mutter/tests/conform/test-offscreen-redirect.c
Robert Bragg 0aacbd47b7 actor: make offscreen_redirect prop take flags + default off
Because we have had several reports about significant performance
regressions since we enabled offscreen redirection by default for
handling correct opacity we are now turning this feature off by default.

We feel that clutter should prioritize performance over correctness in
this case. Correct opacity is still possible if required but the
overhead of the numerous offscreen allocations as well as the cost of
many render target switches per-frame seems too high relative the
improvement in quality for many cases.

On reviewing the offscreen_redirect property so we have a way to
disable redirection by default we realized that it makes more sense for
it to take a set of flags instead of an enum so we can potentially
extend the number of things that might result in offscreen redirection.

We removed the ability to say REDIRECT_ALWAYS_FOR_OPACITY, since it
seems that implies you don't trust the implementation of an actor's
has_overlaps() vfunc which doesn't seem right.

The default value if actor::redirect_offscreen is now 0 which
effectively means don't ever redirect the actor offscreen.
2011-08-30 16:20:16 +01:00

347 lines
9.5 KiB
C

#include <clutter/clutter.h>
#include "test-conform-common.h"
typedef struct _FooActor FooActor;
typedef struct _FooActorClass FooActorClass;
struct _FooActorClass
{
ClutterActorClass parent_class;
};
struct _FooActor
{
ClutterActor parent;
guint8 last_paint_opacity;
int paint_count;
};
typedef struct
{
ClutterActor *stage;
FooActor *foo_actor;
ClutterActor *parent_container;
ClutterActor *container;
ClutterActor *child;
ClutterActor *unrelated_actor;
} Data;
GType foo_actor_get_type (void) G_GNUC_CONST;
G_DEFINE_TYPE (FooActor, foo_actor, CLUTTER_TYPE_ACTOR);
static gboolean group_has_overlaps;
static void
foo_actor_paint (ClutterActor *actor)
{
FooActor *foo_actor = (FooActor *) actor;
ClutterActorBox allocation;
foo_actor->last_paint_opacity = clutter_actor_get_paint_opacity (actor);
foo_actor->paint_count++;
clutter_actor_get_allocation_box (actor, &allocation);
/* Paint a red rectangle with the right opacity */
cogl_set_source_color4ub (255,
0,
0,
foo_actor->last_paint_opacity);
cogl_rectangle (allocation.x1,
allocation.y1,
allocation.x2,
allocation.y2);
}
static gboolean
foo_actor_get_paint_volume (ClutterActor *actor,
ClutterPaintVolume *volume)
{
return clutter_paint_volume_set_from_allocation (volume, actor);
}
static gboolean
foo_actor_has_overlaps (ClutterActor *actor)
{
return FALSE;
}
static void
foo_actor_class_init (FooActorClass *klass)
{
ClutterActorClass *actor_class = (ClutterActorClass *) klass;
actor_class->paint = foo_actor_paint;
actor_class->get_paint_volume = foo_actor_get_paint_volume;
actor_class->has_overlaps = foo_actor_has_overlaps;
}
static void
foo_actor_init (FooActor *self)
{
}
typedef struct _FooGroup FooGroup;
typedef struct _FooGroupClass FooGroupClass;
struct _FooGroupClass
{
ClutterGroupClass parent_class;
};
struct _FooGroup
{
ClutterGroup parent;
};
G_DEFINE_TYPE (FooGroup, foo_group, CLUTTER_TYPE_GROUP);
static gboolean
foo_group_has_overlaps (ClutterActor *actor)
{
return group_has_overlaps;
}
static void
foo_group_class_init (FooGroupClass *klass)
{
ClutterActorClass *actor_class = (ClutterActorClass *) klass;
actor_class->has_overlaps = foo_group_has_overlaps;
}
static void
foo_group_init (FooGroup *self)
{
}
static void
verify_results (Data *data,
guint8 expected_color_red,
guint8 expected_color_green,
guint8 expected_color_blue,
int expected_paint_count,
int expected_paint_opacity)
{
guchar *pixel;
data->foo_actor->paint_count = 0;
/* Read a pixel at the center of the to determine what color it
painted. This should cause a redraw */
pixel = clutter_stage_read_pixels (CLUTTER_STAGE (data->stage),
50, 50, /* x/y */
1, 1 /* width/height */);
g_assert_cmpint (expected_paint_count, ==, data->foo_actor->paint_count);
g_assert_cmpint (expected_paint_opacity,
==,
data->foo_actor->last_paint_opacity);
g_assert_cmpint (ABS ((int) expected_color_red - (int) pixel[0]), <=, 2);
g_assert_cmpint (ABS ((int) expected_color_green - (int) pixel[1]), <=, 2);
g_assert_cmpint (ABS ((int) expected_color_blue - (int) pixel[2]), <=, 2);
g_free (pixel);
}
static void
verify_redraw (Data *data, int expected_paint_count)
{
GMainLoop *main_loop = g_main_loop_new (NULL, TRUE);
guint paint_handler;
paint_handler = g_signal_connect_data (data->stage,
"paint",
G_CALLBACK (g_main_loop_quit),
main_loop,
NULL,
