mutter/tests/conform/test-path.c
Robert Bragg 3881fd3259 Adds cogl_framebuffer_draw_[*_]rectangle functions
This adds experimental 2.0 api replacements for the cogl_rectangle[_*]
functions that don't depend on having a current pipeline set on the
context via cogl_{set,push}_source() or having a current framebuffer set
on the context via cogl_push_framebuffer(). The aim for 2.0 is to switch
away from having a statefull context that affects drawing to having
framebuffer drawing apis that are explicitly passed a framebuffer and
pipeline.

To test this change several of the conformance tests were updated to use
this api instead of cogl_rectangle and
cogl_rectangle_with_texture_coords. Since it's quite laborious going
through all of the conformance tests the opportunity was taken to make
other clean ups in the conformance tests to replace other uses of
1.x api with experimental 2.0 api so long as that didn't affect what was
being tested.
2012-03-20 12:33:40 +00:00

213 lines
6.7 KiB
C

#include <cogl/cogl.h>
#include <string.h>
#include "test-utils.h"
#define BLOCK_SIZE 16
/* Number of pixels at the border of a block quadrant to skip when verifying */
#define TEST_INSET 1
typedef struct _TestState
{
int dummy;
} TestState;
static void
draw_path_at (int x, int y)
{
cogl_framebuffer_push_matrix (fb);
cogl_framebuffer_translate (fb, x * BLOCK_SIZE, y * BLOCK_SIZE, 0.0f);
cogl_path_fill ();
cogl_framebuffer_pop_matrix (fb);
}
static void
check_block (int block_x, int block_y, int block_mask)
{
guint32 data[BLOCK_SIZE * BLOCK_SIZE];
int qx, qy;
/* Block mask represents which quarters of the block should be
filled. The bits from 0->3 represent the top left, top right,
bottom left and bottom right respectively */
cogl_framebuffer_read_pixels (fb,
block_x * BLOCK_SIZE,
block_y * BLOCK_SIZE,
BLOCK_SIZE, BLOCK_SIZE,
COGL_PIXEL_FORMAT_RGBA_8888_PRE,
(guint8 *)data);
for (qy = 0; qy < 2; qy++)
for (qx = 0; qx < 2; qx++)
{
int bit = qx | (qy << 1);
const char *intended_pixel = ((block_mask & (1 << bit)) ? "#ffffff" : "#000000");
int x, y;
for (x = 0; x < BLOCK_SIZE / 2 - TEST_INSET * 2; x++)
for (y = 0; y < BLOCK_SIZE / 2 - TEST_INSET * 2; y++)
{
const guint32 *p = data + (qx * BLOCK_SIZE / 2 +
qy * BLOCK_SIZE * BLOCK_SIZE / 2 +
(x + TEST_INSET) +
(y + TEST_INSET) * BLOCK_SIZE);
char *screen_pixel = g_strdup_printf ("#%06x", GUINT32_FROM_BE (*p) >> 8);
g_assert_cmpstr (screen_pixel, ==, intended_pixel);
g_free (screen_pixel);
}
}
}
static void
paint (TestState *state)
{
CoglHandle path_a, path_b, path_c;
cogl_set_source_color4ub (255, 255, 255, 255);
/* Create a path filling just a quarter of a block. It will use two
rectangles so that we have a sub path in the path */
cogl_path_new ();
cogl_path_rectangle (BLOCK_SIZE * 3 / 4, BLOCK_SIZE / 2,
BLOCK_SIZE, BLOCK_SIZE);
cogl_path_rectangle (BLOCK_SIZE / 2, BLOCK_SIZE / 2,
BLOCK_SIZE * 3 / 4, BLOCK_SIZE);
path_a = cogl_handle_ref (cogl_get_path ());
draw_path_at (0, 0);
/* Create another path filling the whole block */
cogl_path_rectangle (0, 0, BLOCK_SIZE, BLOCK_SIZE);
path_b = cogl_handle_ref (cogl_get_path ());
draw_path_at (1, 0);
/* Draw the first path again */
cogl_set_path (path_a);
draw_path_at (2, 0);
/* Draw a copy of path a */
path_c = cogl_path_copy (path_a);
cogl_set_path (path_c);
draw_path_at (3, 0);
/* Add another rectangle to path a. We'll use line_to's instead of
cogl_rectangle so that we don't create another sub-path because
that is more likely to break the copy */
