5f30835eae
We now prepend a set of defines to any given GLSL shader so that we can define builtin uniforms/attributes within the "cogl" namespace that we can use to provide compatibility across a range of the earlier versions of GLSL. This updates test-cogl-shader-glsl.c and test-shader.c so they no longer needs to special case GLES vs GL when splicing together its shaders as well as the blur, colorize and desaturate effects. To get a feel for the new, portable uniform/attribute names here are the defines for OpenGL vertex shaders: #define cogl_position_in gl_Vertex #define cogl_color_in gl_Color #define cogl_tex_coord_in gl_MultiTexCoord0 #define cogl_tex_coord0_in gl_MultiTexCoord0 #define cogl_tex_coord1_in gl_MultiTexCoord1 #define cogl_tex_coord2_in gl_MultiTexCoord2 #define cogl_tex_coord3_in gl_MultiTexCoord3 #define cogl_tex_coord4_in gl_MultiTexCoord4 #define cogl_tex_coord5_in gl_MultiTexCoord5 #define cogl_tex_coord6_in gl_MultiTexCoord6 #define cogl_tex_coord7_in gl_MultiTexCoord7 #define cogl_normal_in gl_Normal #define cogl_position_out gl_Position #define cogl_point_size_out gl_PointSize #define cogl_color_out gl_FrontColor #define cogl_tex_coord_out gl_TexCoord #define cogl_modelview_matrix gl_ModelViewMatrix #define cogl_modelview_projection_matrix gl_ModelViewProjectionMatrix #define cogl_projection_matrix gl_ProjectionMatrix #define cogl_texture_matrix gl_TextureMatrix And for fragment shaders we have: #define cogl_color_in gl_Color #define cogl_tex_coord_in gl_TexCoord #define cogl_color_out gl_FragColor #define cogl_depth_out gl_FragDepth #define cogl_front_facing gl_FrontFacing |
||
---|---|---|
.. | ||
accessibility | ||
conform | ||
data | ||
interactive | ||
micro-bench | ||
Makefile.am | ||
README |
Outline of test categories: The conform/ tests should be non-interactive unit-tests that verify a single feature is behaving as documented. See conform/ADDING_NEW_TESTS for more details. The micro-bench/ tests should be focused perfomance test, ideally testing a single metric. Please never forget that these tests are synthetec and if you are using them then you understand what metric is being tested. They probably don't reflect any real world application loads and the intention is that you use these tests once you have already determined the crux of your problem and need focused feedback that your changes are indeed improving matters. There is no exit status requirements for these tests, but they should give clear feedback as to their performance. If the framerate is the feedback metric, then the test should forcibly enable FPS debugging. The interactive/ tests are any tests whose status can not be determined without a user looking at some visual output, or providing some manual input etc. This covers most of the original Clutter tests. Ideally some of these tests will be migrated into the conformance/ directory so they can be used in automated nightly tests. The accessibility/ tests are tests created to test the accessibility support of clutter, testing some of the atk interfaces. The data/ directory contains optional data (like images and ClutterScript definitions) that can be referenced by a test. Other notes: • All tests should ideally include a detailed description in the source explaining exactly what the test is for, how the test was designed to work, and possibly a rationale for the approach taken for testing. • When running tests under Valgrind, you should follow the instructions available here: http://live.gnome.org/Valgrind and also use the suppression file available inside the data/ directory.