d2c41502a4
This commit pushes --disable-glib to the extreme of embedding the par of glib cogl depends on in tree to be able to generate a DSO that does not depend on an external glib. To do so, it: - keeps a lot of glib's configure.ac in as-glibconfig.m4 - pulls the code cogl depends on and the necessary dependencies Reviewed-by: Robert Bragg <robert@linux.intel.com>
1398 lines
38 KiB
C
1398 lines
38 KiB
C
/* GLIB - Library of useful routines for C programming
|
|
* Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 02111-1307, USA.
|
|
*/
|
|
|
|
/*
|
|
* Modified by the GLib Team and others 1997-2000. See the AUTHORS
|
|
* file for a list of people on the GLib Team. See the ChangeLog
|
|
* files for a list of changes. These files are distributed with
|
|
* GLib at ftp://ftp.gtk.org/pub/gtk/.
|
|
*/
|
|
|
|
/*
|
|
* MT safe
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include "gmem.h"
|
|
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <signal.h>
|
|
|
|
#include "gbacktrace.h"
|
|
#include "gtestutils.h"
|
|
#include "gthread.h"
|
|
#include "glib_trace.h"
|
|
|
|
|
|
#define MEM_PROFILE_TABLE_SIZE 4096
|
|
|
|
|
|
/* notes on macros:
|
|
* having G_DISABLE_CHECKS defined disables use of glib_mem_profiler_table and
|
|
* g_mem_profile().
|
|
* REALLOC_0_WORKS is defined if g_realloc (NULL, x) works.
|
|
* SANE_MALLOC_PROTOS is defined if the systems malloc() and friends functions
|
|
* match the corresponding GLib prototypes, keep configure.ac and gmem.h in sync here.
|
|
* g_mem_gc_friendly is TRUE, freed memory should be 0-wiped.
|
|
*/
|
|
|
|
/* --- prototypes --- */
|
|
static gboolean g_mem_initialized = FALSE;
|
|
static void g_mem_init_nomessage (void);
|
|
|
|
|
|
/* --- malloc wrappers --- */
|
|
#ifndef REALLOC_0_WORKS
|
|
static gpointer
|
|
standard_realloc (gpointer mem,
|
|
gsize n_bytes)
|
|
{
|
|
if (!mem)
|
|
return malloc (n_bytes);
|
|
else
|
|
return realloc (mem, n_bytes);
|
|
}
|
|
#endif /* !REALLOC_0_WORKS */
|
|
|
|
#ifdef SANE_MALLOC_PROTOS
|
|
# define standard_malloc malloc
|
|
# ifdef REALLOC_0_WORKS
|
|
# define standard_realloc realloc
|
|
# endif /* REALLOC_0_WORKS */
|
|
# define standard_free free
|
|
# define standard_calloc calloc
|
|
# define standard_try_malloc malloc
|
|
# define standard_try_realloc realloc
|
|
#else /* !SANE_MALLOC_PROTOS */
|
|
static gpointer
|
|
standard_malloc (gsize n_bytes)
|
|
{
|
|
return malloc (n_bytes);
|
|
}
|
|
# ifdef REALLOC_0_WORKS
|
|
static gpointer
|
|
standard_realloc (gpointer mem,
|
|
gsize n_bytes)
|
|
{
|
|
return realloc (mem, n_bytes);
|
|
}
|
|
# endif /* REALLOC_0_WORKS */
|
|
static void
|
|
standard_free (gpointer mem)
|
|
{
|
|
free (mem);
|
|
}
|
|
static gpointer
|
|
standard_calloc (gsize n_blocks,
|
|
gsize n_bytes)
|
|
{
|
|
return calloc (n_blocks, n_bytes);
|
|
}
|
|
#define standard_try_malloc standard_malloc
|
|
#define standard_try_realloc standard_realloc
|
|
#endif /* !SANE_MALLOC_PROTOS */
|
|
|
|
|
|
/* --- variables --- */
|
|
static GMemVTable glib_mem_vtable = {
|
|
standard_malloc,
|
|
standard_realloc,
|
|
standard_free,
|
|
standard_calloc,
|
|
standard_try_malloc,
|
|
standard_try_realloc,
|
|
};
|
|
|
|
/**
|
|
* SECTION:memory
|
|
* @Short_Description: general memory-handling
|
|
* @Title: Memory Allocation
|
|
*
|
|
* These functions provide support for allocating and freeing memory.
|
|
*
|
|
* <note>
|
|
* If any call to allocate memory fails, the application is terminated.
|
|
* This also means that there is no need to check if the call succeeded.
|
|
* </note>
|
|
*
|
|
* <note>
|
|
* It's important to match g_malloc() with g_free(), plain malloc() with free(),
|
|
* and (if you're using C++) new with delete and new[] with delete[]. Otherwise
|
|
* bad things can happen, since these allocators may use different memory
|
|
* pools (and new/delete call constructors and destructors). See also
|
|
* g_mem_set_vtable().
|
|
* </note>
|
|
*/
|
|
|
|
/* --- functions --- */
|
|
/**
|
|
* g_malloc:
|
|
* @n_bytes: the number of bytes to allocate
|
|
*
|
|
* Allocates @n_bytes bytes of memory.
|
|
* If @n_bytes is 0 it returns %NULL.
|
|
*
|
|
* Returns: a pointer to the allocated memory
|
|
*/
|
|
gpointer
|
|
g_malloc (gsize n_bytes)
|
|
{
|
|
if (G_UNLIKELY (!g_mem_initialized))
|
|
g_mem_init_nomessage();
|
|
if (G_LIKELY (n_bytes))
|
|
{
|
|
gpointer mem;
|
|
|
|
mem = glib_mem_vtable.malloc (n_bytes);
|
|
TRACE (GLIB_MEM_ALLOC((void*) mem, (unsigned int) n_bytes, 0, 0));
|
|
if (mem)
|
|
return mem;
|
|
|
|
g_error ("%s: failed to allocate %"G_GSIZE_FORMAT" bytes",
|
|
G_STRLOC, n_bytes);
|
|
}
|
|
|
|
TRACE(GLIB_MEM_ALLOC((void*) NULL, (int) n_bytes, 0, 0));
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* g_malloc0:
|
|
* @n_bytes: the number of bytes to allocate
|
|
*
|
|
* Allocates @n_bytes bytes of memory, initialized to 0's.
|
|
* If @n_bytes is 0 it returns %NULL.