cogl_set_path (path_a);
cogl_path_line_to (0, BLOCK_SIZE / 2);
cogl_path_line_to (0, 0);
cogl_path_line_to (BLOCK_SIZE / 2, 0);
cogl_path_line_to (BLOCK_SIZE / 2, BLOCK_SIZE / 2);
draw_path_at (4, 0);
/* Draw the copy again. It should not have changed */
cogl_set_path (path_c);
draw_path_at (5, 0);
/* Add another rectangle to path c. It will be added in two halves,
one as an extension of the previous path and the other as a new
sub path */
cogl_set_path (path_c);
cogl_path_line_to (BLOCK_SIZE / 2, 0);
cogl_path_line_to (BLOCK_SIZE * 3 / 4, 0);
cogl_path_line_to (BLOCK_SIZE * 3 / 4, BLOCK_SIZE / 2);
cogl_path_line_to (BLOCK_SIZE / 2, BLOCK_SIZE / 2);
cogl_path_rectangle (BLOCK_SIZE * 3 / 4, 0, BLOCK_SIZE, BLOCK_SIZE / 2);
draw_path_at (6, 0);
/* Draw the original path again. It should not have changed */
cogl_set_path (path_a);
draw_path_at (7, 0);
cogl_handle_unref (path_a);
cogl_handle_unref (path_b);
cogl_handle_unref (path_c);
/* Draw a self-intersecting path. The part that intersects should be
inverted */
cogl_path_rectangle (0, 0, BLOCK_SIZE, BLOCK_SIZE);
cogl_path_line_to (0, BLOCK_SIZE / 2);
cogl_path_line_to (BLOCK_SIZE / 2, BLOCK_SIZE / 2);
cogl_path_line_to (BLOCK_SIZE / 2, 0);
cogl_path_close ();
draw_path_at (8, 0);
/* Draw two sub paths. Where the paths intersect it should be
inverted */
cogl_path_rectangle (0, 0, BLOCK_SIZE, BLOCK_SIZE);
cogl_path_rectangle (BLOCK_SIZE / 2, BLOCK_SIZE / 2, BLOCK_SIZE, BLOCK_SIZE);
draw_path_at (9, 0);
/* Draw a clockwise outer path */
cogl_path_move_to (0, 0);
cogl_path_line_to (BLOCK_SIZE, 0);
cogl_path_line_to (BLOCK_SIZE, BLOCK_SIZE);
cogl_path_line_to (0, BLOCK_SIZE);
cogl_path_close ();
/* Add a clockwise sub path in the upper left quadrant */
cogl_path_move_to (0, 0);
cogl_path_line_to (BLOCK_SIZE / 2, 0);
cogl_path_line_to (BLOCK_SIZE / 2, BLOCK_SIZE / 2);
cogl_path_line_to (0, BLOCK_SIZE / 2);
cogl_path_close ();
/* Add a counter-clockwise sub path in the upper right quadrant */
cogl_path_move_to (BLOCK_SIZE / 2, 0);
cogl_path_line_to (BLOCK_SIZE / 2, BLOCK_SIZE / 2);
cogl_path_line_to (BLOCK_SIZE, BLOCK_SIZE / 2);
cogl_path_line_to (BLOCK_SIZE, 0);
cogl_path_close ();
/* Retain the path for the next test */
path_a = cogl_handle_ref (cogl_get_path ());
draw_path_at (10, 0);
/* Draw the same path again with the other fill rule */
cogl_set_path (path_a);
cogl_path_set_fill_rule (COGL_PATH_FILL_RULE_NON_ZERO);
draw_path_at (11, 0);
cogl_handle_unref (path_a);
}
static void
validate_result ()
{
check_block (0, 0, 0x8 /* bottom right */);
check_block (1, 0, 0xf /* all of them */);
check_block (2, 0, 0x8 /* bottom right */);
check_block (3, 0, 0x8 /* bottom right */);
check_block (4, 0, 0x9 /* top left and bottom right */);
check_block (5, 0, 0x8 /* bottom right */);
check_block (6, 0, 0xa /* bottom right and top right */);
check_block (7, 0, 0x9 /* top_left and bottom right */);
check_block (8, 0, 0xe /* all but top left */);
check_block (9, 0, 0x7 /* all but bottom right */);
check_block (10, 0, 0xc /* bottom two */);
check_block (11, 0, 0xd /* all but top right */);
}
void
test_path (void)
{
TestState state;
cogl_framebuffer_orthographic (fb,
0, 0,
cogl_framebuffer_get_width (fb),
cogl_framebuffer_get_height (fb),
-1,
100);
/* XXX: we have to push/pop a framebuffer since this test currently
* uses the legacy cogl_rectangle() api. */
cogl_push_framebuffer (fb);
paint (&state);
cogl_pop_framebuffer ();
validate_result ();
if (cogl_test_verbose ())
g_print ("OK\n");
}