mutter/src/backends/native/meta-kms.c
Pekka Paalanen 6e0cfd3e55 kms: Make GSource ready by default
When testing a laptop with intel and DisplayLink devices, attempting to set the
DL output as the only active output resulted in GNOME/Wayland freezing. The
main event loop was running fine, but nothing on screen would get updated once
the DL output become the only one. This patch fixes that issue.

DisplayLink USB 3 devices use an out-of-tree kernel DRM driver called EVDI.
EVDI can sometimes fail drmModePageFlip(). For me, the flip fails reliably when
hotplugging the DL dock and when changing display configuration to DL only.
Mutter has a workaround for failing flips, it just calls drmModeSetCrtc() and
that succeeds.

What does not work reliably in the fallback path is Mutter keeping track of the
pageflip. Since drmModePageFlip() failed, there will not be a pageflip event
coming and instead Mutter queues a callback in its stead. When you have more
than one output, some other output repainting will attempt to swap buffers and
calls wait_for_pending_flips() which has the side-effect of dispatching any
queued flip callbacks. With multiple outputs, you don't get stuck (unless they
all fail the exact same way at the same time?). When you have only one output,
it cannot proceed to repaint and buffer swap because the pageflip is not marked
complete yet. Nothing dispatches the flip callback, leading to the freeze.

The flip callback is intended to be an idle callback, implemented with a
GSource. It is supposed to be called as soon as execution returns to the main
event loop. The setup of the GSource is incomplete, so it will never dispatch.

Fix the GSource setup by setting its ready-time to be always in the past. That
gets it dispatched on the next cycle of the main event loop. This is now the
default behavior for all sources created by meta_kms_add_source_in_impl().
Sources that need a delay continue to do that by overriding the ready-time
explicitly.

An alternative solution could have been to implement GSource prepare and check
callbacks returning TRUE. However, since meta_kms_add_source_in_impl() is used
by flip retry code as well, and that code needs a delay through the ready-time,
I was afraid I might break the flip retry code. Hence I decided to use
ready-time instead.

https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1209
2020-04-23 16:30:17 +03:00