|
|
*
|
|
* Returns: a pointer to the allocated memory
|
|
*/
|
|
gpointer
|
|
g_malloc0 (gsize n_bytes)
|
|
{
|
|
if (G_UNLIKELY (!g_mem_initialized))
|
|
g_mem_init_nomessage();
|
|
if (G_LIKELY (n_bytes))
|
|
{
|
|
gpointer mem;
|
|
|
|
mem = glib_mem_vtable.calloc (1, n_bytes);
|
|
TRACE (GLIB_MEM_ALLOC((void*) mem, (unsigned int) n_bytes, 1, 0));
|
|
if (mem)
|
|
return mem;
|
|
|
|
g_error ("%s: failed to allocate %"G_GSIZE_FORMAT" bytes",
|
|
G_STRLOC, n_bytes);
|
|
}
|
|
|
|
TRACE(GLIB_MEM_ALLOC((void*) NULL, (int) n_bytes, 1, 0));
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* g_realloc:
|
|
* @mem: the memory to reallocate
|
|
* @n_bytes: new size of the memory in bytes
|
|
*
|
|
* Reallocates the memory pointed to by @mem, so that it now has space for
|
|
* @n_bytes bytes of memory. It returns the new address of the memory, which may
|
|
* have been moved. @mem may be %NULL, in which case it's considered to
|
|
* have zero-length. @n_bytes may be 0, in which case %NULL will be returned
|
|
* and @mem will be freed unless it is %NULL.
|
|
*
|
|
* Returns: the new address of the allocated memory
|
|
*/
|
|
gpointer
|
|
g_realloc (gpointer mem,
|
|
gsize n_bytes)
|
|
{
|
|
gpointer newmem;
|
|
|
|
if (G_UNLIKELY (!g_mem_initialized))
|
|
g_mem_init_nomessage();
|
|
if (G_LIKELY (n_bytes))
|
|
{
|
|
newmem = glib_mem_vtable.realloc (mem, n_bytes);
|
|
TRACE (GLIB_MEM_REALLOC((void*) newmem, (void*)mem, (unsigned int) n_bytes, 0));
|
|
if (newmem)
|
|
return newmem;
|
|
|
|
g_error ("%s: failed to allocate %"G_GSIZE_FORMAT" bytes",
|
|
G_STRLOC, n_bytes);
|
|
}
|
|
|
|
if (mem)
|
|
glib_mem_vtable.free (mem);
|
|
|
|
TRACE (GLIB_MEM_REALLOC((void*) NULL, (void*)mem, 0, 0));
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* g_free:
|
|
* @mem: the memory to free
|
|
*
|
|
* Frees the memory pointed to by @mem.
|
|
* If @mem is %NULL it simply returns.
|
|
*/
|
|
void
|
|
g_free (gpointer mem)
|
|
{
|
|
if (G_UNLIKELY (!g_mem_initialized))
|
|
g_mem_init_nomessage();
|
|
if (G_LIKELY (mem))
|
|
glib_mem_vtable.free (mem);
|
|
TRACE(GLIB_MEM_FREE((void*) mem));
|
|
}
|
|
|
|
/**
|
|
* g_try_malloc:
|
|
* @n_bytes: number of bytes to allocate.
|
|
*
|
|
* Attempts to allocate @n_bytes, and returns %NULL on failure.
|
|
* Contrast with g_malloc(), which aborts the program on failure.
|
|
*
|
|
* Returns: the allocated memory, or %NULL.
|
|
*/
|
|
gpointer
|
|
g_try_malloc (gsize n_bytes)
|
|
{
|
|
gpointer mem;
|
|
|
|
if (G_UNLIKELY (!g_mem_initialized))
|
|
g_mem_init_nomessage();
|
|
if (G_LIKELY (n_bytes))
|
|
mem = glib_mem_vtable.try_malloc (n_bytes);
|
|
else
|
|
mem = NULL;
|
|
|
|
TRACE (GLIB_MEM_ALLOC((void*) mem, (unsigned int) n_bytes, 0, 1));
|
|
|
|
return mem;
|
|
}
|
|
|
|
/**
|
|
* g_try_malloc0:
|
|
* @n_bytes: number of bytes to allocate
|
|
*
|
|
* Attempts to allocate @n_bytes, initialized to 0's, and returns %NULL on
|
|
* failure. Contrast with g_malloc0(), which aborts the program on failure.
|
|
*
|
|
* Since: 2.8
|
|
* Returns: the allocated memory, or %NULL
|
|
*/
|
|
gpointer
|
|
g_try_malloc0 (gsize n_bytes)
|
|
{
|
|
gpointer mem;
|
|
|
|
if (G_UNLIKELY (!g_mem_initialized))
|
|
g_mem_init_nomessage();
|
|
if (G_LIKELY (n_bytes))
|
|
mem = glib_mem_vtable.try_malloc (n_bytes);
|
|
else
|
|
mem = NULL;
|
|
|
|
if (mem)
|
|
memset (mem, 0, n_bytes);
|
|
|
|
return mem;
|
|
}
|
|
|
|
/**
|
|
* g_try_realloc:
|
|
* @mem: previously-allocated memory, or %NULL.
|
|
* @n_bytes: number of bytes to allocate.
|
|
*
|
|
* Attempts to realloc @mem to a new size, @n_bytes, and returns %NULL
|
|
* on failure. Contrast with g_realloc(), which aborts the program
|
|
* on failure. If @mem is %NULL, behaves the same as g_try_malloc().
|
|
*
|
|
* Returns: the allocated memory, or %NULL.
|
|
*/
|
|
gpointer
|
|
g_try_realloc (gpointer mem,
|
|
gsize n_bytes)
|
|
{
|
|
gpointer newmem;
|
|
|
|
if (G_UNLIKELY (!g_mem_initialized))
|
|
g_mem_init_nomessage();
|
|
if (G_LIKELY (n_bytes))
|
|
newmem = glib_mem_vtable.try_realloc (mem, n_bytes);
|
|
else
|
|
{
|
|
newmem = NULL;
|
|
if (mem)
|
|
glib_mem_vtable.free (mem);
|
|
}
|
|
|
|
TRACE (GLIB_MEM_REALLOC((void*) newmem, (void*)mem, (unsigned int) n_bytes, 1));
|
|
|
|
return newmem;
|
|
}
|
|
|
|
|
|
#define SIZE_OVERFLOWS(a,b) (G_UNLIKELY ((b) > 0 && (a) > G_MAXSIZE / (b)))
|
|
|
|
/**
|
|
* g_malloc_n:
|
|
* @n_blocks: the number of blocks to allocate
|
|
* @n_block_bytes: the size of each block in bytes
|
|
*
|
|
* This function is similar to g_malloc(), allocating (@n_blocks * @n_block_bytes) bytes,
|
|
* but care is taken to detect possible overflow during multiplication.
|
|
*
|
|
* Since: 2.24
|
|
* Returns: a pointer to the allocated memory
|
|
*/
|
|
gpointer
|
|
g_malloc_n (gsize n_blocks,
|
|
gsize n_block_bytes)
|
|
{
|
|
if (SIZE_OVERFLOWS (n_blocks, n_block_bytes))
|
|
{
|
|
if (G_UNLIKELY (!g_mem_initialized))
|
|
g_mem_init_nomessage();
|
|
|
|
g_error ("%s: overflow allocating %"G_GSIZE_FORMAT"*%"G_GSIZE_FORMAT" bytes",
|
|
G_STRLOC, n_blocks, n_block_bytes);
|
|
}
|
|
|
|
return g_malloc (n_blocks * n_block_bytes);
|
|
}
|
|
|
|
/**
|
|
* g_malloc0_n:
|
|
* @n_blocks: the number of blocks to allocate
|
|
* @n_block_bytes: the size of each block in bytes
|
|
*
|
|
* This function is similar to g_malloc0(), allocating (@n_blocks * @n_block_bytes) bytes,
|
|
* but care is taken to detect possible overflow during multiplication.
