mutter/cogl/cogl/cogl-half-float.c
Sebastian Wick 0cd85e4adf cogl/half-float: Include SSE intrinsics
The intel intrinsics (including SSE) are only included in the header if
the arch is x86_64 which made the i686 build fail.

Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/3234
Fixes: 568506ecb ("cogl: Add half float implementation")
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3499>
2024-01-09 14:43:16 +00:00

272 lines
7.3 KiB
C

/*
* Mesa 3-D graphics library
*
* Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
* Copyright 2015 Philip Taylor <philip@zaynar.co.uk>
* Copyright 2018 Advanced Micro Devices, Inc.
* Copyright (C) 2018-2019 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
/* This file comes from half_float.c in mesa. */
#include "config.h"
#include <math.h>
#if defined(__SSE__) || \
(defined(_M_IX86_FP) && (_M_IX86_FP >= 1)) || \
(defined(_M_X64) && !defined(_M_ARM64EC))
#include <xmmintrin.h>
#include <emmintrin.h>
#endif
#include "cogl/cogl-half-float.h"
#include "cogl/cogl-soft-float.h"
typedef union
{
float f;
int32_t i;
uint32_t u;
} FloatInt;
/**
* \brief Rounds \c x to the nearest integer, with ties to the even integer,
* and returns the value as a long int.
*/
static inline long
cogl_lroundevenf (float x)
{
#if defined(__SSE__) || \
(defined(_M_IX86_FP) && (_M_IX86_FP >= 1)) || \
(defined(_M_X64) && !defined(_M_ARM64EC))
#if LONG_MAX == INT64_MAX
return _mm_cvtss_si64 (_mm_load_ss (&x));
#elif LONG_MAX == INT32_MAX
return _mm_cvtss_si32 (_mm_load_ss (&x));
#else
#error "Unsupported long size"
#endif
#else
return lrintf (x);
#endif
}
/**
* Convert a 4-byte float to a 2-byte half float.
*
* Not all float32 values can be represented exactly as a float16 value. We
* round such intermediate float32 values to the nearest float16. When the
* float32 lies exactly between to float16 values, we round to the one with
* an even mantissa.
*
* This rounding behavior has several benefits:
* - It has no sign bias.
*
* - It reproduces the behavior of real hardware: opcode F32TO16 in Intel's
* GPU ISA.
*
* - By reproducing the behavior of the GPU (at least on Intel hardware),
* compile-time evaluation of constant packHalf2x16 GLSL expressions will
* result in the same value as if the expression were executed on the GPU.
*/
uint16_t
cogl_float_to_half_slow (float val)
{
const FloatInt fi = {val};
const int flt_m = fi.i & 0x7fffff;
const int flt_e = (fi.i >> 23) & 0xff;
const int flt_s = (fi.i >> 31) & 0x1;
int s, e, m = 0;
uint16_t result;
/* sign bit */
s = flt_s;
/* handle special cases */
if ((flt_e == 0) && (flt_m == 0))
{
/* zero */
/* m = 0; - already set */
e = 0;
}
else if ((flt_e == 0) && (flt_m != 0))
{
/* denorm -- denorm float maps to 0 half */
/* m = 0; - already set */
e = 0;
}
else if ((flt_e == 0xff) && (flt_m == 0))
{
/* infinity */
/* m = 0; - already set */
e = 31;
}
else if ((flt_e == 0xff) && (flt_m != 0))
{
/* Retain the top bits of a NaN to make sure that the quiet/signaling
* status stays the same.
*/
m = flt_m >> 13;
if (!m)
m = 1;
e = 31;
}
else {
/* regular number */
const int new_exp = flt_e - 127;
