There might not be a single plane that is "for" a CRTC, so remove the
API that made it appear as if it did. The existing users only cared if
there was some plane for said CRTC, so replace the getters with API that
just checks the existance at all.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3428>
Dropped obsolete Free Software Foundation address pointing
to the FSF website instead as suggested by
https://www.gnu.org/licenses/gpl-howto.html
keeping intact the important part of the historical notice
as requested by the license.
Resolving rpmlint reported issue E: incorrect-fsf-address.
Signed-off-by: Sandro Bonazzola <sbonazzo@redhat.com>
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3155>
This makes it possible to post KMS updates that will always defer until
just before the scanout deadline. This is useful to allow queuing cursor
updates where we don't want to post them to KMS immediately, but rather
wait until as late as possible to get lower latency.
We cannot delay primary plane compositions however, and this is due to
how the kernel may prioritize GPU work - not until a pipeline gets
attached to a atomic commit will it in some drivers get bumped to high
priority. This means we still need to post any update that depends on
OpenGL pipelines as soon as possible.
To avoid working on compositing, then getting stomped on the feet by the
deadline scheduler, the deadline timer is disarmed whenever there is a
frame currently being painted. This will still allow new cursor updates
to arrive during composition, but will delay the actual KMS commit until
the primary plane update has been posted.
Still, even for cursor-only we still need higher than default timing
capabilities, thus the deadline scheduler depends on the KMS thread
getting real-time scheduling priority. When the thread isn't realtime
scheduled, the KMS thread instead asks the main thread to "flush" the
commit as part of the regular frame update. A flushing update means one
that isn't set to always defer and has a latching CRTC.
The verbose KMS debug logging makes the processing take too long, making
us more likely to miss the deadline. Avoid this by increasing the
evasion length when debug logging is enabled. Not the best, but better
than changing the behavior completely.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2777>
While doing this, rename the old synchronous functions to more clearly
communicate that they expect to actually process the update during the
call, not just post it.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2777>
It currently does exactly what MetaKms and MetaKmsImpl did regarding the
context separation, which is to isolate what may eventually run on a KMS
thread into a separate unit. It works somewhat like a "user thread",
i.e. not a real thread, but will eventually learn how to spawn a
"kernel thread", but provide the same API from the outside.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2777>
At first it was called seal(), but then updates could be amended after
being posted, given a flag. That flag has been removed, so we can go
back to sealing, since it's once again acts more as a seal.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2854>
EGLStream is incompatible with atomic mode setting, but nvidia-drm when
using libgbm is not, so lets only deny using atomic mode setting when
the render device is an EGLStream based one.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2578>
We disable modifiers for two reasons: an udev rule saying so, or the
lack of a working drmModeAddFB2(). However, to the users, this is not
granular enough. While the current user, whether to enable modifiers in
MetaRendererNative, doesn't need more granularity, we want to send
modifiers to Wayland clients even if the onscreen framebuffers should
still be allocated without modifiers.
Prepare for differentiating between how Wayland DMA buffers work and how
onscreen buffer allocation work by separating the relevant device flags.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2546>
The name had a bit conceptual conflicts with MetaKmsUpdate, as it shared
its namespace but had no relation to it. Fix this by renaming it
MetaKmsResourceChanges (and the corresponding META_KMS_UPDATE_CHANGE_*
to META_KMS_RESOURCE_CHANGE_*). The term "resource" is used since that's
already used in the signal, and the fact that the changes partly comes
from changes in the DRM resource as retrieved by drmModeGetResources.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2340>
The way device backends implement power saving differ, and power saving
needs to contain nothing incompatible in the same update. Make it
impossible to e.g. mode set, page flip, etc while entering power save by
not using MetaKmsUpdate's at all for this.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2159>
It was a bit scattered, with it being split between MetaKms and
MetaKmsImpl, dealing with MetaKmsDevice and MetaKmsImplDevice
differentation. Replace this by, for now, single entry point on
MetaKmsDevice: meta_kms_device_process_update_sync() that does the right
thing.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2159>
On hotplug events we may get informations about what CRTC or connector
changed a property (and the property itself), so in such case let's just
ignore the changes to the non-affected CRTCs/connectors, and let's read
only the affected one
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1964>
Hotplug events may contain CRTC or CONNECTOR ids to notify a property
change to just one owner, so we need to find its parent device.
Also we may want to update properties directly without having to go through
all the devices, so expose a simple way to find them.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1964>
Since we cache already all the KMS parameters we care about let's check at
each device update if anything has really changed and only in such case
emit a resources-changed signal.
In this way we can also filter out the DRM parameters that when changed
don't require a full monitors rebuild.
Examples are the gamma settings or the privacy screen parameters, that
emits an udev "hotplug" event when changed, but we want to register those
only when we handle the changed property.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1964>
This changes the way the KMS backends load; if we're headless, we always
use the dummy one and fail otherwise; in other cases, we first try the
atomic backend, and if that fails, fall back on the simple one.
