/*
* Cogl
*
* An object oriented GL/GLES Abstraction/Utility Layer
*
* Copyright (C) 2010 Intel Corporation.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see .
*
*
*
* Authors:
* Robert Bragg
*/
#if !defined(__COGL_H_INSIDE__) && !defined(CLUTTER_COMPILATION)
#error "Only can be included directly."
#endif
#ifndef __COGL_PRIMITIVE_H__
#define __COGL_PRIMITIVE_H__
#include /* for CoglVerticesMode */
#include
G_BEGIN_DECLS
/**
* SECTION:cogl-primitive
* @short_description: Functions for creating, manipulating and drawing
* primitives
*
* FIXME
*/
typedef struct _CoglPrimitive CoglPrimitive;
/**
* CoglVertexP2:
* @x: The x component of a position attribute
* @y: The y component of a position attribute
*
* A convenience vertex definition that can be used with
* cogl_primitive_new_with_v2_attributes().
*
* Since: 1.6
* Stability: Unstable
*/
typedef struct
{
float x, y;
} CoglVertexP2;
/**
* CoglVertexP3:
* @x: The x component of a position attribute
* @y: The y component of a position attribute
* @z: The z component of a position attribute
*
* A convenience vertex definition that can be used with
* cogl_primitive_new_with_v3_attributes().
*
* Since: 1.6
* Stability: Unstable
*/
typedef struct
{
float x, y, z;
} CoglVertexP3;
/**
* CoglVertexP2C4:
* @x: The x component of a position attribute
* @y: The y component of a position attribute
* @r: The red component of a color attribute
* @b: The green component of a color attribute
* @g: The blue component of a color attribute
* @a: The alpha component of a color attribute
*
* A convenience vertex definition that can be used with
* cogl_primitive_new_with_v2c4_attributes().
*
* Since: 1.6
* Stability: Unstable
*/
typedef struct
{
float x, y;
guint8 r, g, b, a;
} CoglVertexP2C4;
/**
* CoglVertexP3C4:
* @x: The x component of a position attribute
* @y: The y component of a position attribute
* @z: The z component of a position attribute
* @r: The red component of a color attribute
* @b: The green component of a color attribute
* @g: The blue component of a color attribute
* @a: The alpha component of a color attribute
*
* A convenience vertex definition that can be used with
* cogl_primitive_new_with_v3c4_attributes().
*
* Since: 1.6
* Stability: Unstable
*/
typedef struct
{
float x, y, z;
guint8 r, g, b, a;
} CoglVertexP3C4;
/**
* CoglVertexP2T2:
* @x: The x component of a position attribute
* @y: The y component of a position attribute
* @s: The s component of a texture coordinate attribute
* @t: The t component of a texture coordinate attribute
*
* A convenience vertex definition that can be used with
* cogl_primitive_new_with_v2t2_attributes().
*
* Since: 1.6
* Stability: Unstable
*/
typedef struct
{
float x, y;
float s, t;
} CoglVertexP2T2;
/**
* CoglVertexP3T2:
* @x: The x component of a position attribute
* @y: The y component of a position attribute
* @z: The z component of a position attribute
* @s: The s component of a texture coordinate attribute
* @t: The t component of a texture coordinate attribute
*
* A convenience vertex definition that can be used with
* cogl_primitive_new_with_v3t2_attributes().
*
* Since: 1.6
* Stability: Unstable
*/
typedef struct
{
float x, y, z;
float s, t;
} CoglVertexP3T2;
/**
* CoglVertexP2T2C4:
* @x: The x component of a position attribute
* @y: The y component of a position attribute
* @s: The s component of a texture coordinate attribute
* @t: The t component of a texture coordinate attribute
* @r: The red component of a color attribute
* @b: The green component of a color attribute
* @g: The blue component of a color attribute
* @a: The alpha component of a color attribute
*
* A convenience vertex definition that can be used with
* cogl_primitive_new_with_v3t2c4_attributes().
*
* Since: 1.6
* Stability: Unstable
*/
typedef struct
{
float x, y;
float s, t;
guint8 r, g, b, a;
} CoglVertexP2T2C4;
/**
* CoglVertexP3T2C4:
* @x: The x component of a position attribute
* @y: The y component of a position attribute
* @z: The z component of a position attribute
* @s: The s component of a texture coordinate attribute
* @t: The t component of a texture coordinate attribute
* @r: The red component of a color attribute
* @b: The green component of a color attribute
* @g: The blue component of a color attribute
* @a: The alpha component of a color attribute
*
* A convenience vertex definition that can be used with
* cogl_primitive_new_with_v3t2c4_attributes().
