Similar to wl_list_foreach(), add
META_WAYLAND_SURFACE_FOREACH_SUBSURFACE() that iterates over all the
subsurfaces of a surface, without the caller needing to care about
implementation details, such as leaf nodes vs non-leaf nodes.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/961
While it's not very relevant now, as we would rarely create it anyway
since the buffer nor texture never changes for a surface, it will be in
the future, as the actor state (including its content,
MetaShapedTexture) will be synchronized by the MetaWaylandActorSurface
at a later point in time, and not by MetaWaylandSurface, at state
application time.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/961
The method `relative_motion_across_outputs` is used to adjust the
distance/delta of a mouse movement across multiple monitors to take the
different scale factors of those monitors into account. This works by
getting the adjacent monitors that the movement-line/vector intersects
with and adjusting the final position (or end point of the
movement-line) by multiplying the parts of the line spanning across
different monitors with the scale factors of those monitors.
In the end of this calculation, we always want to set the new end
coordinates of the relative motion to the new end coordinates of the
adjusted movement-line. We currently only do that if all adjacent
monitors the line is crossing actually exist, because only then we end
up inside the "We reached the dest logical monitor" else-block and set
`x` and `y` to the correct values. Fix that and make sure the returned
values are also correct in case an adjacent monitor doesn't exist by
adding separate `target_x` and `target_y` variables which we update during
each pass of the while loop so we're always prepared for the while loop
exiting before the destination monitor was found.
Thanks to Axel Kittenberger for reporting the initial bug and tracking
the issue down to `relative_motion_across_outputs`.
Fixes https://gitlab.gnome.org/GNOME/mutter/issues/774
Touch-wise, those are essentially giant touchpads, but have no buttons
associated to the "touchpad" device (There may be pad buttons, but
those are not mouse buttons).
Without tap-to-click/drag, touch in those devices is somewhat useless
out of the box. Have them always enable these features, despite the
setting.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/968
From `meta_cullable_cull_out`:
```
Actors that may have fully opaque parts should also subtract out a region
that is fully opaque from @unobscured_region and @clip_region.
```
As we do no check for the intersection of these two elsewhere in the code,
let's substract from the clip region, too.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/985
Using the same scale for the window as the
logical monitor only works correctly when having
the experimental 'scale-monitor-framebuffer'
feature enabled.
Without this experimental feature, the stream
will contain a black screen, where the actual
window only takes a small part of it.
Therefore, use a scale of 1 for the non-
experimental case.
Patch is based on commit 3fa6a92cc5.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/976
'xwayland: Do not queue frame callbacks unconditionally' changed the
frame callback behavior of Xwayland surfaces so that they behave the
same way as other actor surfaces (e.g. xdg-shell ones), except for the
case when they are initially assigned.
Remove this special casing as well including the now incorrect comment,
so that the Xwayland surfaces behave the same as the others in this
regard also when assigning.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/964
The vfunc is not called when a surface commits its state, but when the
state is applied. Make this clearer by changing the name to
"apply_state" (and "pre_apply_state").
https://gitlab.gnome.org/GNOME/mutter/merge_requests/907
This changes how asynchronous window configuration works. Prior to this
commit, it worked by MetaWindowWayland remembering the last
configuration it sent, then when the Wayland client got back to it, it
tried to figure out whether it was a acknowledgment of the configuration
or not, and finish the move. This failed if the client had acknowledged
a configuration older than the last one sent, and it had hacks to
somewhat deal with wl_shell's lack of configuration serial numbers.