The aim for this is to have the impl device open and close the device
when needed, using the device pool directly.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1828>
Currently our only entry point for DRM devices is MetaKms*, but in order
to run without being DRM master, we cannot use /dev/dri/card*, nor can
we be either of the existing MetaKmsImplDevice implementation (legacy
KMS, and atomic KMS), as they both depend on being DRM master.
Thus to handle running without being DRM master (i.e. headless), add a
"dummy" MetaKmsImplDevice implementation, that doesn't do any mode
setting at all, and that switches to operate on the render node, instead
of the card node itself.
This means we still use the same GBM code paths as the regular native
backend paths, except we never make use of any CRTC backed onscreen
framebuffers.
Eventually, this "dummy" MetaKmsImplDevice will be replaced separating
"KMS" device objects from "render" device objects, but that will require
more significant changes. It will, however, be necessary for e.g. going
from being headless, only having access to a render node, to turning
into a real session, with a seat, being DRM master, and having access to
a card node.
This is currently not hooked up, but will be in a later commit.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
This leaves only the atomic mode setting cap check before creating the
impl device, aiming to make it possible to create a non-mode-setting
MetaKmsImplDevice implementation.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
This adds a MetaKmsImplDevice backend using atomic drmMode* API in constrast to
non-atomic legacy drmMode* API used in MetaKmsImplDeviceSimple.
This has various behavioral differences worth noting, compared to the
simple backend:
* We can only commit once per CRTC per page flip.
This means that we can only update the cursor plane once. If a primary
plane composition missed a dead line, we cannot commit only a cursor
update that would be presented earlier.
* Partial success is not possible with the atomic backend.
Cursor planes may fail with the simple backend. This is not the case
with the atomic backend. This will instead later be handled using API
specific to the atomic backend, that will effectively translate into
TEST_ONLY commits.
For testing and debugging purposes, the environment variable
MUTTER_DEBUG_ENABLE_ATOMIC_KMS can be set to either 1 or 0 to
force-enable or force-disable atomic mode setting. Setting it to some
other value will cause mutter to abort().
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/548
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
Eventually the type of impl device will depend on the driver details, so
get that information before constructing the impl device. This commit
doesn't introduce any new usage of the details, it just prepares for
the future.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
For now feedbacks from an update are combined, meaning we might lose
error information. The feedback API may have to be reconsidered and
redesigned when planes gets a more front seat position.
This means we need to avoid trying to post updates if we're in power
save mode, as it may be empty.
Note that this is an intermediate state during refactoring that aims to
introduce atomic mode setting support, and we'll stop combining
feedbacks completely in the future.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
Instead of a constructor method, use the type directly and handle error
reporting using GInitable.
The DRM capability setting is done before construction, as later it'll
determine what type of impl device should be constructed.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
Devices have capabilities that other parts need to know about. Instead
of having them probe using drmMode* API, outsource this to
MetaKmsDevice. Currently the only capability tracked is HW cursor size.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/930
mode_set_fallback() schedules a call to mode_set_fallback_feedback_idle(), but
it is possible for Mutter to repaint before the idle callbacks are dispatched.
If that happens, mode_set_fallback_feedback_idle() does not get called before
Mutter enters wait_for_pending_flips(), leading to a deadlock.
Add the needed interfaces so that meta_kms_device_dispatch_sync() can flush all
the implementation idle callbacks before it checks if any "events" are
available. This prevents the deadlock by ensuring
mode_set_fallback_feedback_idle() does get called before potentially waiting
for actual DRM events.
Presumably this call would not be needed if the implementation was running in
its own thread, since it would eventually dispatch its idle callbacks before
going to sleep polling on the DRM fd. This call might even be unnecessary
overhead in that case, synchronizing with the implementation thread needlessly.
But the thread does not exist yet, so this is needed for now.
This is part 1 of 2 fixing a complete desktop freeze when drmModePageFlip()
fails with EINVAL and the fallback to drmModeSetCrtc() succeeds but the success
is not registered correctly as completed "flip". The freeze occurs under
wait_for_pending_flips() which calls down into meta_kms_impl_device_dispatch()
which ends up poll()'ing the DRM fd even though drmModeSetCrtc() will not
produce a DRM event, hence the poll() never returns. The freeze was observed
when hotplugging a DisplayLink dock for the first time on Ubuntu 19.10.
CC stable: gnome-3-34
https://gitlab.gnome.org/GNOME/mutter/merge_requests/953
We can't just update the state of the connector and CRTC from KMS since
it might contain too new updates, e.g. from a from a future hot plug. In
order to not add ad-hoc hot plug detection everywhere, predict the state
changes by looking inside the MetaKmsUpdate object, and let the hot-plug
state changes happen after the actual hot-plug event.
This fixes issues where connectors were discovered as disconnected while
doing a mode-set, meaning assumptions about the connectedness of
monitors elsewhere were broken until the hot plug event was processed.
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/782https://gitlab.gnome.org/GNOME/mutter/merge_requests/826
We currently don't handle the lack of DRM_CLIENT_CAP_UNIVERSAL_PLANES
KMS capability. Fail constructing a device that can't handle this up
front, so later made assumptions, such as presence of a primary plane,
are actually valid.
If we want to support lack of said capability, the required planes need
to be emulated by a dummy MetaKmsPlane object.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/665