|
|
*
|
|
* Since: 2.24
|
|
* Returns: a pointer to the allocated memory
|
|
*/
|
|
gpointer
|
|
g_malloc0_n (gsize n_blocks,
|
|
gsize n_block_bytes)
|
|
{
|
|
if (SIZE_OVERFLOWS (n_blocks, n_block_bytes))
|
|
{
|
|
if (G_UNLIKELY (!g_mem_initialized))
|
|
g_mem_init_nomessage();
|
|
|
|
g_error ("%s: overflow allocating %"G_GSIZE_FORMAT"*%"G_GSIZE_FORMAT" bytes",
|
|
G_STRLOC, n_blocks, n_block_bytes);
|
|
}
|
|
|
|
return g_malloc0 (n_blocks * n_block_bytes);
|
|
}
|
|
|
|
/**
|
|
* g_realloc_n:
|
|
* @mem: the memory to reallocate
|
|
* @n_blocks: the number of blocks to allocate
|
|
* @n_block_bytes: the size of each block in bytes
|
|
*
|
|
* This function is similar to g_realloc(), allocating (@n_blocks * @n_block_bytes) bytes,
|
|
* but care is taken to detect possible overflow during multiplication.
|
|
*
|
|
* Since: 2.24
|
|
* Returns: the new address of the allocated memory
|
|
*/
|
|
gpointer
|
|
g_realloc_n (gpointer mem,
|
|
gsize n_blocks,
|
|
gsize n_block_bytes)
|
|
{
|
|
if (SIZE_OVERFLOWS (n_blocks, n_block_bytes))
|
|
{
|
|
if (G_UNLIKELY (!g_mem_initialized))
|
|
g_mem_init_nomessage();
|
|
|
|
g_error ("%s: overflow allocating %"G_GSIZE_FORMAT"*%"G_GSIZE_FORMAT" bytes",
|
|
G_STRLOC, n_blocks, n_block_bytes);
|
|
}
|
|
|
|
return g_realloc (mem, n_blocks * n_block_bytes);
|
|
}
|
|
|
|
/**
|
|
* g_try_malloc_n:
|
|
* @n_blocks: the number of blocks to allocate
|
|
* @n_block_bytes: the size of each block in bytes
|
|
*
|
|
* This function is similar to g_try_malloc(), allocating (@n_blocks * @n_block_bytes) bytes,
|
|
* but care is taken to detect possible overflow during multiplication.
|
|
*
|
|
* Since: 2.24
|
|
* Returns: the allocated memory, or %NULL.
|
|
*/
|
|
gpointer
|
|
g_try_malloc_n (gsize n_blocks,
|
|
gsize n_block_bytes)
|
|
{
|
|
if (SIZE_OVERFLOWS (n_blocks, n_block_bytes))
|
|
return NULL;
|
|
|
|
return g_try_malloc (n_blocks * n_block_bytes);
|
|
}
|
|
|
|
/**
|
|
* g_try_malloc0_n:
|
|
* @n_blocks: the number of blocks to allocate
|
|
* @n_block_bytes: the size of each block in bytes
|
|
*
|
|
* This function is similar to g_try_malloc0(), allocating (@n_blocks * @n_block_bytes) bytes,
|
|
* but care is taken to detect possible overflow during multiplication.
|
|
*
|
|
* Since: 2.24
|
|
* Returns: the allocated memory, or %NULL
|
|
*/
|
|
gpointer
|
|
g_try_malloc0_n (gsize n_blocks,
|
|
gsize n_block_bytes)
|
|
{
|
|
if (SIZE_OVERFLOWS (n_blocks, n_block_bytes))
|
|
return NULL;
|
|
|
|
return g_try_malloc0 (n_blocks * n_block_bytes);
|
|
}
|
|
|
|
/**
|
|
* g_try_realloc_n:
|
|
* @mem: previously-allocated memory, or %NULL.
|
|
* @n_blocks: the number of blocks to allocate
|
|
* @n_block_bytes: the size of each block in bytes
|
|
*
|
|
* This function is similar to g_try_realloc(), allocating (@n_blocks * @n_block_bytes) bytes,
|
|
* but care is taken to detect possible overflow during multiplication.
|
|
*
|
|
* Since: 2.24
|
|
* Returns: the allocated memory, or %NULL.
|
|
*/
|
|
gpointer
|
|
g_try_realloc_n (gpointer mem,
|
|
gsize n_blocks,
|
|
gsize n_block_bytes)
|
|
{
|
|
if (SIZE_OVERFLOWS (n_blocks, n_block_bytes))
|
|
return NULL;
|
|
|
|
return g_try_realloc (mem, n_blocks * n_block_bytes);
|
|
}
|
|
|
|
|
|
|
|
static gpointer
|
|
fallback_calloc (gsize n_blocks,
|
|
gsize n_block_bytes)
|
|
{
|
|
gsize l = n_blocks * n_block_bytes;
|
|
gpointer mem = glib_mem_vtable.malloc (l);
|
|
|
|
if (mem)
|
|
memset (mem, 0, l);
|
|
|
|
return mem;
|
|
}
|
|
|
|
static gboolean vtable_set = FALSE;
|
|
|
|
/**
|
|
* g_mem_is_system_malloc
|
|
*
|
|
* Checks whether the allocator used by g_malloc() is the system's
|
|
* malloc implementation. If it returns %TRUE memory allocated with
|
|
* malloc() can be used interchangeable with memory allocated using g_malloc().
|
|
* This function is useful for avoiding an extra copy of allocated memory returned
|
|
* by a non-GLib-based API.
|
|
*
|
|
* A different allocator can be set using g_mem_set_vtable().
|
|
*
|
|
* Return value: if %TRUE, malloc() and g_malloc() can be mixed.
|
|
**/
|
|
gboolean
|
|
g_mem_is_system_malloc (void)
|
|
{
|
|
return !vtable_set;
|
|
}
|
|
|
|
/**
|
|
* g_mem_set_vtable:
|
|
* @vtable: table of memory allocation routines.
|
|
*
|
|
* Sets the #GMemVTable to use for memory allocation. You can use this to provide
|
|
* custom memory allocation routines. <emphasis>This function must be called
|
|
* before using any other GLib functions.</emphasis> The @vtable only needs to
|
|
* provide malloc(), realloc(), and free() functions; GLib can provide default
|
|
* implementations of the others. The malloc() and realloc() implementations
|
|
* should return %NULL on failure, GLib will handle error-checking for you.
|
|
* @vtable is copied, so need not persist after this function has been called.