635 lines
17 KiB
C

/*
* Copyright (C) 2018 Red Hat
* Copyright 2020 DisplayLink (UK) Ltd.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
* 02111-1307, USA.
*/
#include "config.h"
#include "backends/native/meta-kms-private.h"
#include "backends/native/meta-backend-native.h"
#include "backends/native/meta-kms-device-private.h"
#include "backends/native/meta-kms-impl.h"
#include "backends/native/meta-kms-impl-simple.h"
#include "backends/native/meta-kms-update-private.h"
#include "backends/native/meta-udev.h"
#include "cogl/cogl.h"
/**
* SECTION:kms
* @short description: KMS abstraction
* @title: KMS abstraction
*
* The KMS abstraction consists of various building blocks for helping out with
* interacting with the various drm API's, enabling users to use a
* transactional API, aiming to hide all interaction with the underlying APIs.
*
* The subsystem defines two separate contexts, the "main" context, and the
* "impl" context. The main context is the context of which mutter as a whole
* runs in. It uses the main GLib main loop and main context and always runs in
* the main thread.
*
* The impl context is where all underlying API is being executed. While in the
* current state, it always runs in the main thread, the aim is to be able to
* execute the impl context in a dedicated thread.
*
* The public facing MetaKms API is always assumed to be executed from the main
* context.
*
* The KMS abstraction consists of the following public components:
*
* #MetaKms:
*
* Main entry point; used by the native backend to create devices, post updates
* etc.
*
* #MetaKmsDevice:
*
* A device (usually /dev/dri/cardN, where N being a number). Used to get KMS
* objects, such as connectors, CRTCs, planes, as well as basic meta data such
* as device path etc.
*
* #MetaKmsCrtc:
*
* Represents a CRTC. It manages a representation of the current CRTC state,
* including current mode, coordinates, possible clones.
*
* #MetaKmsConnector:
*
* Represents a connector, e.g. a display port connection. It also manages a
* representation of the current state, including meta data such as physical
* dimension of the connected, available modes, EDID, tile info etc. It also
* contains helper functions for configuration, as well as methods for adding
* configuration to a transaction (See #MetaKmsUpdate).
*
* #MetaKmsPlane:
*
* Represents a hardware plane. A plane is used to define the content of what
* should be presented on a CRTC. Planes can either be primary planes, used as
* a backdrop for CRTCs, overlay planes, and cursor planes.
*
* #MetaKmsUpdate:
*
* A KMS transaction object, meant to be processed potentially atomically when
* posted. An update consists of plane assignments, mode sets and KMS object
* property entries. The user adds updates to the object, and then posts it via
* MetaKms. It will then be processed by the MetaKms backend (See
* #MetaKmsImpl), potentially atomically.
*
*
* There are also these private objects, without public facing API:
*
* #MetaKmsImpl:
*
* The KMS backend implementation, running in the impl context. #MetaKmsImpl
* itself is an abstract object, with potentially multiple implementations.
* Currently only #MetaKmsImplSimple exists.
*
* #MetaKmsImplSimple:
*
* A KMS backend implementation using the non-atomic drmMode* API. While it's
* interacted with using the transactional API, the #MetaKmsUpdate is processed
* non-atomically.
*
* #MetaKmsImplDevice:
*
* An object linked to a #MetaKmsDevice, but where it is executed in the impl
* context. It takes care of the updating of the various KMS object (CRTC,
* connector, ..) states.
*
* #MetaKmsPageFlip:
*
* A object representing a page flip. It's created when a page flip is queued,
* and contains information necessary to provide feedback to the one requesting
* the page flip.
*
*/
enum
{
RESOURCES_CHANGED,
N_SIGNALS
};
static int signals[N_SIGNALS];
typedef struct _MetaKmsCallbackData
{
MetaKmsCallback callback;
gpointer user_data;
GDestroyNotify user_data_destroy;
} MetaKmsCallbackData;
typedef struct _MetaKmsSimpleImplSource
{
GSource source;
MetaKms *kms;
} MetaKmsSimpleImplSource;
typedef struct _MetaKmsFdImplSource
{
GSource source;
gpointer fd_tag;
MetaKms *kms;
MetaKmsImplTaskFunc dispatch;
gpointer user_data;
} MetaKmsFdImplSource;
struct _MetaKms
{
GObject parent;
MetaBackend *backend;
gulong hotplug_handler_id;
gulong removed_handler_id;
MetaKmsImpl *impl;
gboolean in_impl_task;
gboolean waiting_for_impl_task;
GList *devices;
MetaKmsUpdate *pending_update;
GList *pending_callbacks;
guint callback_source_id;
};
G_DEFINE_TYPE (MetaKms, meta_kms, G_TYPE_OBJECT)
MetaKmsUpdate *
meta_kms_ensure_pending_update (MetaKms *kms)
{
if (!kms->pending_update)
