mutter/cogl/cogl-journal-private.h
Robert Bragg 4c3dadd35e Add a strong CoglTexture type to replace CoglHandle
As part of the on going, incremental effort to purge the non type safe
CoglHandle type from the Cogl API this patch tackles most of the
CoglHandle uses relating to textures.

We'd postponed making this change for quite a while because we wanted to
have a clearer understanding of how we wanted to evolve the texture APIs
towards Cogl 2.0 before exposing type safety here which would be
difficult to change later since it would imply breaking APIs.

The basic idea that we are steering towards now is that CoglTexture
can be considered to be the most primitive interface we have for any
object representing a texture. The texture interface would provide
roughly these methods:

  cogl_texture_get_width
  cogl_texture_get_height
  cogl_texture_can_repeat
  cogl_texture_can_mipmap
  cogl_texture_generate_mipmap;
  cogl_texture_get_format
  cogl_texture_set_region
  cogl_texture_get_region

Besides the texture interface we will then start to expose types
corresponding to specific texture types: CoglTexture2D,
CoglTexture3D, CoglTexture2DSliced, CoglSubTexture, CoglAtlasTexture and
CoglTexturePixmapX11.

We will then also expose an interface for the high-level texture types
we have (such as CoglTexture2DSlice, CoglSubTexture and
CoglAtlasTexture) called CoglMetaTexture. CoglMetaTexture is an
additional interface that lets you iterate a virtual region of a meta
texture and get mappings of primitive textures to sub-regions of that
virtual region. Internally we already have this kind of abstraction for
dealing with sliced texture, sub-textures and atlas textures in a
consistent way, so this will just make that abstraction public. The aim
here is to clarify that there is a difference between primitive textures
(CoglTexture2D/3D) and some of the other high-level textures, and also
enable developers to implement primitives that can support meta textures
since they can only be used with the cogl_rectangle API currently.

The thing that's not so clean-cut with this are the texture constructors
we have currently; such as cogl_texture_new_from_file which no longer
make sense when CoglTexture is considered to be an interface.  These
will basically just become convenient factory functions and it's just a
bit unusual that they are within the cogl_texture namespace.  It's worth
noting here that all the texture type APIs will also have their own type
specific constructors so these functions will only be used for the
convenience of being able to create a texture without really wanting to
know the details of what type of texture you need.  Longer term for 2.0
we may come up with replacement names for these factory functions or the
other thing we are considering is designing some asynchronous factory
functions instead since it's so often detrimental to application
performance to be blocked waiting for a texture to be uploaded to the
GPU.

Reviewed-by: Neil Roberts <neil@linux.intel.com>
2011-09-21 15:27:03 +01:00

106 lines
3.4 KiB
C

/*
* Cogl
*
* An object oriented GL/GLES Abstraction/Utility Layer
*
* Copyright (C) 2007,2008,2009 Intel Corporation.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
*
*
*/
#ifndef __COGL_JOURNAL_PRIVATE_H
#define __COGL_JOURNAL_PRIVATE_H
#include "cogl.h"
#include "cogl-handle.h"
#include "cogl-clip-stack.h"
#define COGL_JOURNAL_VBO_POOL_SIZE 8
typedef struct _CoglJournal
{
CoglObject _parent;
GArray *entries;
GArray *vertices;
size_t needed_vbo_len;
/* A pool of attribute buffers is used so that we can avoid repeatedly
reallocating buffers. Only one of these buffers at a time will be
used by Cogl but we keep more than one alive anyway in case the
GL driver is internally using the buffer and it would have to
allocate a new one when we start writing to it */
CoglAttributeBuffer *vbo_pool[COGL_JOURNAL_VBO_POOL_SIZE];
/* The next vbo to use from the pool. We just cycle through them in
order */
unsigned int next_vbo_in_pool;
int fast_read_pixel_count;
} CoglJournal;
/* To improve batching of geometry when submitting vertices to OpenGL we
* log the texture rectangles we want to draw to a journal, so when we
* later flush the journal we aim to batch data, and gl draw calls. */
typedef struct _CoglJournalEntry
{
CoglPipeline *pipeline;
int n_layers;
CoglMatrix model_view;
CoglClipStack *clip_stack;
/* Offset into ctx->logged_vertices */
size_t array_offset;
/* XXX: These entries are pretty big now considering the padding in
* CoglPipelineFlushOptions and CoglMatrix, so we might need to optimize this
* later. */
} CoglJournalEntry;
CoglJournal *
_cogl_journal_new (void);
void
_cogl_journal_log_quad (CoglJournal *journal,
const float *position,
CoglPipeline *pipeline,
int n_layers,
CoglTexture *layer0_override_texture,
const float *tex_coords,
unsigned int tex_coords_len);
void
_cogl_journal_flush (CoglJournal *journal,
CoglFramebuffer *framebuffer);
void
_cogl_journal_discard (CoglJournal *journal);
gboolean
_cogl_journal_all_entries_within_bounds (CoglJournal *journal,
float clip_x0,
float clip_y0,
float clip_x1,
float clip_y1);
gboolean
_cogl_journal_try_read_pixel (CoglJournal *journal,
int x,
int y,
CoglPixelFormat format,
guint8 *pixel,
gboolean *found_intersection);
#endif /* __COGL_JOURNAL_PRIVATE_H */