*
* Since: 1.6
* Stability: Unstable
*/
typedef struct
{
float x, y, z;
float s, t;
guint8 r, g, b, a;
} CoglVertexP3T2C4;
/**
* cogl_primitive_new:
* @mode: A #CoglVerticesMode defining how to draw the vertices
* @n_vertices: The number of vertices to process when drawing
* @Varargs: A %NULL terminated list of attributes
*
* Combines a set of #CoglAttributes with a specific draw @mode
* and defines a vertex count so a #CoglPrimitive object can be retained and
* drawn later with no addition information required.
*
* Returns: A newly allocated #CoglPrimitive object
*
* Since: 1.6
* Stability: Unstable
*/
CoglPrimitive *
cogl_primitive_new (CoglVerticesMode mode,
int n_vertices,
...);
CoglPrimitive *
cogl_primitive_new_with_attributes (CoglVerticesMode mode,
int n_vertices,
CoglAttribute **attributes,
int n_attributes);
/**
* cogl_primitive_new_p2:
* @mode: A #CoglVerticesMode defining how to draw the vertices
* @n_vertices: The number of vertices to process when drawing
* @data: An array of #CoglVertexP2 vertices
*
* Provides a convenient way to describe a primitive, such as a single
* triangle strip or a triangle fan, that will internally allocate the
* necessary #CoglAttributeBuffer storage, describe the position
* attribute with a #CoglAttribute and upload your data.
*
* For example to draw a convex polygon you can do:
* |[
* CoglVertexP2 triangle[] =
* {
* { 0, 300 },
* { 150, 0, },
* { 300, 300 }
* };
* prim = cogl_primitive_new_p2 (COGL_VERTICES_MODE_TRIANGLE_FAN,
* 3, triangle);
* cogl_primitive_draw (prim);
* ]|
*
* The primitive API doesn't support drawing with sliced
* textures (since switching between slices implies changing state and
* so that implies multiple primitives need to be submitted). You
* should pass the %COGL_TEXTURE_NO_SLICING flag to all textures that
* might be used while drawing with this API. If your hardware doesn't
* support non-power of two textures (For example you are using GLES
* 1.1) then you will need to make sure your assets are resized to a
* power-of-two size (though they don't have to be square)
*
* Return value: A newly allocated #CoglPrimitive with a reference of
* 1. This can be freed using cogl_object_unref().
*
* Since: 1.6
* Stability: Unstable
*/
CoglPrimitive *
cogl_primitive_new_p2 (CoglVerticesMode mode,
int n_vertices,
const CoglVertexP2 *data);
/**
* cogl_primitive_new_p3:
* @mode: A #CoglVerticesMode defining how to draw the vertices
* @n_vertices: The number of vertices to process when drawing
* @data: An array of #CoglVertexP3 vertices
*
* Provides a convenient way to describe a primitive, such as a single
* triangle strip or a triangle fan, that will internally allocate the
* necessary #CoglAttributeBuffer storage, describe the position
* attribute with a #CoglAttribute and upload your data.
*
* For example to draw a convex polygon you can do:
* |[
* CoglVertexP3 triangle[] =
* {
* { 0, 300, 0 },
* { 150, 0, 0 },
* { 300, 300, 0 }
* };
* prim = cogl_primitive_new_p3 (COGL_VERTICES_MODE_TRIANGLE_FAN,
* 3, triangle);
* cogl_primitive_draw (prim);
* ]|
*
* The primitive API doesn't support drawing with sliced
* textures (since switching between slices implies changing state and
* so that implies multiple primitives need to be submitted). You
* should pass the %COGL_TEXTURE_NO_SLICING flag to all textures that
* might be used while drawing with this API. If your hardware doesn't
* support non-power of two textures (For example you are using GLES
* 1.1) then you will need to make sure your assets are resized to a
* power-of-two size (though they don't have to be square)
*
* Return value: A newly allocated #CoglPrimitive with a reference of
* 1. This can be freed using cogl_object_unref().