|
|
*/
|
|
void
|
|
g_mem_set_vtable (GMemVTable *vtable)
|
|
{
|
|
if (!vtable_set)
|
|
{
|
|
if (vtable->malloc && vtable->realloc && vtable->free)
|
|
{
|
|
glib_mem_vtable.malloc = vtable->malloc;
|
|
glib_mem_vtable.realloc = vtable->realloc;
|
|
glib_mem_vtable.free = vtable->free;
|
|
glib_mem_vtable.calloc = vtable->calloc ? vtable->calloc : fallback_calloc;
|
|
glib_mem_vtable.try_malloc = vtable->try_malloc ? vtable->try_malloc : glib_mem_vtable.malloc;
|
|
glib_mem_vtable.try_realloc = vtable->try_realloc ? vtable->try_realloc : glib_mem_vtable.realloc;
|
|
vtable_set = TRUE;
|
|
}
|
|
else
|
|
g_warning (G_STRLOC ": memory allocation vtable lacks one of malloc(), realloc() or free()");
|
|
}
|
|
else
|
|
g_warning (G_STRLOC ": memory allocation vtable can only be set once at startup");
|
|
}
|
|
|
|
|
|
/* --- memory profiling and checking --- */
|
|
#ifdef G_DISABLE_CHECKS
|
|
/**
|
|
* glib_mem_profiler_table:
|
|
*
|
|
* A #GMemVTable containing profiling variants of the memory
|
|
* allocation functions. Use them together with g_mem_profile()
|
|
* in order to get information about the memory allocation pattern
|
|
* of your program.
|
|
*/
|
|
GMemVTable *glib_mem_profiler_table = &glib_mem_vtable;
|
|
void
|
|
g_mem_profile (void)
|
|
{
|
|
}
|
|
#else /* !G_DISABLE_CHECKS */
|
|
typedef enum {
|
|
PROFILER_FREE = 0,
|
|
PROFILER_ALLOC = 1,
|
|
PROFILER_RELOC = 2,
|
|
PROFILER_ZINIT = 4
|
|
} ProfilerJob;
|
|
static guint *profile_data = NULL;
|
|
static gsize profile_allocs = 0;
|
|
static gsize profile_zinit = 0;
|
|
static gsize profile_frees = 0;
|
|
static GMutex *gmem_profile_mutex = NULL;
|
|
#ifdef G_ENABLE_DEBUG
|
|
static volatile gsize g_trap_free_size = 0;
|
|
static volatile gsize g_trap_realloc_size = 0;
|
|
static volatile gsize g_trap_malloc_size = 0;
|
|
#endif /* G_ENABLE_DEBUG */
|
|
|
|
#define PROFILE_TABLE(f1,f2,f3) ( ( ((f3) << 2) | ((f2) << 1) | (f1) ) * (MEM_PROFILE_TABLE_SIZE + 1))
|
|
|
|
static void
|
|
profiler_log (ProfilerJob job,
|
|
gsize n_bytes,
|
|
gboolean success)
|
|
{
|
|
g_mutex_lock (gmem_profile_mutex);
|
|
if (!profile_data)
|
|
{
|
|
profile_data = standard_calloc ((MEM_PROFILE_TABLE_SIZE + 1) * 8,
|
|
sizeof (profile_data[0]));
|
|
if (!profile_data) /* memory system kiddin' me, eh? */
|
|
{
|
|
g_mutex_unlock (gmem_profile_mutex);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (n_bytes < MEM_PROFILE_TABLE_SIZE)
|
|
profile_data[n_bytes + PROFILE_TABLE ((job & PROFILER_ALLOC) != 0,
|
|
(job & PROFILER_RELOC) != 0,
|
|
success != 0)] += 1;
|
|
else
|
|
profile_data[MEM_PROFILE_TABLE_SIZE + PROFILE_TABLE ((job & PROFILER_ALLOC) != 0,
|
|
(job & PROFILER_RELOC) != 0,
|
|
success != 0)] += 1;
|
|
if (success)
|
|
{
|
|
if (job & PROFILER_ALLOC)
|
|
{
|
|
profile_allocs += n_bytes;
|
|
if (job & PROFILER_ZINIT)
|
|
profile_zinit += n_bytes;
|
|
}
|
|
else
|
|
profile_frees += n_bytes;
|
|
}
|
|
g_mutex_unlock (gmem_profile_mutex);
|
|
}
|
|
|
|
static void
|
|
profile_print_locked (guint *local_data,
|
|
gboolean success)
|
|
{
|
|
gboolean need_header = TRUE;
|
|
guint i;
|
|
|
|
for (i = 0; i <= MEM_PROFILE_TABLE_SIZE; i++)
|
|
{
|
|
glong t_malloc = local_data[i + PROFILE_TABLE (1, 0, success)];
|
|
glong t_realloc = local_data[i + PROFILE_TABLE (1, 1, success)];
|
|
glong t_free = local_data[i + PROFILE_TABLE (0, 0, success)];
|
|
glong t_refree = local_data[i + PROFILE_TABLE (0, 1, success)];
|
|
|
|
if (!t_malloc && !t_realloc && !t_free && !t_refree)
|
|
continue;
|
|
else if (need_header)
|
|
{
|
|
need_header = FALSE;
|
|
g_print (" blocks of | allocated | freed | allocated | freed | n_bytes \n");
|
|
g_print (" n_bytes | n_times by | n_times by | n_times by | n_times by | remaining \n");
|
|
g_print (" | malloc() | free() | realloc() | realloc() | \n");
|
|
g_print ("===========|============|============|============|============|===========\n");
|
|
}
|
|
if (i < MEM_PROFILE_TABLE_SIZE)
|
|
g_print ("%10u | %10ld | %10ld | %10ld | %10ld |%+11ld\n",
|
|
i, t_malloc, t_free, t_realloc, t_refree,
|
|
(t_malloc - t_free + t_realloc - t_refree) * i);
|
|
else if (i >= MEM_PROFILE_TABLE_SIZE)
|
|
g_print (" >%6u | %10ld | %10ld | %10ld | %10ld | ***\n",
|
|
i, t_malloc, t_free, t_realloc, t_refree);
|
|
}
|
|
if (need_header)
|
|
g_print (" --- none ---\n");
|
|
}
|
|
|
|
/**
|
|
* g_mem_profile:
|
|
* @void:
|
|
*
|
|
* Outputs a summary of memory usage.
|
|
*
|
|
* It outputs the frequency of allocations of different sizes,
|
|
* the total number of bytes which have been allocated,
|
|
* the total number of bytes which have been freed,
|
|
* and the difference between the previous two values, i.e. the number of bytes
|
|
* still in use.
|
|
*
|
|
* Note that this function will not output anything unless you have
|
|
* previously installed the #glib_mem_profiler_table with g_mem_set_vtable().
