And keep track of the hierarchy separately for the Wayland protocol and for output. Protocol state is updated immediately as protocol requests are processed, output state only when the corresponding transaction is applied (which may be deferred until the next commit of the parent surface). v2: * Directly add placement ops to a transaction, instead of going via pending_state. * Use transaction entry for the sub-surface instead of that for its parent surface. v3: * Use transaction entry for the parent surface again, to ensure proper ordering of placement ops, and call meta_wayland_surface_notify_subsurface_state_changed only once per parent surface. * Drop all use of wl_resource_add_destroy_listener, transactions are keeping surfaces alive as long as needed. v4: * Rebase on https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2501 * Drop ClutterActor code from meta_wayland_surface_apply_placement_ops. (Robert Mader) v5: * Rename MetaWaylandSubSurfaceState to MetaWaylandSurfaceSubState, since the next commit adds not sub-surface specific state to it. v6: * Move include of meta-wayland-subsurface.h from meta-wayland-transaction.c to .h, since the latter references MetaWaylandSubsurfacePlacementOp. v7: * Drop superfluous !entry check from meta_wayland_transaction_apply. v8: * Rename output/protocol fields to output/protocol_state. (Jonas Ådahl) v9: * Use meta_wayland_surface_state_new in meta_wayland_transaction_add_placement_op. v10: * Fix a few style issues per check-style.py. Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1880>
Mutter
Mutter is a Wayland display server and X11 window manager and compositor library.
When used as a Wayland display server, it runs on top of KMS and libinput. It implements the compositor side of the Wayland core protocol as well as various protocol extensions. It also has functionality related to running X11 applications using Xwayland.
When used on top of Xorg it acts as a X11 window manager and compositing manager.
It contains functionality related to, among other things, window management, window compositing, focus tracking, workspace management, keybindings and monitor configuration.
Internally it uses a fork of Cogl, a hardware acceleration abstraction library used to simplify usage of OpenGL pipelines, as well as a fork of Clutter, a scene graph and user interface toolkit.
Mutter is used by, for example, GNOME Shell, the GNOME core user interface, and by Gala, elementary OS's window manager. It can also be run standalone, using the command "mutter", but just running plain mutter is only intended for debugging purposes.
Contributing
To contribute, open merge requests at https://gitlab.gnome.org/GNOME/mutter.
It can be useful to look at the documentation available at the Wiki.
The API documentation is available at:
- Meta: https://gnome.pages.gitlab.gnome.org/mutter/meta/
- Clutter: https://gnome.pages.gitlab.gnome.org/mutter/clutter/
- Cally: https://gnome.pages.gitlab.gnome.org/mutter/cally/
- Cogl: https://gnome.pages.gitlab.gnome.org/mutter/cogl/
- CoglPango: https://gnome.pages.gitlab.gnome.org/mutter/cogl-pango/
Coding style and conventions
See HACKING.md.
Git messages
Commit messages should follow the GNOME commit message
guidelines. We require an URL
to either an issue or a merge request in each commit. Try to always prefix
commit subjects with a relevant topic, such as compositor:
or
clutter/actor:
, and it's always better to write too much in the commit
message body than too little.
Default branch
The default development branch is main
. If you still have a local
checkout under the old name, use:
git checkout master
git branch -m master main
git fetch
git branch --unset-upstream
git branch -u origin/main
git symbolic-ref refs/remotes/origin/HEAD refs/remotes/origin/main
License
Mutter is distributed under the terms of the GNU General Public License, version 2 or later. See the COPYING file for detalis.