*
* Since: 1.6
* Stability: Unstable
*/
CoglPrimitive *
cogl_primitive_new_p3 (CoglVerticesMode mode,
int n_vertices,
const CoglVertexP3 *data);
/**
* cogl_primitive_new_p2c4:
* @mode: A #CoglVerticesMode defining how to draw the vertices
* @n_vertices: The number of vertices to process when drawing
* @data: An array of #CoglVertexP2C4 vertices
*
* Provides a convenient way to describe a primitive, such as a single
* triangle strip or a triangle fan, that will internally allocate the
* necessary #CoglAttributeBuffer storage, describe the position
* and color attributes with #CoglAttributes and upload
* your data.
*
* For example to draw a convex polygon with a linear gradient you
* can do:
* |[
* CoglVertexP2C4 triangle[] =
* {
* { 0, 300, 0xff, 0x00, 0x00, 0xff },
* { 150, 0, 0x00, 0xff, 0x00, 0xff },
* { 300, 300, 0xff, 0x00, 0x00, 0xff }
* };
* prim = cogl_primitive_new_p2c4 (COGL_VERTICES_MODE_TRIANGLE_FAN,
* 3, triangle);
* cogl_primitive_draw (prim);
* ]|
*
* The primitive API doesn't support drawing with sliced
* textures (since switching between slices implies changing state and
* so that implies multiple primitives need to be submitted). You
* should pass the %COGL_TEXTURE_NO_SLICING flag to all textures that
* might be used while drawing with this API. If your hardware doesn't
* support non-power of two textures (For example you are using GLES
* 1.1) then you will need to make sure your assets are resized to a
* power-of-two size (though they don't have to be square)
*
* Return value: A newly allocated #CoglPrimitive with a reference of
* 1. This can be freed using cogl_object_unref().
*
* Since: 1.6
* Stability: Unstable
*/
CoglPrimitive *
cogl_primitive_new_p2c4 (CoglVerticesMode mode,
int n_vertices,
const CoglVertexP2C4 *data);
/**
* cogl_primitive_new_p3c4:
* @mode: A #CoglVerticesMode defining how to draw the vertices
* @n_vertices: The number of vertices to process when drawing
* @data: An array of #CoglVertexP3C4 vertices
*
* Provides a convenient way to describe a primitive, such as a single
* triangle strip or a triangle fan, that will internally allocate the
* necessary #CoglAttributeBuffer storage, describe the position
* and color attributes with #CoglAttributes and upload
* your data.
*
* For example to draw a convex polygon with a linear gradient you
* can do:
* |[
* CoglVertexP3C4 triangle[] =
* {
* { 0, 300, 0, 0xff, 0x00, 0x00, 0xff },
* { 150, 0, 0, 0x00, 0xff, 0x00, 0xff },
* { 300, 300, 0, 0xff, 0x00, 0x00, 0xff }
* };
* prim = cogl_primitive_new_p3c4 (COGL_VERTICES_MODE_TRIANGLE_FAN,
* 3, triangle);
* cogl_primitive_draw (prim);
* ]|
*
* The primitive API doesn't support drawing with sliced
* textures (since switching between slices implies changing state and
* so that implies multiple primitives need to be submitted). You
* should pass the %COGL_TEXTURE_NO_SLICING flag to all textures that
* might be used while drawing with this API. If your hardware doesn't
* support non-power of two textures (For example you are using GLES
* 1.1) then you will need to make sure your assets are resized to a
* power-of-two size (though they don't have to be square)
*
* Return value: A newly allocated #CoglPrimitive with a reference of
* 1. This can be freed using cogl_object_unref().
*
* Since: 1.6
* Stability: Unstable
*/
CoglPrimitive *
cogl_primitive_new_p3c4 (CoglVerticesMode mode,
int n_vertices,
const CoglVertexP3C4 *data);
/**
* cogl_primitive_new_p2t2:
* @mode: A #CoglVerticesMode defining how to draw the vertices
* @n_vertices: The number of vertices to process when drawing
* @data: An array of #CoglVertexP2T2 vertices
*
* Provides a convenient way to describe a primitive, such as a single
* triangle strip or a triangle fan, that will internally allocate the
* necessary #CoglAttributeBuffer storage, describe the position and
* texture coordinate attributes with #CoglAttributes and
* upload your data.