if (new_exp < -14)
{
/* The float32 lies in the range (0.0, min_normal16) and is rounded
* to a nearby float16 value. The result will be either zero, subnormal,
* or normal.
*/
e = 0;
m = cogl_lroundevenf ((1 << 24) * fabsf (fi.f));
}
else if (new_exp > 15)
{
/* map this value to infinity */
/* m = 0; - already set */
e = 31;
}
else {
/* The float32 lies in the range
* [min_normal16, max_normal16 + max_step16)
* and is rounded to a nearby float16 value. The result will be
* either normal or infinite.
*/
e = new_exp + 15;
m = cogl_lroundevenf (flt_m / (float) (1 << 13));
}
}
g_assert (0 <= m && m <= 1024);
if (m == 1024)
{
/* The float32 was rounded upwards into the range of the next exponent,
* so bump the exponent. This correctly handles the case where f32
* should be rounded up to float16 infinity.
*/
++e;
m = 0;
}
result = (s << 15) | (e << 10) | m;
return result;
}
uint16_t
cogl_float_to_float16_rtz_slow (float val)
{
return cogl_float_to_half_rtz_slow (val);
}
/**
* Convert a 2-byte half float to a 4-byte float.
* Based on code from:
* http://www.opengl.org/discussion_boards/ubb/Forum3/HTML/008786.html
*/
float
cogl_half_to_float_slow (uint16_t val)
{
FloatInt infnan;
FloatInt magic;
FloatInt f32;
infnan.u = 0x8f << 23;
infnan.f = 65536.0f;
magic.u = 0xef << 23;
/* Exponent / Mantissa */
f32.u = (val & 0x7fff) << 13;
/* Adjust */
f32.f *= magic.f;
/* XXX: The magic mul relies on denorms being available */
/* Inf / NaN */
if (f32.f >= infnan.f)
f32.u |= 0xff << 23;
/* Sign */
f32.u |= (uint32_t)(val & 0x8000) << 16;
return f32.f;
}
/**
* Convert 0.0 to 0x00, 1.0 to 0xff.
* Values outside the range [0.0, 1.0] will give undefined results.
*/
uint8_t cogl_half_to_unorm8 (uint16_t val)
{
const int m = val & 0x3ff;
const int e = (val >> 10) & 0x1f;
const int s = (val >> 15) & 0x1;
/* v = round_to_nearest (1.mmmmmmmmmm * 2^(e-15) * 255)
* = round_to_nearest ((1.mmmmmmmmmm * 255) * 2^(e-15))
* = round_to_nearest ((1mmmmmmmmmm * 255) * 2^(e-25))
* = round_to_zero ((1mmmmmmmmmm * 255) * 2^(e-25) + 0.5)
* = round_to_zero (((1mmmmmmmmmm * 255) * 2^(e-24) + 1) / 2)
*
* This happens to give the correct answer for zero/subnormals too
*/
g_assert (s == 0 && val <= FP16_ONE); /* check 0 <= this <= 1 */
/* (implies e <= 15, which means the bit-shifts below are safe) */
uint32_t v = ((1 << 10) | m) * 255;
v = ((v >> (24 - e)) + 1) >> 1;
return v;
}
/**
* Takes a uint16_t, divides by 65536, converts the infinite-precision
* result to fp16 with round-to-zero. Used by the ASTC decoder.
*/
uint16_t cogl_uint16_div_64k_to_half (uint16_t v)
{
/* Zero or subnormal. Set the mantissa to (v << 8) and return. */
if (v < 4)
return v << 8;
/* Count the leading 0s in the uint16_t */
int n = __builtin_clz (v) - 16;
/* Shift the mantissa up so bit 16 is the hidden 1 bit,
* mask it off, then shift back down to 10 bits
*/
int m = (((uint32_t)v << (n + 1)) & 0xffff ) >> 6;
/* (0{n} 1 X{15-n}) * 2^-16
* = 1.X * 2^(15-n-16)
* = 1.X * 2^(14-n - 15)
* which is the FP16 form with e = 14 - n
*/
int e = 14 - n;
g_assert (e >= 1 && e <= 30);
g_assert (m >= 0 && m < 0x400);
return (e << 10) | m;
}