This commits scraps that and makes the MetaWindowWayland take ownership
of sent configurations, including generating serial numbers. The
wl_shell implementation is changed to emulate serial numbers (assuming
each commit acknowledges the last sent configure event). Each
configuration sent to the client is kept around until the client one. At
this point, the position used for that particular configuration is used
when applying the acknowledged state, meaning cases where we have
already sent a new configuration when the client acknowledges a previous
one, we'll still use the correct position for the window.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/907
In Wayland, window configuration is asynchronous. Window geometry is
constrained, the constrained geometry is sent to the client, and the
client will adapt its surface and acknowledge the configuration. When
acknowledged, we shouldn't reconstrain again, as that may invalidate the
constraint calculated for the configured size.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/907
Historically, wl_shell clients used to pretend the input region was
equivalent to the window geometry, so for "correctness" lets do that
here too. This makes wl_shell clients with drop shadow behave marginally
better than before.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/907
This moves the cached subsurface surface state into the generic
MetaWaylandSurface namespace. Eventually it'll be used by other surface
roles which as well aim to implement synhcronization.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/907
The name didn't communicate it was about surface state, and it somewhat
confusingly had the name "pending" in it, which could be confused with
the fact that while it's used to collect pending state, it's also used
to cache previously committed pending state.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/907
With the eventual aim of exposing the internals of MetaWaylandSurface
outside of meta-wayland-surface.c, make users of the pending state use a
helper to fetch it. While at it, rename the struct field to something
more descriptive.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/907
The intention of meta_window_wayland_move_resize() is to finish a
move-resize requested previously, e.g. by a state change, or a
interactive resize. Make the function name carry this intention, by
renaming it to meta_window_wayland_finish_move_resize().
https://gitlab.gnome.org/GNOME/mutter/merge_requests/907
Presumably this function is supposed to be like
meta_kms_impl_simple_handle_page_flip_callback() but the condition in the
if-statement is inverted. Fix the inversion to make these two functions look
alike.
This is part 2 of 2 fixing a complete desktop freeze when drmModePageFlip()
fails with EINVAL and the fallback to drmModeSetCrtc() succeeds but the success
is not registered correctly as completed "flip". The freeze occurs under
wait_for_pending_flips() which calls down into meta_kms_impl_device_dispatch()
which ends up poll()'ing the DRM fd even though drmModeSetCrtc() will not
produce a DRM event, hence the poll() never returns. The freeze was observed
when hotplugging a DisplayLink dock for the first time on Ubuntu 19.10.
This patch makes meta_set_fallback_feedback_idle() actually end up calling into
notify_view_crtc_presented() which decrements
secondary_gpu_state->pending_flips so that wait_for_pending_flips() can finish.
CC stable: gnome-3-34
https://gitlab.gnome.org/GNOME/mutter/merge_requests/953
mode_set_fallback() schedules a call to mode_set_fallback_feedback_idle(), but
it is possible for Mutter to repaint before the idle callbacks are dispatched.
If that happens, mode_set_fallback_feedback_idle() does not get called before
Mutter enters wait_for_pending_flips(), leading to a deadlock.
Add the needed interfaces so that meta_kms_device_dispatch_sync() can flush all
the implementation idle callbacks before it checks if any "events" are
available. This prevents the deadlock by ensuring
mode_set_fallback_feedback_idle() does get called before potentially waiting
for actual DRM events.
Presumably this call would not be needed if the implementation was running in
its own thread, since it would eventually dispatch its idle callbacks before
going to sleep polling on the DRM fd. This call might even be unnecessary
overhead in that case, synchronizing with the implementation thread needlessly.
But the thread does not exist yet, so this is needed for now.
This is part 1 of 2 fixing a complete desktop freeze when drmModePageFlip()
fails with EINVAL and the fallback to drmModeSetCrtc() succeeds but the success
is not registered correctly as completed "flip". The freeze occurs under
wait_for_pending_flips() which calls down into meta_kms_impl_device_dispatch()
which ends up poll()'ing the DRM fd even though drmModeSetCrtc() will not
produce a DRM event, hence the poll() never returns. The freeze was observed
when hotplugging a DisplayLink dock for the first time on Ubuntu 19.10.
