This means objects have an owner, where the chain eventually always
leads to a MetaContext. This also means that all objects can find their
way to other object instances via the chain, instead of scattered global
singletons.
This is a squashed commit originally containing the following:
cursor-tracker: Don't get backend from singleton
idle-manager: Don't get backend from singleton
input-device: Pass pointer to backend during construction
The backend is needed during construction to get the wacom database.
input-mapper: Pass backend when constructing
monitor: Don't get backend from singleton
monitor-manager: Get backend directly from monitor manager
remote: Get backend from manager class
For the remote desktop and screen cast implementations, replace getting
the backend from singletons with getting it via the manager classes.
launcher: Pass backend during construction
device-pool: Pass backend during construction
Instead of passing the (maybe null) launcher, pass the backend, and get
the launcher from there. That way we always have a way to some known
context from the device pool.
drm-buffer/gbm: Get backend via device pool
cursor-renderer: Get backend directly from renderer
input-device: Get backend getter
input-settings: Add backend construct property and getter
input-settings/x11: Don't get backend from singleton
renderer: Get backend from renderer itself
seat-impl: Add backend getter
seat/native: Get backend from instance struct
stage-impl: Get backend from stage impl itself
x11/xkb-a11y: Don't get backend from singleton
backend/x11/nested: Don't get Wayland compositor from singleton
crtc: Add backend property
Adding a link to the GPU isn't enough; the virtual CRTCs of virtual
monitors doesn't have one.
cursor-tracker: Don't get display from singleton
remote: Don't get display from singleton
seat: Don't get display from singleton
backend/x11: Don't get display from singleton
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2718>
Virtual monitors are monitors that isn't backed by any monitor like
hardware. It would typically be backed by e.g. a remote desktop service,
or a network display.
It is currently only supported by the native backend, and whether the
X11 backend will ever see virtual monitors is an open question. This
rest of this commit message describes how it works under the native
backend.
Each virutal monitor consists of virtualized mode setting components:
* A virtual CRTC mode (MetaCrtcModeVirtual)
* A virtual CRTC (MetaCrtcVirtual)
* A virtual connector (MetaOutputVirtual)
In difference to the corresponding mode setting objects that represents
KMS objects, the virtual ones isn't directly tied to a MetaGpu, other
than the CoglFramebuffer being part of the GPU context of the primary
GPU, which is the case for all monitors no matter what GPU they are
connected to. Part of the reason for this is that a MetaGpu in practice
represents a mode setting device, and its CRTCs and outputs, are all
backed by real mode setting objects, while a virtual monitor is only
backed by a framebuffer that is tied to the primary GPU. Maybe this will
be reevaluated in the future, but since a virtual monitor is not tied to
any GPU currently, so is the case for the virtual mode setting objects.
The native rendering backend, including the cursor renderer, is adapted
to handle the situation where a CRTC does not have a GPU associated with
it; this in practice means that it e.g. will not try to upload HW cursor
buffers when the cursor is only on a virtual monitor. The same applies
to the native renderer, which is made to avoid creating
MetaOnscreenNative for views that are backed by virtual CRTCs, as well
as to avoid trying to mode set on such views.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>