GDestroyNotify user_data_destroy)
{
GSource *source;
MetaKmsSimpleImplSource *simple_impl_source;
meta_assert_in_kms_impl (kms);
source = g_source_new (&simple_impl_source_funcs,
sizeof (MetaKmsSimpleImplSource));
g_source_set_name (source, "[mutter] KMS simple impl");
simple_impl_source = (MetaKmsSimpleImplSource *) source;
simple_impl_source->kms = kms;
g_source_set_callback (source, func, user_data, user_data_destroy);
g_source_set_ready_time (source, 0);
g_source_attach (source, g_main_context_get_thread_default ());
return source;
}
static gboolean
meta_kms_fd_impl_source_check (GSource *source)
{
MetaKmsFdImplSource *fd_impl_source = (MetaKmsFdImplSource *) source;
return g_source_query_unix_fd (source, fd_impl_source->fd_tag) & G_IO_IN;
}
static gboolean
meta_kms_fd_impl_source_dispatch (GSource *source,
GSourceFunc callback,
gpointer user_data)
{
MetaKmsFdImplSource *fd_impl_source = (MetaKmsFdImplSource *) source;
MetaKms *kms = fd_impl_source->kms;
gpointer ret;
GError *error = NULL;
kms->in_impl_task = TRUE;
ret = fd_impl_source->dispatch (kms->impl,
fd_impl_source->user_data,
&error);
kms->in_impl_task = FALSE;
if (!GPOINTER_TO_INT (ret))
{
g_warning ("Failed to dispatch fd source: %s", error->message);
g_error_free (error);
}
return G_SOURCE_CONTINUE;
}
static GSourceFuncs fd_impl_source_funcs = {
NULL,
meta_kms_fd_impl_source_check,
meta_kms_fd_impl_source_dispatch
};
GSource *
meta_kms_register_fd_in_impl (MetaKms *kms,
int fd,
MetaKmsImplTaskFunc dispatch,
gpointer user_data)
{
GSource *source;
MetaKmsFdImplSource *fd_impl_source;
meta_assert_in_kms_impl (kms);
source = g_source_new (&fd_impl_source_funcs, sizeof (MetaKmsFdImplSource));
g_source_set_name (source, "[mutter] KMS fd impl");
fd_impl_source = (MetaKmsFdImplSource *) source;
fd_impl_source->dispatch = dispatch;
fd_impl_source->user_data = user_data;
fd_impl_source->kms = kms;
fd_impl_source->fd_tag = g_source_add_unix_fd (source, fd,
G_IO_IN | G_IO_ERR);
g_source_attach (source, g_main_context_get_thread_default ());
return source;
}
gboolean
meta_kms_in_impl_task (MetaKms *kms)
{
return kms->in_impl_task;
}
gboolean
meta_kms_is_waiting_for_impl_task (MetaKms *kms)
{
return kms->waiting_for_impl_task;
}
typedef struct _UpdateStatesData
{
const char *device_path;
uint32_t crtc_id;
uint32_t connector_id;
} UpdateStatesData;
static MetaKmsResourceChanges
meta_kms_update_states_in_impl (MetaKms *kms,
UpdateStatesData *update_data)
{
MetaKmsResourceChanges changes = META_KMS_RESOURCE_CHANGE_NONE;
GList *l;
COGL_TRACE_BEGIN_SCOPED (MetaKmsUpdateStates,
"KMS (update states)");
meta_assert_in_kms_impl (kms);
if (!kms->devices)
return META_KMS_RESOURCE_CHANGE_NO_DEVICES;
for (l = kms->devices; l; l = l->next)
{
MetaKmsDevice *kms_device = META_KMS_DEVICE (l->data);
const char *kms_device_path = meta_kms_device_get_path (kms_device);
if (update_data->device_path &&
g_strcmp0 (kms_device_path, update_data->device_path) != 0)
continue;
if (update_data->crtc_id > 0 &&
!meta_kms_device_find_crtc_in_impl (kms_device, update_data->crtc_id))
continue;
if (update_data->connector_id > 0 &&
!meta_kms_device_find_connector_in_impl (kms_device,
update_data->connector_id))
continue;
changes |=
meta_kms_device_update_states_in_impl (kms_device,
update_data->crtc_id,
update_data->connector_id);
}
return changes;
}
static gpointer
update_states_in_impl (MetaKmsImpl *impl,
gpointer user_data,
GError **error)
{
UpdateStatesData *data = user_data;
MetaKms *kms = meta_kms_impl_get_kms (impl);
return GUINT_TO_POINTER (meta_kms_update_states_in_impl (kms, data));
}
MetaKmsResourceChanges
meta_kms_update_states_sync (MetaKms *kms,
GUdevDevice *udev_device)
{
UpdateStatesData data = {};
gpointer ret;
if (udev_device)
{
data.device_path = g_udev_device_get_device_file (udev_device);
data.crtc_id =
CLAMP (g_udev_device_get_property_as_int (udev_device, "CRTC"),