|
|
*/
|
|
|
|
void
|
|
g_mem_profile (void)
|
|
{
|
|
guint local_data[(MEM_PROFILE_TABLE_SIZE + 1) * 8 * sizeof (profile_data[0])];
|
|
gsize local_allocs;
|
|
gsize local_zinit;
|
|
gsize local_frees;
|
|
|
|
if (G_UNLIKELY (!g_mem_initialized))
|
|
g_mem_init_nomessage();
|
|
|
|
g_mutex_lock (gmem_profile_mutex);
|
|
|
|
local_allocs = profile_allocs;
|
|
local_zinit = profile_zinit;
|
|
local_frees = profile_frees;
|
|
|
|
if (!profile_data)
|
|
{
|
|
g_mutex_unlock (gmem_profile_mutex);
|
|
return;
|
|
}
|
|
|
|
memcpy (local_data, profile_data,
|
|
(MEM_PROFILE_TABLE_SIZE + 1) * 8 * sizeof (profile_data[0]));
|
|
|
|
g_mutex_unlock (gmem_profile_mutex);
|
|
|
|
g_print ("GLib Memory statistics (successful operations):\n");
|
|
profile_print_locked (local_data, TRUE);
|
|
g_print ("GLib Memory statistics (failing operations):\n");
|
|
profile_print_locked (local_data, FALSE);
|
|
g_print ("Total bytes: allocated=%"G_GSIZE_FORMAT", "
|
|
"zero-initialized=%"G_GSIZE_FORMAT" (%.2f%%), "
|
|
"freed=%"G_GSIZE_FORMAT" (%.2f%%), "
|
|
"remaining=%"G_GSIZE_FORMAT"\n",
|
|
local_allocs,
|
|
local_zinit,
|
|
((gdouble) local_zinit) / local_allocs * 100.0,
|
|
local_frees,
|
|
((gdouble) local_frees) / local_allocs * 100.0,
|
|
local_allocs - local_frees);
|
|
}
|
|
|
|
static gpointer
|
|
profiler_try_malloc (gsize n_bytes)
|
|
{
|
|
gsize *p;
|
|
|
|
#ifdef G_ENABLE_DEBUG
|
|
if (g_trap_malloc_size == n_bytes)
|
|
G_BREAKPOINT ();
|
|
#endif /* G_ENABLE_DEBUG */
|
|
|
|
p = standard_malloc (sizeof (gsize) * 2 + n_bytes);
|
|
|
|
if (p)
|
|
{
|
|
p[0] = 0; /* free count */
|
|
p[1] = n_bytes; /* length */
|
|
profiler_log (PROFILER_ALLOC, n_bytes, TRUE);
|
|
p += 2;
|
|
}
|
|
else
|
|
profiler_log (PROFILER_ALLOC, n_bytes, FALSE);
|
|
|
|
return p;
|
|
}
|
|
|
|
static gpointer
|
|
profiler_malloc (gsize n_bytes)
|
|
{
|
|
gpointer mem = profiler_try_malloc (n_bytes);
|
|
|
|
if (!mem)
|
|
g_mem_profile ();
|
|
|
|
return mem;
|
|
}
|
|
|
|
static gpointer
|
|
profiler_calloc (gsize n_blocks,
|
|
gsize n_block_bytes)
|
|
{
|
|
gsize l = n_blocks * n_block_bytes;
|
|
gsize *p;
|
|
|
|
#ifdef G_ENABLE_DEBUG
|
|
if (g_trap_malloc_size == l)
|
|
G_BREAKPOINT ();
|
|
#endif /* G_ENABLE_DEBUG */
|
|
|
|
p = standard_calloc (1, sizeof (gsize) * 2 + l);
|
|
|
|
if (p)
|
|
{
|
|
p[0] = 0; /* free count */
|
|
p[1] = l; /* length */
|
|
profiler_log (PROFILER_ALLOC | PROFILER_ZINIT, l, TRUE);
|
|
p += 2;
|
|
}
|
|
else
|
|
{
|
|
profiler_log (PROFILER_ALLOC | PROFILER_ZINIT, l, FALSE);
|
|
g_mem_profile ();
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
static void
|
|
profiler_free (gpointer mem)
|
|
{
|
|
gsize *p = mem;
|
|
|
|
p -= 2;
|
|
if (p[0]) /* free count */
|
|
{
|
|
g_warning ("free(%p): memory has been freed %"G_GSIZE_FORMAT" times already",
|
|
p + 2, p[0]);
|
|
profiler_log (PROFILER_FREE,
|
|
p[1], /* length */
|
|
FALSE);
|
|
}
|
|
else
|
|
{
|
|
#ifdef G_ENABLE_DEBUG
|
|
if (g_trap_free_size == p[1])
|
|
G_BREAKPOINT ();
|
|
#endif /* G_ENABLE_DEBUG */
|
|
|
|
profiler_log (PROFILER_FREE,
|
|
p[1], /* length */
|
|
TRUE);
|
|
memset (p + 2, 0xaa, p[1]);
|
|
|
|
/* for all those that miss standard_free (p); in this place, yes,
|
|
* we do leak all memory when profiling, and that is intentional
|
|
* to catch double frees. patch submissions are futile.
|
|
*/
|
|
}
|
|
p[0] += 1;
|
|
}
|
|
|
|
static gpointer
|
|
profiler_try_realloc (gpointer mem,
|
|
gsize n_bytes)
|
|
{
|
|
gsize *p = mem;
|
|
|
|
p -= 2;
|
|
|
|
#ifdef G_ENABLE_DEBUG
|
|
if (g_trap_realloc_size == n_bytes)
|
|
G_BREAKPOINT ();
|
|
#endif /* G_ENABLE_DEBUG */
|
|
|
|
if (mem && p[0]) /* free count */
|
|
{
|
|
g_warning ("realloc(%p, %"G_GSIZE_FORMAT"): "
|
|
"memory has been freed %"G_GSIZE_FORMAT" times already",
|
|
p + 2, (gsize) n_bytes, p[0]);
|
|
profiler_log (PROFILER_ALLOC | PROFILER_RELOC, n_bytes, FALSE);
|
|
|
|
return NULL;
|
|
}
|
|
else
|
|
{
|
|
p = standard_realloc (mem ? p : NULL, sizeof (gsize) * 2 + n_bytes);
|
|
|
|
if (p)
|
|
{
|
|
if (mem)
|
|
profiler_log (PROFILER_FREE | PROFILER_RELOC, p[1], TRUE);
|
|
p[0] = 0;
|
|
p[1] = n_bytes;
|
|
profiler_log (PROFILER_ALLOC | PROFILER_RELOC, p[1], TRUE);
|
|
p += 2;
|
|
}
|
|
else
|
|
profiler_log (PROFILER_ALLOC | PROFILER_RELOC, n_bytes, FALSE);
|
|
|
|
return p;
|
|
}
|
|
}
|
|
|
|
static gpointer
|
|
profiler_realloc (gpointer mem,
|
|
gsize n_bytes)
|
|
{
|
|
mem = profiler_try_realloc (mem, n_bytes);
|
|
|
|
if (!mem)
|
|
g_mem_profile ();
|
|
|
|
return mem;
|
|
}
|
|
|
|
static GMemVTable profiler_table = {
|
|
profiler_malloc,
|
|
profiler_realloc,
|
|
profiler_free,
|
|
profiler_calloc,
|
|
profiler_try_malloc,
|
|
profiler_try_realloc,
|
|
};
|
|
GMemVTable *glib_mem_profiler_table = &profiler_table;
|
|
|
|
#endif /* !G_DISABLE_CHECKS */
|
|
|
|
/* --- MemChunks --- */
|
|
/**
|
|
* SECTION:allocators
|
|
* @title: Memory Allocators
|
|
* @short_description: deprecated way to allocate chunks of memory for
|
|
* GList, GSList and GNode
|
|
*
|
|
* Prior to 2.10, #GAllocator was used as an efficient way to allocate
|
|
* small pieces of memory for use with the #GList, #GSList and #GNode
|
|
* data structures. Since 2.10, it has been completely replaced by the
|
|
* <link linkend="glib-Memory-Slices">slice allocator</link> and
|
|
* deprecated.
