mutter/cogl/cogl-pipeline-vertend-fixed.c
Neil Roberts 4bb08ba00b cogl-pipeline: Flush the lighting params in common code not vertend
The lighting parameters such as the diffuse and ambient colors were
previously only flushed in the fixed vertend. This meant that if a
vertex shader was used then they would not be set. The lighting
parameters are uniforms which are just as useful in a fragment shader
so it doesn't really make sense to set them in the vertend. They are
now flushed in the common cogl-pipeline-opengl code but the code is
#ifdef'd for GLES2 because they need to be part of the progend in that
case.
2011-01-24 12:09:11 +00:00

124 lines
3.6 KiB
C

/*
* Cogl
*
* An object oriented GL/GLES Abstraction/Utility Layer
*
* Copyright (C) 2008,2009,2010 Intel Corporation.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see
* <http://www.gnu.org/licenses/>.
*
*
*
* Authors:
* Neil Roberts <neil@linux.intel.com>
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "cogl-pipeline-private.h"
#include "cogl-pipeline-opengl-private.h"
#ifdef COGL_PIPELINE_VERTEND_FIXED
#include "cogl.h"
#include "cogl-internal.h"
#include "cogl-context.h"
#include "cogl-handle.h"
#include "cogl-program-private.h"
const CoglPipelineVertend _cogl_pipeline_fixed_vertend;
static gboolean
_cogl_pipeline_vertend_fixed_start (CoglPipeline *pipeline,
int n_layers,
unsigned long pipelines_difference)
{
CoglProgram *user_program;
if (G_UNLIKELY (cogl_debug_flags & COGL_DEBUG_DISABLE_FIXED))
return FALSE;
/* If there is a user program with a vertex shader then the
appropriate backend for that language should handle it. We can
still use the fixed vertex backend if the program only contains
a fragment shader */
user_program = cogl_pipeline_get_user_program (pipeline);
if (user_program != COGL_INVALID_HANDLE &&
_cogl_program_has_vertex_shader (user_program))
return FALSE;
_cogl_use_vertex_program (0, COGL_PIPELINE_PROGRAM_TYPE_FIXED);
return TRUE;
}
static gboolean
_cogl_pipeline_vertend_fixed_add_layer (CoglPipeline *pipeline,
CoglPipelineLayer *layer,
unsigned long layers_difference)
{
int unit_index = _cogl_pipeline_layer_get_unit_index (layer);
CoglTextureUnit *unit = _cogl_get_texture_unit (unit_index);
if (layers_difference & COGL_PIPELINE_LAYER_STATE_USER_MATRIX)
{
CoglPipelineLayerState state = COGL_PIPELINE_LAYER_STATE_USER_MATRIX;
CoglPipelineLayer *authority =
_cogl_pipeline_layer_get_authority (layer, state);
_cogl_matrix_stack_set (unit->matrix_stack,
&authority->big_state->matrix);
_cogl_matrix_stack_flush_to_gl (unit->matrix_stack, COGL_MATRIX_TEXTURE);
}
return TRUE;
}
static gboolean
_cogl_pipeline_vertend_fixed_end (CoglPipeline *pipeline,
unsigned long pipelines_difference)
{
_COGL_GET_CONTEXT (ctx, FALSE);
if (pipelines_difference & COGL_PIPELINE_STATE_POINT_SIZE)
{
CoglPipeline *authority =
_cogl_pipeline_get_authority (pipeline, COGL_PIPELINE_STATE_POINT_SIZE);
if (ctx->point_size_cache != authority->big_state->point_size)
{
GE( glPointSize (authority->big_state->point_size) );
ctx->point_size_cache = authority->big_state->point_size;
}
}
return TRUE;
}
const CoglPipelineVertend _cogl_pipeline_fixed_vertend =
{
_cogl_pipeline_vertend_fixed_start,
_cogl_pipeline_vertend_fixed_add_layer,
_cogl_pipeline_vertend_fixed_end,
NULL, /* pipeline_change_notify */
NULL /* layer_change_notify */
};
#endif /* COGL_PIPELINE_VERTEND_FIXED */