0, UINT32_MAX);
data.connector_id =
CLAMP (g_udev_device_get_property_as_int (udev_device, "CONNECTOR"),
0, UINT32_MAX);
}
ret = meta_kms_run_impl_task_sync (kms, update_states_in_impl, &data, NULL);
return GPOINTER_TO_UINT (ret);
}
static void
handle_hotplug_event (MetaKms *kms,
GUdevDevice *udev_device,
MetaKmsResourceChanges changes)
{
changes |= meta_kms_update_states_sync (kms, udev_device);
if (changes != META_KMS_RESOURCE_CHANGE_NONE)
meta_kms_emit_resources_changed (kms, changes);
}
void
meta_kms_resume (MetaKms *kms)
{
handle_hotplug_event (kms, NULL, META_KMS_RESOURCE_CHANGE_FULL);
}
static void
on_udev_hotplug (MetaUdev *udev,
GUdevDevice *udev_device,
MetaKms *kms)
{
handle_hotplug_event (kms, udev_device, META_KMS_RESOURCE_CHANGE_NONE);
}
static void
on_udev_device_removed (MetaUdev *udev,
GUdevDevice *device,
MetaKms *kms)
{
handle_hotplug_event (kms, NULL, META_KMS_RESOURCE_CHANGE_NONE);
}
MetaBackend *
meta_kms_get_backend (MetaKms *kms)
{
return kms->backend;
}
GList *
meta_kms_get_devices (MetaKms *kms)
{
return kms->devices;
}
MetaKmsDevice *
meta_kms_create_device (MetaKms *kms,
const char *path,
MetaKmsDeviceFlag flags,
GError **error)
{
MetaKmsDevice *device;
if (kms->flags & META_KMS_FLAG_NO_MODE_SETTING)
flags |= META_KMS_DEVICE_FLAG_NO_MODE_SETTING;
device = meta_kms_device_new (kms, path, flags, error);
if (!device)
return NULL;
kms->devices = g_list_append (kms->devices, device);
return device;
}
static gpointer
prepare_shutdown_in_impl (MetaKmsImpl *impl,
gpointer user_data,
GError **error)
{
meta_kms_impl_prepare_shutdown (impl);
return GINT_TO_POINTER (TRUE);
}
static void
on_prepare_shutdown (MetaBackend *backend,
MetaKms *kms)
{
meta_kms_run_impl_task_sync (kms, prepare_shutdown_in_impl, NULL, NULL);
flush_callbacks (kms);
}
MetaKms *
meta_kms_new (MetaBackend *backend,
MetaKmsFlags flags,
GError **error)
{
MetaBackendNative *backend_native = META_BACKEND_NATIVE (backend);
MetaUdev *udev = meta_backend_native_get_udev (backend_native);
MetaKms *kms;
kms = g_object_new (META_TYPE_KMS, NULL);
kms->flags = flags;
kms->backend = backend;
kms->impl = meta_kms_impl_new (kms);
if (!kms->impl)
{
g_object_unref (kms);
return NULL;
}
if (!(flags & META_KMS_FLAG_NO_MODE_SETTING))
{
kms->hotplug_handler_id =
g_signal_connect (udev, "hotplug", G_CALLBACK (on_udev_hotplug), kms);
}
kms->removed_handler_id =
g_signal_connect (udev, "device-removed",
G_CALLBACK (on_udev_device_removed), kms);
g_signal_connect (backend, "prepare-shutdown",
G_CALLBACK (on_prepare_shutdown),
kms);
return kms;
}
static void
meta_kms_finalize (GObject *object)
{
MetaKms *kms = META_KMS (object);
MetaBackendNative *backend_native = META_BACKEND_NATIVE (kms->backend);
MetaUdev *udev = meta_backend_native_get_udev (backend_native);
GList *l;
for (l = kms->pending_callbacks; l; l = l->next)
meta_kms_callback_data_free (l->data);
g_list_free (kms->pending_callbacks);
g_clear_handle_id (&kms->callback_source_id, g_source_remove);
g_list_free_full (kms->devices, g_object_unref);
g_clear_signal_handler (&kms->hotplug_handler_id, udev);
g_clear_signal_handler (&kms->removed_handler_id, udev);
G_OBJECT_CLASS (meta_kms_parent_class)->finalize (object);
}
static void
meta_kms_constructed (GObject *object)
{
}
static void
meta_kms_init (MetaKms *kms)
{
}
static void
meta_kms_class_init (MetaKmsClass *klass)
{
GObjectClass *object_class = G_OBJECT_CLASS (klass);
object_class->finalize = meta_kms_finalize;
object_class->constructed = meta_kms_constructed;
signals[RESOURCES_CHANGED] =
g_signal_new ("resources-changed",
G_TYPE_FROM_CLASS (klass),
G_SIGNAL_RUN_LAST,
0,
NULL, NULL, NULL,
G_TYPE_NONE, 1,
META_TYPE_KMS_RESOURCE_CHANGES);
}
void
meta_kms_emit_resources_changed (MetaKms *kms,
MetaKmsResourceChanges changes)
{
g_signal_emit (kms, signals[RESOURCES_CHANGED], 0, changes);
}