kms->pending_update = meta_kms_update_new ();
return meta_kms_get_pending_update (kms);
}
MetaKmsUpdate *
meta_kms_get_pending_update (MetaKms *kms)
{
return kms->pending_update;
}
static void
meta_kms_predict_states_in_impl (MetaKms *kms,
MetaKmsUpdate *update)
{
meta_assert_in_kms_impl (kms);
g_list_foreach (kms->devices,
(GFunc) meta_kms_device_predict_states_in_impl,
update);
}
static gpointer
meta_kms_process_update_in_impl (MetaKmsImpl *impl,
gpointer user_data,
GError **error)
{
g_autoptr (MetaKmsUpdate) update = user_data;
MetaKmsFeedback *feedback;
feedback = meta_kms_impl_process_update (impl, update);
meta_kms_predict_states_in_impl (meta_kms_impl_get_kms (impl), update);
return feedback;
}
static MetaKmsFeedback *
meta_kms_post_update_sync (MetaKms *kms,
MetaKmsUpdate *update)
{
meta_kms_update_seal (update);
COGL_TRACE_BEGIN_SCOPED (MetaKmsPostUpdateSync,
"KMS (post update)");
return meta_kms_run_impl_task_sync (kms,
meta_kms_process_update_in_impl,
update,
NULL);
}
MetaKmsFeedback *
meta_kms_post_pending_update_sync (MetaKms *kms)
{
return meta_kms_post_update_sync (kms,
g_steal_pointer (&kms->pending_update));
}
static gpointer
meta_kms_discard_pending_page_flips_in_impl (MetaKmsImpl *impl,
gpointer user_data,
GError **error)
{
meta_kms_impl_discard_pending_page_flips (impl);
return GINT_TO_POINTER (TRUE);
}
void
meta_kms_discard_pending_page_flips (MetaKms *kms)
{
meta_kms_run_impl_task_sync (kms,
meta_kms_discard_pending_page_flips_in_impl,
NULL,
NULL);
}
static void
meta_kms_callback_data_free (MetaKmsCallbackData *callback_data)
{
if (callback_data->user_data_destroy)
callback_data->user_data_destroy (callback_data->user_data);
g_slice_free (MetaKmsCallbackData, callback_data);
}
static int
flush_callbacks (MetaKms *kms)
{
GList *l;
int callback_count = 0;
meta_assert_not_in_kms_impl (kms);
for (l = kms->pending_callbacks; l; l = l->next)
{
MetaKmsCallbackData *callback_data = l->data;
callback_data->callback (kms, callback_data->user_data);
meta_kms_callback_data_free (callback_data);
callback_count++;
}
g_list_free (kms->pending_callbacks);
kms->pending_callbacks = NULL;
return callback_count;
}
static gboolean
callback_idle (gpointer user_data)
{
MetaKms *kms = user_data;
flush_callbacks (kms);
kms->callback_source_id = 0;
return G_SOURCE_REMOVE;
}
void
meta_kms_queue_callback (MetaKms *kms,
MetaKmsCallback callback,
gpointer user_data,
GDestroyNotify user_data_destroy)
{
MetaKmsCallbackData *callback_data;
callback_data = g_slice_new0 (MetaKmsCallbackData);
*callback_data = (MetaKmsCallbackData) {
.callback = callback,
.user_data = user_data,
.user_data_destroy = user_data_destroy,
};
kms->pending_callbacks = g_list_append (kms->pending_callbacks,
callback_data);
if (!kms->callback_source_id)
kms->callback_source_id = g_idle_add (callback_idle, kms);
}
int
meta_kms_flush_callbacks (MetaKms *kms)
{
int callback_count;
callback_count = flush_callbacks (kms);
g_clear_handle_id (&kms->callback_source_id, g_source_remove);
return callback_count;
}
gpointer
meta_kms_run_impl_task_sync (MetaKms *kms,
MetaKmsImplTaskFunc func,
gpointer user_data,
GError **error)
{
gpointer ret;
kms->in_impl_task = TRUE;
kms->waiting_for_impl_task = TRUE;
ret = func (kms->impl, user_data, error);
kms->waiting_for_impl_task = FALSE;
kms->in_impl_task = FALSE;
return ret;
}
static gboolean
simple_impl_source_dispatch (GSource *source,
GSourceFunc callback,
gpointer user_data)
{
MetaKmsSimpleImplSource *simple_impl_source =
(MetaKmsSimpleImplSource *) source;
MetaKms *kms = simple_impl_source->kms;
gboolean ret;
kms->in_impl_task = TRUE;
ret = callback (user_data);
kms->in_impl_task = FALSE;
return ret;
}
static GSourceFuncs simple_impl_source_funcs = {
.dispatch = simple_impl_source_dispatch,
};
GSource *
meta_kms_add_source_in_impl (MetaKms *kms,
GSourceFunc func,
gpointer user_data,
GDestroyNotify user_data_destroy)
{
GSource *source;
MetaKmsSimpleImplSource *simple_impl_source;
meta_assert_in_kms_impl (kms);
source = g_source_new (&simple_impl_source_funcs,
sizeof (MetaKmsSimpleImplSource));
simple_impl_source = (MetaKmsSimpleImplSource *) source;
simple_impl_source->kms = kms;
g_source_set_callback (source, func, user_data, user_data_destroy);
g_source_set_ready_time (source, 0);
g_source_attach (source, g_main_context_get_thread_default ());
return source;
}
static gboolean
meta_kms_fd_impl_source_check (GSource *source)
{
MetaKmsFdImplSource *fd_impl_source = (MetaKmsFdImplSource *) source;
return g_source_query_unix_fd (source, fd_impl_source->fd_tag) & G_IO_IN;
}
static gboolean
meta_kms_fd_impl_source_dispatch (GSource *source,
GSourceFunc callback,
gpointer user_data)
{