|
|
**/
|
|
|
|
/**
|
|
* SECTION:memory_chunks
|
|
* @title: Memory Chunks
|
|
* @short_description: deprecated way to allocate groups of equal-sized
|
|
* chunks of memory
|
|
*
|
|
* Memory chunks provide an space-efficient way to allocate equal-sized
|
|
* pieces of memory, called atoms. However, due to the administrative
|
|
* overhead (in particular for #G_ALLOC_AND_FREE, and when used from
|
|
* multiple threads), they are in practise often slower than direct use
|
|
* of g_malloc(). Therefore, memory chunks have been deprecated in
|
|
* favor of the <link linkend="glib-Memory-Slices">slice
|
|
* allocator</link>, which has been added in 2.10. All internal uses of
|
|
* memory chunks in GLib have been converted to the
|
|
* <literal>g_slice</literal> API.
|
|
*
|
|
* There are two types of memory chunks, #G_ALLOC_ONLY, and
|
|
* #G_ALLOC_AND_FREE. <itemizedlist> <listitem><para> #G_ALLOC_ONLY
|
|
* chunks only allow allocation of atoms. The atoms can never be freed
|
|
* individually. The memory chunk can only be free in its entirety.
|
|
* </para></listitem> <listitem><para> #G_ALLOC_AND_FREE chunks do
|
|
* allow atoms to be freed individually. The disadvantage of this is
|
|
* that the memory chunk has to keep track of which atoms have been
|
|
* freed. This results in more memory being used and a slight
|
|
* degradation in performance. </para></listitem> </itemizedlist>
|
|
*
|
|
* To create a memory chunk use g_mem_chunk_new() or the convenience
|
|
* macro g_mem_chunk_create().
|
|
*
|
|
* To allocate a new atom use g_mem_chunk_alloc(),
|
|
* g_mem_chunk_alloc0(), or the convenience macros g_chunk_new() or
|
|
* g_chunk_new0().
|
|
*
|
|
* To free an atom use g_mem_chunk_free(), or the convenience macro
|
|
* g_chunk_free(). (Atoms can only be freed if the memory chunk is
|
|
* created with the type set to #G_ALLOC_AND_FREE.)
|
|
*
|
|
* To free any blocks of memory which are no longer being used, use
|
|
* g_mem_chunk_clean(). To clean all memory chunks, use g_blow_chunks().
|
|
*
|
|
* To reset the memory chunk, freeing all of the atoms, use
|
|
* g_mem_chunk_reset().
|
|
*
|
|
* To destroy a memory chunk, use g_mem_chunk_destroy().
|
|
*
|
|
* To help debug memory chunks, use g_mem_chunk_info() and
|
|
* g_mem_chunk_print().
|
|
*
|
|
* <example>
|
|
* <title>Using a #GMemChunk</title>
|
|
* <programlisting>
|
|
* GMemChunk *mem_chunk;
|
|
* gchar *mem[10000];
|
|
* gint i;
|
|
*
|
|
* /<!-- -->* Create a GMemChunk with atoms 50 bytes long, and memory
|
|
* blocks holding 100 bytes. Note that this means that only 2 atoms
|
|
* fit into each memory block and so isn't very efficient. *<!-- -->/
|
|
* mem_chunk = g_mem_chunk_new ("test mem chunk", 50, 100, G_ALLOC_AND_FREE);
|
|
* /<!-- -->* Now allocate 10000 atoms. *<!-- -->/
|
|
* for (i = 0; i < 10000; i++)
|
|
* {
|
|
* mem[i] = g_chunk_new (gchar, mem_chunk);
|
|
* /<!-- -->* Fill in the atom memory with some junk. *<!-- -->/
|
|
* for (j = 0; j < 50; j++)
|
|
* mem[i][j] = i * j;
|
|
* }
|
|
* /<!-- -->* Now free all of the atoms. Note that since we are going to
|
|
* destroy the GMemChunk, this wouldn't normally be used. *<!-- -->/
|
|
* for (i = 0; i < 10000; i++)
|
|
* {
|
|
* g_mem_chunk_free (mem_chunk, mem[i]);
|
|
* }
|
|
* /<!-- -->* We are finished with the GMemChunk, so we destroy it. *<!-- -->/
|
|
* g_mem_chunk_destroy (mem_chunk);
|
|
* </programlisting>
|
|
* </example>
|
|
*
|
|
* <example>
|
|
* <title>Using a #GMemChunk with data structures</title>
|
|
* <programlisting>
|
|
* GMemChunk *array_mem_chunk;
|
|
* GRealArray *array;
|
|
* /<!-- -->* Create a GMemChunk to hold GRealArray structures, using
|
|
* the g_mem_chunk_create(<!-- -->) convenience macro. We want 1024 atoms in each
|
|
* memory block, and we want to be able to free individual atoms. *<!-- -->/
|
|
* array_mem_chunk = g_mem_chunk_create (GRealArray, 1024, G_ALLOC_AND_FREE);
|
|
* /<!-- -->* Allocate one atom, using the g_chunk_new(<!-- -->) convenience macro. *<!-- -->/
|
|
* array = g_chunk_new (GRealArray, array_mem_chunk);
|
|
* /<!-- -->* We can now use array just like a normal pointer to a structure. *<!-- -->/
|
|
* array->data = NULL;
|
|
* array->len = 0;
|
|
* array->alloc = 0;
|
|
* array->zero_terminated = (zero_terminated ? 1 : 0);
|
|
* array->clear = (clear ? 1 : 0);
|
|
* array->elt_size = elt_size;
|
|
* /<!-- -->* We can free the element, so it can be reused. *<!-- -->/
|
|
* g_chunk_free (array, array_mem_chunk);
|
|
* /<!-- -->* We destroy the GMemChunk when we are finished with it. *<!-- -->/
|
|
* g_mem_chunk_destroy (array_mem_chunk);
|
|
* </programlisting>
|
|
* </example>
|
|
**/
|
|
|
|
#ifndef G_ALLOC_AND_FREE
|
|
|
|
/**
|
|
* GAllocator:
|
|
*
|
|
* The #GAllocator struct contains private data. and should only be
|
|
* accessed using the following functions.
|
|
**/
|
|
typedef struct _GAllocator GAllocator;
|
|
|
|
/**
|
|
* GMemChunk:
|
|
*
|
|
* The #GMemChunk struct is an opaque data structure representing a
|
|
* memory chunk. It should be accessed only through the use of the
|
|
* following functions.
|
|
**/
|
|
typedef struct _GMemChunk GMemChunk;
|
|
|
|
/**
|
|
* G_ALLOC_ONLY:
|
|
*
|
|
* Specifies the type of a #GMemChunk. Used in g_mem_chunk_new() and
|
|
* g_mem_chunk_create() to specify that atoms will never be freed
|
|
* individually.