*
* For example to draw a convex polygon with texture mapping you can
* do:
* |[
* CoglVertexP2T2 triangle[] =
* {
* { 0, 300, 0.0, 1.0},
* { 150, 0, 0.5, 0.0},
* { 300, 300, 1.0, 1.0}
* };
* prim = cogl_primitive_new_p2t2 (COGL_VERTICES_MODE_TRIANGLE_FAN,
* 3, triangle);
* cogl_primitive_draw (prim);
* ]|
*
* The primitive API doesn't support drawing with sliced
* textures (since switching between slices implies changing state and
* so that implies multiple primitives need to be submitted). You
* should pass the %COGL_TEXTURE_NO_SLICING flag to all textures that
* might be used while drawing with this API. If your hardware doesn't
* support non-power of two textures (For example you are using GLES
* 1.1) then you will need to make sure your assets are resized to a
* power-of-two size (though they don't have to be square)
*
* Return value: A newly allocated #CoglPrimitive with a reference of
* 1. This can be freed using cogl_object_unref().
*
* Since: 1.6
* Stability: Unstable
*/
CoglPrimitive *
cogl_primitive_new_p2t2 (CoglVerticesMode mode,
int n_vertices,
const CoglVertexP2T2 *data);
/**
* cogl_primitive_new_p3t2:
* @mode: A #CoglVerticesMode defining how to draw the vertices
* @n_vertices: The number of vertices to process when drawing
* @data: An array of #CoglVertexP3T2 vertices
*
* Provides a convenient way to describe a primitive, such as a single
* triangle strip or a triangle fan, that will internally allocate the
* necessary #CoglAttributeBuffer storage, describe the position and
* texture coordinate attributes with #CoglAttributes and
* upload your data.
*
* For example to draw a convex polygon with texture mapping you can
* do:
* |[
* CoglVertexP3T2 triangle[] =
* {
* { 0, 300, 0, 0.0, 1.0},
* { 150, 0, 0, 0.5, 0.0},
* { 300, 300, 0, 1.0, 1.0}
* };
* prim = cogl_primitive_new_p3t2 (COGL_VERTICES_MODE_TRIANGLE_FAN,
* 3, triangle);
* cogl_primitive_draw (prim);
* ]|
*
* The primitive API doesn't support drawing with sliced
* textures (since switching between slices implies changing state and
* so that implies multiple primitives need to be submitted). You
* should pass the %COGL_TEXTURE_NO_SLICING flag to all textures that
* might be used while drawing with this API. If your hardware doesn't
* support non-power of two textures (For example you are using GLES
* 1.1) then you will need to make sure your assets are resized to a
* power-of-two size (though they don't have to be square)
*
* Return value: A newly allocated #CoglPrimitive with a reference of
* 1. This can be freed using cogl_object_unref().
*
* Since: 1.6
* Stability: Unstable
*/
CoglPrimitive *
cogl_primitive_new_p3t2 (CoglVerticesMode mode,
int n_vertices,
const CoglVertexP3T2 *data);
/**
* cogl_primitive_new_p2t2c4:
* @mode: A #CoglVerticesMode defining how to draw the vertices
* @n_vertices: The number of vertices to process when drawing
* @data: An array of #CoglVertexP2T2C4 vertices
*
* Provides a convenient way to describe a primitive, such as a single
* triangle strip or a triangle fan, that will internally allocate the
* necessary #CoglAttributeBuffer storage, describe the position, texture
* coordinate and color attributes with #CoglAttributes and
* upload your data.
*
* For example to draw a convex polygon with texture mapping and a
* linear gradient you can do:
* |[
* CoglVertexP2T2C4 triangle[] =
* {
* { 0, 300, 0.0, 1.0, 0xff, 0x00, 0x00, 0xff},
* { 150, 0, 0.5, 0.0, 0x00, 0xff, 0x00, 0xff},
* { 300, 300, 1.0, 1.0, 0xff, 0x00, 0x00, 0xff}
* };
* prim = cogl_primitive_new_p2t2c4 (COGL_VERTICES_MODE_TRIANGLE_FAN,
* 3, triangle);
* cogl_primitive_draw (prim);
* ]|
*
* The primitive API doesn't support drawing with sliced
* textures (since switching between slices implies changing state and
* so that implies multiple primitives need to be submitted). You
* should pass the %COGL_TEXTURE_NO_SLICING flag to all textures that
* might be used while drawing with this API. If your hardware doesn't
* support non-power of two textures (For example you are using GLES
* 1.1) then you will need to make sure your assets are resized to a
* power-of-two size (though they don't have to be square)
*
* Return value: A newly allocated #CoglPrimitive with a reference of
* 1. This can be freed using cogl_object_unref().