MetaKmsFdImplSource *fd_impl_source = (MetaKmsFdImplSource *) source;
MetaKms *kms = fd_impl_source->kms;
gpointer ret;
GError *error = NULL;
kms->in_impl_task = TRUE;
ret = fd_impl_source->dispatch (kms->impl,
fd_impl_source->user_data,
&error);
kms->in_impl_task = FALSE;
if (!GPOINTER_TO_INT (ret))
{
g_warning ("Failed to dispatch fd source: %s", error->message);
g_error_free (error);
}
return G_SOURCE_CONTINUE;
}
static GSourceFuncs fd_impl_source_funcs = {
NULL,
meta_kms_fd_impl_source_check,
meta_kms_fd_impl_source_dispatch
};
GSource *
meta_kms_register_fd_in_impl (MetaKms *kms,
int fd,
MetaKmsImplTaskFunc dispatch,
gpointer user_data)
{
GSource *source;
MetaKmsFdImplSource *fd_impl_source;
meta_assert_in_kms_impl (kms);
source = g_source_new (&fd_impl_source_funcs, sizeof (MetaKmsFdImplSource));
fd_impl_source = (MetaKmsFdImplSource *) source;
fd_impl_source->dispatch = dispatch;
fd_impl_source->user_data = user_data;
fd_impl_source->kms = kms;
fd_impl_source->fd_tag = g_source_add_unix_fd (source, fd,
G_IO_IN | G_IO_ERR);
g_source_attach (source, g_main_context_get_thread_default ());
return source;
}
gboolean
meta_kms_in_impl_task (MetaKms *kms)
{
return kms->in_impl_task;
}
gboolean
meta_kms_is_waiting_for_impl_task (MetaKms *kms)
{
return kms->waiting_for_impl_task;
}
static void
meta_kms_update_states_in_impl (MetaKms *kms)
{
COGL_TRACE_BEGIN_SCOPED (MetaKmsUpdateStates,
"KMS (update states)");
meta_assert_in_kms_impl (kms);
g_list_foreach (kms->devices,
(GFunc) meta_kms_device_update_states_in_impl,
NULL);
}
static gpointer
update_states_in_impl (MetaKmsImpl *impl,
gpointer user_data,
GError **error)
{
MetaKms *kms = meta_kms_impl_get_kms (impl);;
meta_kms_update_states_in_impl (kms);
return GINT_TO_POINTER (TRUE);
}
static gboolean
meta_kms_update_states_sync (MetaKms *kms,
GError **error)
{
gpointer ret;
ret = meta_kms_run_impl_task_sync (kms, update_states_in_impl, NULL, error);
return GPOINTER_TO_INT (ret);
}
static void
handle_hotplug_event (MetaKms *kms)
{
g_autoptr (GError) error = NULL;
if (!meta_kms_update_states_sync (kms, &error))
g_warning ("Updating KMS state failed: %s", error->message);
g_signal_emit (kms, signals[RESOURCES_CHANGED], 0);
}
static void
on_udev_hotplug (MetaUdev *udev,
MetaKms *kms)
{
handle_hotplug_event (kms);
}
static void
on_udev_device_removed (MetaUdev *udev,
GUdevDevice *device,
MetaKms *kms)
{
handle_hotplug_event (kms);
}
MetaBackend *
meta_kms_get_backend (MetaKms *kms)
{
return kms->backend;
}
static gpointer
notify_device_created_in_impl (MetaKmsImpl *impl,
gpointer user_data,
GError **error)
{
MetaKmsDevice *device = user_data;
meta_kms_impl_notify_device_created (impl, device);
return GINT_TO_POINTER (TRUE);
}
MetaKmsDevice *
meta_kms_create_device (MetaKms *kms,
const char *path,
MetaKmsDeviceFlag flags,
GError **error)
{
MetaKmsDevice *device;
device = meta_kms_device_new (kms, path, flags, error);
if (!device)
return NULL;
meta_kms_run_impl_task_sync (kms, notify_device_created_in_impl,
device, NULL);
kms->devices = g_list_append (kms->devices, device);
return device;
}
MetaKms *
meta_kms_new (MetaBackend *backend,
GError **error)
{
MetaBackendNative *backend_native = META_BACKEND_NATIVE (backend);
MetaUdev *udev = meta_backend_native_get_udev (backend_native);
MetaKms *kms;
kms = g_object_new (META_TYPE_KMS, NULL);
kms->backend = backend;
kms->impl = META_KMS_IMPL (meta_kms_impl_simple_new (kms, error));
if (!kms->impl)
{
g_object_unref (kms);
return NULL;
}
kms->hotplug_handler_id =
g_signal_connect (udev, "hotplug", G_CALLBACK (on_udev_hotplug), kms);
kms->removed_handler_id =
g_signal_connect (udev, "device-removed",
G_CALLBACK (on_udev_device_removed), kms);
return kms;
}
static void
meta_kms_finalize (GObject *object)
{
MetaKms *kms = META_KMS (object);
MetaBackendNative *backend_native = META_BACKEND_NATIVE (kms->backend);
MetaUdev *udev = meta_backend_native_get_udev (backend_native);
GList *l;
for (l = kms->pending_callbacks; l; l = l->next)
meta_kms_callback_data_free (l->data);
g_list_free (kms->pending_callbacks);
g_clear_handle_id (&kms->callback_source_id, g_source_remove);
g_list_free_full (kms->devices, g_object_unref);
g_clear_signal_handler (&kms->hotplug_handler_id, udev);
g_clear_signal_handler (&kms->removed_handler_id, udev);
G_OBJECT_CLASS (meta_kms_parent_class)->finalize (object);
}
static void
meta_kms_init (MetaKms *kms)
{
}
static void
meta_kms_class_init (MetaKmsClass *klass)
{
GObjectClass *object_class = G_OBJECT_CLASS (klass);
object_class->finalize = meta_kms_finalize;
signals[RESOURCES_CHANGED] =
g_signal_new ("resources-changed",
G_TYPE_FROM_CLASS (klass),
G_SIGNAL_RUN_LAST,
0,
NULL, NULL, NULL,
G_TYPE_NONE, 0);
}