|
|
**/
|
|
#define G_ALLOC_ONLY 1
|
|
|
|
/**
|
|
* G_ALLOC_AND_FREE:
|
|
*
|
|
* Specifies the type of a #GMemChunk. Used in g_mem_chunk_new() and
|
|
* g_mem_chunk_create() to specify that atoms will be freed
|
|
* individually.
|
|
**/
|
|
#define G_ALLOC_AND_FREE 2
|
|
#endif
|
|
|
|
struct _GMemChunk {
|
|
guint alloc_size; /* the size of an atom */
|
|
};
|
|
|
|
/**
|
|
* g_mem_chunk_new:
|
|
* @name: a string to identify the #GMemChunk. It is not copied so it
|
|
* should be valid for the lifetime of the #GMemChunk. It is
|
|
* only used in g_mem_chunk_print(), which is used for debugging.
|
|
* @atom_size: the size, in bytes, of each element in the #GMemChunk.
|
|
* @area_size: the size, in bytes, of each block of memory allocated to
|
|
* contain the atoms.
|
|
* @type: the type of the #GMemChunk. #G_ALLOC_AND_FREE is used if the
|
|
* atoms will be freed individually. #G_ALLOC_ONLY should be
|
|
* used if atoms will never be freed individually.
|
|
* #G_ALLOC_ONLY is quicker, since it does not need to track
|
|
* free atoms, but it obviously wastes memory if you no longer
|
|
* need many of the atoms.
|
|
* @Returns: the new #GMemChunk.
|
|
*
|
|
* Creates a new #GMemChunk.
|
|
*
|
|
* Deprecated:2.10: Use the <link linkend="glib-Memory-Slices">slice
|
|
* allocator</link> instead
|
|
**/
|
|
GMemChunk*
|
|
g_mem_chunk_new (const gchar *name,
|
|
gint atom_size,
|
|
gsize area_size,
|
|
gint type)
|
|
{
|
|
GMemChunk *mem_chunk;
|
|
g_return_val_if_fail (atom_size > 0, NULL);
|
|
|
|
mem_chunk = g_slice_new (GMemChunk);
|
|
mem_chunk->alloc_size = atom_size;
|
|
return mem_chunk;
|
|
}
|
|
|
|
/**
|
|
* g_mem_chunk_destroy:
|
|
* @mem_chunk: a #GMemChunk.
|
|
*
|
|
* Frees all of the memory allocated for a #GMemChunk.
|
|
*
|
|
* Deprecated:2.10: Use the <link linkend="glib-Memory-Slices">slice
|
|
* allocator</link> instead
|
|
**/
|
|
void
|
|
g_mem_chunk_destroy (GMemChunk *mem_chunk)
|
|
{
|
|
g_return_if_fail (mem_chunk != NULL);
|
|
|
|
g_slice_free (GMemChunk, mem_chunk);
|
|
}
|
|
|
|
/**
|
|
* g_mem_chunk_alloc:
|
|
* @mem_chunk: a #GMemChunk.
|
|
* @Returns: a pointer to the allocated atom.
|
|
*
|
|
* Allocates an atom of memory from a #GMemChunk.
|
|
*
|
|
* Deprecated:2.10: Use g_slice_alloc() instead
|
|
**/
|
|
gpointer
|
|
g_mem_chunk_alloc (GMemChunk *mem_chunk)
|
|
{
|
|
g_return_val_if_fail (mem_chunk != NULL, NULL);
|
|
|
|
return g_slice_alloc (mem_chunk->alloc_size);
|
|
}
|
|
|
|
/**
|
|
* g_mem_chunk_alloc0:
|
|
* @mem_chunk: a #GMemChunk.
|
|
* @Returns: a pointer to the allocated atom.
|
|
*
|
|
* Allocates an atom of memory from a #GMemChunk, setting the memory to
|
|
* 0.
|
|
*
|
|
* Deprecated:2.10: Use g_slice_alloc0() instead
|
|
**/
|
|
gpointer
|
|
g_mem_chunk_alloc0 (GMemChunk *mem_chunk)
|
|
{
|
|
g_return_val_if_fail (mem_chunk != NULL, NULL);
|
|
|
|
return g_slice_alloc0 (mem_chunk->alloc_size);
|
|
}
|
|
|
|
/**
|
|
* g_mem_chunk_free:
|
|
* @mem_chunk: a #GMemChunk.
|
|
* @mem: a pointer to the atom to free.
|
|
*
|
|
* Frees an atom in a #GMemChunk. This should only be called if the
|
|
* #GMemChunk was created with #G_ALLOC_AND_FREE. Otherwise it will
|
|
* simply return.
|
|
*
|
|
* Deprecated:2.10: Use g_slice_free1() instead
|
|
**/
|
|
void
|
|
g_mem_chunk_free (GMemChunk *mem_chunk,
|
|
gpointer mem)
|
|
{
|
|
g_return_if_fail (mem_chunk != NULL);
|
|
|
|
g_slice_free1 (mem_chunk->alloc_size, mem);
|
|
}
|
|
|
|
/**
|
|
* g_mem_chunk_clean:
|
|
* @mem_chunk: a #GMemChunk.
|
|
*
|
|
* Frees any blocks in a #GMemChunk which are no longer being used.
|
|
*
|
|
* Deprecated:2.10: Use the <link linkend="glib-Memory-Slices">slice
|
|
* allocator</link> instead
|
|
**/
|
|
void g_mem_chunk_clean (GMemChunk *mem_chunk) {}
|
|
|
|
/**
|
|
* g_mem_chunk_reset:
|
|
* @mem_chunk: a #GMemChunk.
|
|
*
|
|
* Resets a GMemChunk to its initial state. It frees all of the
|
|
* currently allocated blocks of memory.
|
|
*
|
|
* Deprecated:2.10: Use the <link linkend="glib-Memory-Slices">slice
|
|
* allocator</link> instead
|
|
**/
|
|
void g_mem_chunk_reset (GMemChunk *mem_chunk) {}
|
|
|
|
|
|
/**
|
|
* g_mem_chunk_print:
|
|
* @mem_chunk: a #GMemChunk.
|
|
*
|
|
* Outputs debugging information for a #GMemChunk. It outputs the name
|
|
* of the #GMemChunk (set with g_mem_chunk_new()), the number of bytes
|
|
* used, and the number of blocks of memory allocated.
|
|
*
|
|
* Deprecated:2.10: Use the <link linkend="glib-Memory-Slices">slice
|
|
* allocator</link> instead
|
|
**/
|
|
void g_mem_chunk_print (GMemChunk *mem_chunk) {}
|
|
|
|
|
|
/**
|
|
* g_mem_chunk_info:
|
|
*
|
|
* Outputs debugging information for all #GMemChunk objects currently
|
|
* in use. It outputs the number of #GMemChunk objects currently
|
|
* allocated, and calls g_mem_chunk_print() to output information on
|
|
* each one.