*
* Since: 1.6
* Stability: Unstable
*/
CoglPrimitive *
cogl_primitive_new_p2t2c4 (CoglVerticesMode mode,
int n_vertices,
const CoglVertexP2T2C4 *data);
/**
* cogl_primitive_new_p3t2c4:
* @mode: A #CoglVerticesMode defining how to draw the vertices
* @n_vertices: The number of vertices to process when drawing
* @data: An array of #CoglVertexP3T2C4 vertices
*
* Provides a convenient way to describe a primitive, such as a single
* triangle strip or a triangle fan, that will internally allocate the
* necessary #CoglAttributeBuffer storage, describe the position, texture
* coordinate and color attributes with #CoglAttributes and
* upload your data.
*
* For example to draw a convex polygon with texture mapping and a
* linear gradient you can do:
* |[
* CoglVertexP3T2C4 triangle[] =
* {
* { 0, 300, 0, 0.0, 1.0, 0xff, 0x00, 0x00, 0xff},
* { 150, 0, 0, 0.5, 0.0, 0x00, 0xff, 0x00, 0xff},
* { 300, 300, 0, 1.0, 1.0, 0xff, 0x00, 0x00, 0xff}
* };
* prim = cogl_primitive_new_p3t2c4 (COGL_VERTICES_MODE_TRIANGLE_FAN,
* 3, triangle);
* cogl_primitive_draw (prim);
* ]|
*
* The primitive API doesn't support drawing with sliced
* textures (since switching between slices implies changing state and
* so that implies multiple primitives need to be submitted). You
* should pass the %COGL_TEXTURE_NO_SLICING flag to all textures that
* might be used while drawing with this API. If your hardware doesn't
* support non-power of two textures (For example you are using GLES
* 1.1) then you will need to make sure your assets are resized to a
* power-of-two size (though they don't have to be square)
*
* Return value: A newly allocated #CoglPrimitive with a reference of
* 1. This can be freed using cogl_object_unref().
*
* Since: 1.6
* Stability: Unstable
*/
CoglPrimitive *
cogl_primitive_new_p3t2c4 (CoglVerticesMode mode,
int n_vertices,
const CoglVertexP3T2C4 *data);
int
cogl_primitive_get_first_vertex (CoglPrimitive *primitive);
void
cogl_primitive_set_first_vertex (CoglPrimitive *primitive,
int first_vertex);
int
cogl_primitive_get_n_vertices (CoglPrimitive *primitive);
void
cogl_primitive_set_n_vertices (CoglPrimitive *primitive,
int n_vertices);
CoglVerticesMode
cogl_primitive_get_mode (CoglPrimitive *primitive);
void
cogl_primitive_set_mode (CoglPrimitive *primitive,
CoglVerticesMode mode);
/**
* cogl_primitive_set_attributes:
* @primitive: A #CoglPrimitive object
* @attributes: A %NULL terminated array of #CoglAttribute
* pointers
*
* Replaces all the attributes of the given #CoglPrimitive object.
*
* Since: 1.6
* Stability: Unstable
*/
void
cogl_primitive_set_attributes (CoglPrimitive *primitive,
CoglAttribute **attributes,
int n_attributes);
void
cogl_primitive_set_indices (CoglPrimitive *primitive,
CoglIndices *indices);
/**
* cogl_primitive_draw:
* @primitive: A #CoglPrimitive object
*
* Draw the given @primitive with the current source material.
*
* Since: 1.6
* Stability: Unstable
*/
void
cogl_primitive_draw (CoglPrimitive *primitive);
/**
* cogl_is_primitive:
* @object: A #CoglObject
*
* Gets whether the given object references a #CoglPrimitive.
*
* Returns: %TRUE if the handle references a #CoglPrimitive,
* %FALSE otherwise
*
* Since: 1.6
* Stability: Unstable
*/
gboolean
cogl_is_primitive (void *object);
G_END_DECLS
#endif /* __COGL_PRIMITIVE_H__ */