G_CONNECT_SWAPPED | G_CONNECT_AFTER);
/* Queue a redraw on the stage */
clutter_actor_queue_redraw (data->stage);
data->foo_actor->paint_count = 0;
/* Wait for it to paint */
g_main_loop_run (main_loop);
g_signal_handler_disconnect (data->stage, paint_handler);
g_assert_cmpint (data->foo_actor->paint_count, ==, expected_paint_count);
}
static gboolean
timeout_cb (gpointer user_data)
{
Data *data = user_data;
group_has_overlaps = FALSE;
/* By default the actor shouldn't be redirected so the redraw should
cause the actor to be painted */
verify_results (data,
255, 0, 0,
1,
255);
/* Make the actor semi-transparent and verify the paint opacity */
clutter_actor_set_opacity (data->container, 127);
verify_results (data,
255, 127, 127,
1,
127);
/* With automatic redirect for opacity it shouldn't redirect if
* has_overlaps returns FALSE; */
clutter_actor_set_offscreen_redirect
(data->container, CLUTTER_OFFSCREEN_REDIRECT_AUTOMATIC_FOR_OPACITY);
verify_results (data,
255, 127, 127,
1,
127);
/* We do a double check here to verify that the actor wasn't cached
* during the last check. If it was cached then this check wouldn't
* result in any foo-actor re-paint. */
verify_results (data,
255, 127, 127,
1,
127);
/* With automatic redirect for opacity it should redirect if
* has_overlaps returns TRUE.
* The first paint will still cause the actor to draw because
* it needs to fill the cache first. It should be painted with full
* opacity */
group_has_overlaps = TRUE;
verify_results (data,
255, 127, 127,
1,
255);
/* The second time the actor is painted it should be cached */
verify_results (data,
255, 127, 127,
0,
255);
/* We should be able to change the opacity without causing the actor
to redraw */
clutter_actor_set_opacity (data->container, 64);
verify_results (data,
255, 191, 191,
0,
255);
/* Changing it back to fully opaque should cause it not to go
through the FBO so it will draw */
clutter_actor_set_opacity (data->container, 255);
verify_results (data,
255, 0, 0,
1,
255);
/* Tell it to always redirect through the FBO. This should cause a
paint of the actor because the last draw didn't go through the
FBO */
clutter_actor_set_offscreen_redirect (data->container,
CLUTTER_OFFSCREEN_REDIRECT_ALWAYS);
verify_results (data,
255, 0, 0,
1,
255);
/* We should be able to change the opacity without causing the actor
to redraw */
clutter_actor_set_opacity (data->container, 64);
verify_results (data,
255, 191, 191,
0,
255);
/* Even changing it back to fully opaque shouldn't cause a redraw */
clutter_actor_set_opacity (data->container, 255);
verify_results (data,
255, 0, 0,
0,
255);
/* Queueing a redraw on the actor should cause a redraw */
clutter_actor_queue_redraw (data->container);
verify_redraw (data, 1);
/* Queueing a redraw on a child should cause a redraw */
clutter_actor_queue_redraw (data->child);
verify_redraw (data, 1);
/* Modifying the transformation on the parent should cause a
redraw */
clutter_actor_set_anchor_point (data->parent_container, 0, 1);
verify_redraw (data, 1);
/* Redrawing an unrelated actor shouldn't cause a redraw */
clutter_actor_set_position (data->unrelated_actor, 0, 1);
verify_redraw (data, 0);
clutter_main_quit ();
return FALSE;
}
void
test_offscreen_redirect (TestConformSimpleFixture *fixture,
gconstpointer test_data)
{
if (cogl_features_available (COGL_FEATURE_OFFSCREEN))
{
Data data;
data.stage = clutter_stage_get_default ();
data.parent_container = clutter_group_new ();
data.container = g_object_new (foo_group_get_type (), NULL);
data.foo_actor = g_object_new (foo_actor_get_type (), NULL);
clutter_actor_set_size (CLUTTER_ACTOR (data.foo_actor), 100, 100);
clutter_container_add_actor (CLUTTER_CONTAINER (data.container),
CLUTTER_ACTOR (data.foo_actor));
clutter_container_add_actor (CLUTTER_CONTAINER (data.parent_container),
data.container);
clutter_container_add_actor (CLUTTER_CONTAINER (data.stage),
data.parent_container);
data.child = clutter_rectangle_new ();
clutter_actor_set_size (data.child, 1, 1);
clutter_container_add_actor (CLUTTER_CONTAINER (data.container),
data.child);
data.unrelated_actor = clutter_rectangle_new ();
clutter_actor_set_size (data.child, 1, 1);
clutter_container_add_actor (CLUTTER_CONTAINER (data.stage),
data.unrelated_actor);
clutter_actor_show (data.stage);
/* Start the test after a short delay to allow the stage to
render its initial frames without affecting the results */
g_timeout_add_full (G_PRIORITY_LOW, 250, timeout_cb, &data, NULL);
clutter_main ();
if (g_test_verbose ())
g_print ("OK\n");
}
else if (g_test_verbose ())
g_print ("Skipping\n");
}