|
|
*
|
|
* Deprecated:2.10: Use the <link linkend="glib-Memory-Slices">slice
|
|
* allocator</link> instead
|
|
**/
|
|
void g_mem_chunk_info (void) {}
|
|
|
|
/**
|
|
* g_blow_chunks:
|
|
*
|
|
* Calls g_mem_chunk_clean() on all #GMemChunk objects.
|
|
*
|
|
* Deprecated:2.10: Use the <link linkend="glib-Memory-Slices">slice
|
|
* allocator</link> instead
|
|
**/
|
|
void g_blow_chunks (void) {}
|
|
|
|
/**
|
|
* g_chunk_new0:
|
|
* @type: the type of the #GMemChunk atoms, typically a structure name.
|
|
* @chunk: a #GMemChunk.
|
|
* @Returns: a pointer to the allocated atom, cast to a pointer to
|
|
* @type.
|
|
*
|
|
* A convenience macro to allocate an atom of memory from a #GMemChunk.
|
|
* It calls g_mem_chunk_alloc0() and casts the returned atom to a
|
|
* pointer to the given type, avoiding a type cast in the source code.
|
|
*
|
|
* Deprecated:2.10: Use g_slice_new0() instead
|
|
**/
|
|
|
|
/**
|
|
* g_chunk_free:
|
|
* @mem: a pointer to the atom to be freed.
|
|
* @mem_chunk: a #GMemChunk.
|
|
*
|
|
* A convenience macro to free an atom of memory from a #GMemChunk. It
|
|
* simply switches the arguments and calls g_mem_chunk_free() It is
|
|
* included simply to complement the other convenience macros,
|
|
* g_chunk_new() and g_chunk_new0().
|
|
*
|
|
* Deprecated:2.10: Use g_slice_free() instead
|
|
**/
|
|
|
|
/**
|
|
* g_chunk_new:
|
|
* @type: the type of the #GMemChunk atoms, typically a structure name.
|
|
* @chunk: a #GMemChunk.
|
|
* @Returns: a pointer to the allocated atom, cast to a pointer to
|
|
* @type.
|
|
*
|
|
* A convenience macro to allocate an atom of memory from a #GMemChunk.
|
|
* It calls g_mem_chunk_alloc() and casts the returned atom to a
|
|
* pointer to the given type, avoiding a type cast in the source code.
|
|
*
|
|
* Deprecated:2.10: Use g_slice_new() instead
|
|
**/
|
|
|
|
/**
|
|
* g_mem_chunk_create:
|
|
* @type: the type of the atoms, typically a structure name.
|
|
* @pre_alloc: the number of atoms to store in each block of memory.
|
|
* @alloc_type: the type of the #GMemChunk. #G_ALLOC_AND_FREE is used
|
|
* if the atoms will be freed individually. #G_ALLOC_ONLY
|
|
* should be used if atoms will never be freed
|
|
* individually. #G_ALLOC_ONLY is quicker, since it does
|
|
* not need to track free atoms, but it obviously wastes
|
|
* memory if you no longer need many of the atoms.
|
|
* @Returns: the new #GMemChunk.
|
|
*
|
|
* A convenience macro for creating a new #GMemChunk. It calls
|
|
* g_mem_chunk_new(), using the given type to create the #GMemChunk
|
|
* name. The atom size is determined using
|
|
* <function>sizeof()</function>, and the area size is calculated by
|
|
* multiplying the @pre_alloc parameter with the atom size.
|
|
*
|
|
* Deprecated:2.10: Use the <link linkend="glib-Memory-Slices">slice
|
|
* allocator</link> instead
|
|
**/
|
|
|
|
|
|
/**
|
|
* g_allocator_new:
|
|
* @name: the name of the #GAllocator. This name is used to set the
|
|
* name of the #GMemChunk used by the #GAllocator, and is only
|
|
* used for debugging.
|
|
* @n_preallocs: the number of elements in each block of memory
|
|
* allocated. Larger blocks mean less calls to
|
|
* g_malloc(), but some memory may be wasted. (GLib uses
|
|
* 128 elements per block by default.) The value must be
|
|
* between 1 and 65535.
|
|
* @Returns: a new #GAllocator.
|
|
*
|
|
* Creates a new #GAllocator.
|
|
*
|
|
* Deprecated:2.10: Use the <link linkend="glib-Memory-Slices">slice
|
|
* allocator</link> instead
|
|
**/
|
|
GAllocator*
|
|
g_allocator_new (const gchar *name,
|
|
guint n_preallocs)
|
|
{
|
|
static struct _GAllocator {
|
|
gchar *name;
|
|
guint16 n_preallocs;
|
|
guint is_unused : 1;
|
|
guint type : 4;
|
|
GAllocator *last;
|
|
GMemChunk *mem_chunk;
|
|
gpointer free_list;
|
|
} dummy = {
|
|
"GAllocator is deprecated", 1, TRUE, 0, NULL, NULL, NULL,
|
|
};
|
|
/* some (broken) GAllocator uses depend on non-NULL allocators */
|
|
return (void*) &dummy;
|
|
}
|
|
|
|
/**
|
|
* g_allocator_free:
|
|
* @allocator: a #GAllocator.
|
|
*
|
|
* Frees all of the memory allocated by the #GAllocator.
|
|
*
|
|
* Deprecated:2.10: Use the <link linkend="glib-Memory-Slices">slice
|
|
* allocator</link> instead
|
|
**/
|
|
void
|
|
g_allocator_free (GAllocator *allocator)
|
|
{
|
|
}
|
|
|
|
#ifdef ENABLE_GC_FRIENDLY_DEFAULT
|
|
gboolean g_mem_gc_friendly = TRUE;
|
|
#else
|
|
/**
|
|
* g_mem_gc_friendly:
|
|
*
|
|
* This variable is %TRUE if the <envar>G_DEBUG</envar> environment variable
|
|
* includes the key <link linkend="G_DEBUG">gc-friendly</link>.
|
|
*/
|
|
gboolean g_mem_gc_friendly = FALSE;
|
|
#endif
|
|
|
|
static void
|
|
g_mem_init_nomessage (void)
|
|
{
|
|
gchar buffer[1024];
|
|
const gchar *val;
|
|
const GDebugKey keys[] = {
|
|
{ "gc-friendly", 1 },
|
|
};
|
|
gint flags;
|
|
if (g_mem_initialized)
|
|
return;
|
|
/* don't use g_malloc/g_message here */
|
|
val = _g_getenv_nomalloc ("G_DEBUG", buffer);
|
|
flags = !val ? 0 : g_parse_debug_string (val, keys, G_N_ELEMENTS (keys));
|
|
if (flags & 1) /* gc-friendly */
|
|
{
|
|
g_mem_gc_friendly = TRUE;
|
|
}
|
|
g_mem_initialized = TRUE;
|
|
}
|
|
|
|
void
|
|
_g_mem_thread_init_noprivate_nomessage (void)
|
|
{
|
|
/* we may only create mutexes here, locking/
|
|
* unlocking a mutex does not yet work.
|
|
*/
|
|
g_mem_init_nomessage();
|
|
#ifndef G_DISABLE_CHECKS
|
|
gmem_profile_mutex = g_mutex_new ();
|
|
#endif
|
|
}
|