CC stable: gnome-3-34
https://gitlab.gnome.org/GNOME/mutter/merge_requests/953
They have been deprecated for a long time, and all their uses in clutter
and mutter has been removed. This also removes some no longer needed
legacy state tracking, as they were only ever excercised in certain
circumstances when there was sources (pipelines or materials) on the now
removed source stack.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/935
Instead of using cogl_polygon(), which uses deprecated API, implement
polygon drawing using the CoglPrimitive API family. While the test might
have been used to explicitly test cogl_polygon() it could still be
useful to test the non-deprecated way of rendering polygons.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/935
Port tests to use API such as cogl_framebuffer_push_matrix() instead of
cogl_push_matrix() all over the Clutter tests, with one exception:
cogl_polygon(). It'll be ported over in a separate commit, as it is less
straight forward.
Implicitly set CoglMaterial properties are changed to explicitly created
and destructed CoglPipelines with the equivalent properties set.
cogl_push|pop_framebuffer() is replaced by explicitly passing the right
framebuffer, but tests still rely on cogl_get_draw_framebuffer() to get
the target framebuffer.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/935
clutter_paint_node_get_framebuffer() fell back on
cogl_get_draw_framebuffer() when the root node didn't have a custom
get_framebuffer vfunc. As this relies on deprecated implicit Cogl stack
API, it needs to go away, so handle this in the caller that knows more
about the context.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/935
Just as with painting, add a pick context that carries pick related
temporary state when doing actor picking. It is currently unused, and
will at least at first still carry around a framebuffer to deal track
view transforms etc.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/935
When painting, actors rely on semi global state tracked by the state to
get various things needed for painting, such as the current draw
framebuffer. Having state hidden in such ways can be very deceiving as
it's hard to follow changes spread out, and adding more and more state
that should be tracked during a paint gets annoying as they will not
change in isolation but one by one in their own places. To do this
better, introduce a paint context that is passed along in paint calls
that contains the necessary state needed during painting.
The paint context implements a framebuffer stack just as Cogl works,
which is currently needed for offscreen rendering used by clutter.
The same context is passed around for paint nodes, contents and effects
as well.
In this commit, the context is only introduced, but not used. It aims to
replace the Cogl framebuffer stack, and will allow actors to know what
view it is currently painted on.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/935
It's not always clear how the dma-buf functions work (e.g. where memory
is allocated) without actually going in-depth in the code. This just
adds a few commments to more quickly gain understanding.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/871
Checking the leds is not really accurate, since some devices have mode
switch buttons without leds. Check in the button flags whether they are
mode switch buttons for any of ring/ring2/strip/strip2, and return the
appropriate group.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/952
While most of the code to compute a window's layer isn't explicitly
windowing backend specific, it is in practice: On wayland there are
no DESKTOP windows(*), docks(*) or groups.
Reflect that by introducing a calculate_layer() vfunc that computes
(and sets) a window's layer.
(*) they shall burn in hell, amen!
https://gitlab.gnome.org/GNOME/mutter/merge_requests/949
Most of the layer computation that the stack does actually depends
on the windowing backend, so we will move it to a vfunc.
However before we do that, split out the bit that will be shared.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/949
When a window that should be stacked above another one is placed in a lower
layer than the other window, we currently allow promoting it to the higher
layer when it has a "transient type". We should do the same when the window
is an actual transient of the other window.
This is particularly relevant for wayland windows, where types play a
much smaller role: Transient windows like non-modal dialogs (and since
commit 666bef7a, popup windows as well) currently end up underneath their
always-on-top parent.
https://gitlab.gnome.org/GNOME/mutter/issues/587
This was wrongly introduced in 75cffd0ec4. As the comment above explains, we
only want to queue redraws in response to surface/buffer damage.
This triggered a full redraw when using DMA buffers on Wayland as we currently
create a new texture on every buffer_attach(), breaking partial invalidation.
Fixes https://gitlab.gnome.org/GNOME/mutter/issues/947